1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/oom_kill.c 4 * 5 * Copyright (C) 1998,2000 Rik van Riel 6 * Thanks go out to Claus Fischer for some serious inspiration and 7 * for goading me into coding this file... 8 * Copyright (C) 2010 Google, Inc. 9 * Rewritten by David Rientjes 10 * 11 * The routines in this file are used to kill a process when 12 * we're seriously out of memory. This gets called from __alloc_pages() 13 * in mm/page_alloc.c when we really run out of memory. 14 * 15 * Since we won't call these routines often (on a well-configured 16 * machine) this file will double as a 'coding guide' and a signpost 17 * for newbie kernel hackers. It features several pointers to major 18 * kernel subsystems and hints as to where to find out what things do. 19 */ 20 21 #include <linux/oom.h> 22 #include <linux/mm.h> 23 #include <linux/err.h> 24 #include <linux/gfp.h> 25 #include <linux/sched.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/coredump.h> 28 #include <linux/sched/task.h> 29 #include <linux/swap.h> 30 #include <linux/timex.h> 31 #include <linux/jiffies.h> 32 #include <linux/cpuset.h> 33 #include <linux/export.h> 34 #include <linux/notifier.h> 35 #include <linux/memcontrol.h> 36 #include <linux/mempolicy.h> 37 #include <linux/security.h> 38 #include <linux/ptrace.h> 39 #include <linux/freezer.h> 40 #include <linux/ftrace.h> 41 #include <linux/ratelimit.h> 42 #include <linux/kthread.h> 43 #include <linux/init.h> 44 #include <linux/mmu_notifier.h> 45 46 #include <asm/tlb.h> 47 #include "internal.h" 48 #include "slab.h" 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/oom.h> 52 53 int sysctl_panic_on_oom; 54 int sysctl_oom_kill_allocating_task; 55 int sysctl_oom_dump_tasks = 1; 56 57 /* 58 * Serializes oom killer invocations (out_of_memory()) from all contexts to 59 * prevent from over eager oom killing (e.g. when the oom killer is invoked 60 * from different domains). 61 * 62 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled 63 * and mark_oom_victim 64 */ 65 DEFINE_MUTEX(oom_lock); 66 67 #ifdef CONFIG_NUMA 68 /** 69 * has_intersects_mems_allowed() - check task eligiblity for kill 70 * @start: task struct of which task to consider 71 * @mask: nodemask passed to page allocator for mempolicy ooms 72 * 73 * Task eligibility is determined by whether or not a candidate task, @tsk, 74 * shares the same mempolicy nodes as current if it is bound by such a policy 75 * and whether or not it has the same set of allowed cpuset nodes. 76 */ 77 static bool has_intersects_mems_allowed(struct task_struct *start, 78 const nodemask_t *mask) 79 { 80 struct task_struct *tsk; 81 bool ret = false; 82 83 rcu_read_lock(); 84 for_each_thread(start, tsk) { 85 if (mask) { 86 /* 87 * If this is a mempolicy constrained oom, tsk's 88 * cpuset is irrelevant. Only return true if its 89 * mempolicy intersects current, otherwise it may be 90 * needlessly killed. 91 */ 92 ret = mempolicy_nodemask_intersects(tsk, mask); 93 } else { 94 /* 95 * This is not a mempolicy constrained oom, so only 96 * check the mems of tsk's cpuset. 97 */ 98 ret = cpuset_mems_allowed_intersects(current, tsk); 99 } 100 if (ret) 101 break; 102 } 103 rcu_read_unlock(); 104 105 return ret; 106 } 107 #else 108 static bool has_intersects_mems_allowed(struct task_struct *tsk, 109 const nodemask_t *mask) 110 { 111 return true; 112 } 113 #endif /* CONFIG_NUMA */ 114 115 /* 116 * The process p may have detached its own ->mm while exiting or through 117 * use_mm(), but one or more of its subthreads may still have a valid 118 * pointer. Return p, or any of its subthreads with a valid ->mm, with 119 * task_lock() held. 120 */ 121 struct task_struct *find_lock_task_mm(struct task_struct *p) 122 { 123 struct task_struct *t; 124 125 rcu_read_lock(); 126 127 for_each_thread(p, t) { 128 task_lock(t); 129 if (likely(t->mm)) 130 goto found; 131 task_unlock(t); 132 } 133 t = NULL; 134 found: 135 rcu_read_unlock(); 136 137 return t; 138 } 139 140 /* 141 * order == -1 means the oom kill is required by sysrq, otherwise only 142 * for display purposes. 143 */ 144 static inline bool is_sysrq_oom(struct oom_control *oc) 145 { 146 return oc->order == -1; 147 } 148 149 static inline bool is_memcg_oom(struct oom_control *oc) 150 { 151 return oc->memcg != NULL; 152 } 153 154 /* return true if the task is not adequate as candidate victim task. */ 155 static bool oom_unkillable_task(struct task_struct *p, 156 struct mem_cgroup *memcg, const nodemask_t *nodemask) 157 { 158 if (is_global_init(p)) 159 return true; 160 if (p->flags & PF_KTHREAD) 161 return true; 162 163 /* When mem_cgroup_out_of_memory() and p is not member of the group */ 164 if (memcg && !task_in_mem_cgroup(p, memcg)) 165 return true; 166 167 /* p may not have freeable memory in nodemask */ 168 if (!has_intersects_mems_allowed(p, nodemask)) 169 return true; 170 171 return false; 172 } 173 174 /* 175 * Print out unreclaimble slabs info when unreclaimable slabs amount is greater 176 * than all user memory (LRU pages) 177 */ 178 static bool is_dump_unreclaim_slabs(void) 179 { 180 unsigned long nr_lru; 181 182 nr_lru = global_node_page_state(NR_ACTIVE_ANON) + 183 global_node_page_state(NR_INACTIVE_ANON) + 184 global_node_page_state(NR_ACTIVE_FILE) + 185 global_node_page_state(NR_INACTIVE_FILE) + 186 global_node_page_state(NR_ISOLATED_ANON) + 187 global_node_page_state(NR_ISOLATED_FILE) + 188 global_node_page_state(NR_UNEVICTABLE); 189 190 return (global_node_page_state(NR_SLAB_UNRECLAIMABLE) > nr_lru); 191 } 192 193 /** 194 * oom_badness - heuristic function to determine which candidate task to kill 195 * @p: task struct of which task we should calculate 196 * @totalpages: total present RAM allowed for page allocation 197 * @memcg: task's memory controller, if constrained 198 * @nodemask: nodemask passed to page allocator for mempolicy ooms 199 * 200 * The heuristic for determining which task to kill is made to be as simple and 201 * predictable as possible. The goal is to return the highest value for the 202 * task consuming the most memory to avoid subsequent oom failures. 203 */ 204 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg, 205 const nodemask_t *nodemask, unsigned long totalpages) 206 { 207 long points; 208 long adj; 209 210 if (oom_unkillable_task(p, memcg, nodemask)) 211 return 0; 212 213 p = find_lock_task_mm(p); 214 if (!p) 215 return 0; 216 217 /* 218 * Do not even consider tasks which are explicitly marked oom 219 * unkillable or have been already oom reaped or the are in 220 * the middle of vfork 221 */ 222 adj = (long)p->signal->oom_score_adj; 223 if (adj == OOM_SCORE_ADJ_MIN || 224 test_bit(MMF_OOM_SKIP, &p->mm->flags) || 225 in_vfork(p)) { 226 task_unlock(p); 227 return 0; 228 } 229 230 /* 231 * The baseline for the badness score is the proportion of RAM that each 232 * task's rss, pagetable and swap space use. 233 */ 234 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) + 235 mm_pgtables_bytes(p->mm) / PAGE_SIZE; 236 task_unlock(p); 237 238 /* Normalize to oom_score_adj units */ 239 adj *= totalpages / 1000; 240 points += adj; 241 242 /* 243 * Never return 0 for an eligible task regardless of the root bonus and 244 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here). 245 */ 246 return points > 0 ? points : 1; 247 } 248 249 static const char * const oom_constraint_text[] = { 250 [CONSTRAINT_NONE] = "CONSTRAINT_NONE", 251 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET", 252 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY", 253 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG", 254 }; 255 256 /* 257 * Determine the type of allocation constraint. 258 */ 259 static enum oom_constraint constrained_alloc(struct oom_control *oc) 260 { 261 struct zone *zone; 262 struct zoneref *z; 263 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask); 264 bool cpuset_limited = false; 265 int nid; 266 267 if (is_memcg_oom(oc)) { 268 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1; 269 return CONSTRAINT_MEMCG; 270 } 271 272 /* Default to all available memory */ 273 oc->totalpages = totalram_pages() + total_swap_pages; 274 275 if (!IS_ENABLED(CONFIG_NUMA)) 276 return CONSTRAINT_NONE; 277 278 if (!oc->zonelist) 279 return CONSTRAINT_NONE; 280 /* 281 * Reach here only when __GFP_NOFAIL is used. So, we should avoid 282 * to kill current.We have to random task kill in this case. 283 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. 284 */ 285 if (oc->gfp_mask & __GFP_THISNODE) 286 return CONSTRAINT_NONE; 287 288 /* 289 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in 290 * the page allocator means a mempolicy is in effect. Cpuset policy 291 * is enforced in get_page_from_freelist(). 292 */ 293 if (oc->nodemask && 294 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) { 295 oc->totalpages = total_swap_pages; 296 for_each_node_mask(nid, *oc->nodemask) 297 oc->totalpages += node_spanned_pages(nid); 298 return CONSTRAINT_MEMORY_POLICY; 299 } 300 301 /* Check this allocation failure is caused by cpuset's wall function */ 302 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist, 303 high_zoneidx, oc->nodemask) 304 if (!cpuset_zone_allowed(zone, oc->gfp_mask)) 305 cpuset_limited = true; 306 307 if (cpuset_limited) { 308 oc->totalpages = total_swap_pages; 309 for_each_node_mask(nid, cpuset_current_mems_allowed) 310 oc->totalpages += node_spanned_pages(nid); 311 return CONSTRAINT_CPUSET; 312 } 313 return CONSTRAINT_NONE; 314 } 315 316 static int oom_evaluate_task(struct task_struct *task, void *arg) 317 { 318 struct oom_control *oc = arg; 319 unsigned long points; 320 321 if (oom_unkillable_task(task, NULL, oc->nodemask)) 322 goto next; 323 324 /* 325 * This task already has access to memory reserves and is being killed. 326 * Don't allow any other task to have access to the reserves unless 327 * the task has MMF_OOM_SKIP because chances that it would release 328 * any memory is quite low. 329 */ 330 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) { 331 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags)) 332 goto next; 333 goto abort; 334 } 335 336 /* 337 * If task is allocating a lot of memory and has been marked to be 338 * killed first if it triggers an oom, then select it. 339 */ 340 if (oom_task_origin(task)) { 341 points = ULONG_MAX; 342 goto select; 343 } 344 345 points = oom_badness(task, NULL, oc->nodemask, oc->totalpages); 346 if (!points || points < oc->chosen_points) 347 goto next; 348 349 /* Prefer thread group leaders for display purposes */ 350 if (points == oc->chosen_points && thread_group_leader(oc->chosen)) 351 goto next; 352 select: 353 if (oc->chosen) 354 put_task_struct(oc->chosen); 355 get_task_struct(task); 356 oc->chosen = task; 357 oc->chosen_points = points; 358 next: 359 return 0; 360 abort: 361 if (oc->chosen) 362 put_task_struct(oc->chosen); 363 oc->chosen = (void *)-1UL; 364 return 1; 365 } 366 367 /* 368 * Simple selection loop. We choose the process with the highest number of 369 * 'points'. In case scan was aborted, oc->chosen is set to -1. 370 */ 371 static void select_bad_process(struct oom_control *oc) 372 { 373 if (is_memcg_oom(oc)) 374 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc); 375 else { 376 struct task_struct *p; 377 378 rcu_read_lock(); 379 for_each_process(p) 380 if (oom_evaluate_task(p, oc)) 381 break; 382 rcu_read_unlock(); 383 } 384 385 oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages; 386 } 387 388 /** 389 * dump_tasks - dump current memory state of all system tasks 390 * @memcg: current's memory controller, if constrained 391 * @nodemask: nodemask passed to page allocator for mempolicy ooms 392 * 393 * Dumps the current memory state of all eligible tasks. Tasks not in the same 394 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes 395 * are not shown. 396 * State information includes task's pid, uid, tgid, vm size, rss, 397 * pgtables_bytes, swapents, oom_score_adj value, and name. 398 */ 399 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask) 400 { 401 struct task_struct *p; 402 struct task_struct *task; 403 404 pr_info("Tasks state (memory values in pages):\n"); 405 pr_info("[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name\n"); 406 rcu_read_lock(); 407 for_each_process(p) { 408 if (oom_unkillable_task(p, memcg, nodemask)) 409 continue; 410 411 task = find_lock_task_mm(p); 412 if (!task) { 413 /* 414 * This is a kthread or all of p's threads have already 415 * detached their mm's. There's no need to report 416 * them; they can't be oom killed anyway. 417 */ 418 continue; 419 } 420 421 pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu %5hd %s\n", 422 task->pid, from_kuid(&init_user_ns, task_uid(task)), 423 task->tgid, task->mm->total_vm, get_mm_rss(task->mm), 424 mm_pgtables_bytes(task->mm), 425 get_mm_counter(task->mm, MM_SWAPENTS), 426 task->signal->oom_score_adj, task->comm); 427 task_unlock(task); 428 } 429 rcu_read_unlock(); 430 } 431 432 static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim) 433 { 434 /* one line summary of the oom killer context. */ 435 pr_info("oom-kill:constraint=%s,nodemask=%*pbl", 436 oom_constraint_text[oc->constraint], 437 nodemask_pr_args(oc->nodemask)); 438 cpuset_print_current_mems_allowed(); 439 mem_cgroup_print_oom_context(oc->memcg, victim); 440 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid, 441 from_kuid(&init_user_ns, task_uid(victim))); 442 } 443 444 static void dump_header(struct oom_control *oc, struct task_struct *p) 445 { 446 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n", 447 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order, 448 current->signal->oom_score_adj); 449 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order) 450 pr_warn("COMPACTION is disabled!!!\n"); 451 452 dump_stack(); 453 if (is_memcg_oom(oc)) 454 mem_cgroup_print_oom_meminfo(oc->memcg); 455 else { 456 show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask); 457 if (is_dump_unreclaim_slabs()) 458 dump_unreclaimable_slab(); 459 } 460 if (sysctl_oom_dump_tasks) 461 dump_tasks(oc->memcg, oc->nodemask); 462 if (p) 463 dump_oom_summary(oc, p); 464 } 465 466 /* 467 * Number of OOM victims in flight 468 */ 469 static atomic_t oom_victims = ATOMIC_INIT(0); 470 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait); 471 472 static bool oom_killer_disabled __read_mostly; 473 474 #define K(x) ((x) << (PAGE_SHIFT-10)) 475 476 /* 477 * task->mm can be NULL if the task is the exited group leader. So to 478 * determine whether the task is using a particular mm, we examine all the 479 * task's threads: if one of those is using this mm then this task was also 480 * using it. 481 */ 482 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm) 483 { 484 struct task_struct *t; 485 486 for_each_thread(p, t) { 487 struct mm_struct *t_mm = READ_ONCE(t->mm); 488 if (t_mm) 489 return t_mm == mm; 490 } 491 return false; 492 } 493 494 #ifdef CONFIG_MMU 495 /* 496 * OOM Reaper kernel thread which tries to reap the memory used by the OOM 497 * victim (if that is possible) to help the OOM killer to move on. 498 */ 499 static struct task_struct *oom_reaper_th; 500 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait); 501 static struct task_struct *oom_reaper_list; 502 static DEFINE_SPINLOCK(oom_reaper_lock); 503 504 bool __oom_reap_task_mm(struct mm_struct *mm) 505 { 506 struct vm_area_struct *vma; 507 bool ret = true; 508 509 /* 510 * Tell all users of get_user/copy_from_user etc... that the content 511 * is no longer stable. No barriers really needed because unmapping 512 * should imply barriers already and the reader would hit a page fault 513 * if it stumbled over a reaped memory. 514 */ 515 set_bit(MMF_UNSTABLE, &mm->flags); 516 517 for (vma = mm->mmap ; vma; vma = vma->vm_next) { 518 if (!can_madv_dontneed_vma(vma)) 519 continue; 520 521 /* 522 * Only anonymous pages have a good chance to be dropped 523 * without additional steps which we cannot afford as we 524 * are OOM already. 525 * 526 * We do not even care about fs backed pages because all 527 * which are reclaimable have already been reclaimed and 528 * we do not want to block exit_mmap by keeping mm ref 529 * count elevated without a good reason. 530 */ 531 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) { 532 struct mmu_notifier_range range; 533 struct mmu_gather tlb; 534 535 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, 536 vma, mm, vma->vm_start, 537 vma->vm_end); 538 tlb_gather_mmu(&tlb, mm, range.start, range.end); 539 if (mmu_notifier_invalidate_range_start_nonblock(&range)) { 540 tlb_finish_mmu(&tlb, range.start, range.end); 541 ret = false; 542 continue; 543 } 544 unmap_page_range(&tlb, vma, range.start, range.end, NULL); 545 mmu_notifier_invalidate_range_end(&range); 546 tlb_finish_mmu(&tlb, range.start, range.end); 547 } 548 } 549 550 return ret; 551 } 552 553 /* 554 * Reaps the address space of the give task. 555 * 556 * Returns true on success and false if none or part of the address space 557 * has been reclaimed and the caller should retry later. 558 */ 559 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm) 560 { 561 bool ret = true; 562 563 if (!down_read_trylock(&mm->mmap_sem)) { 564 trace_skip_task_reaping(tsk->pid); 565 return false; 566 } 567 568 /* 569 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't 570 * work on the mm anymore. The check for MMF_OOM_SKIP must run 571 * under mmap_sem for reading because it serializes against the 572 * down_write();up_write() cycle in exit_mmap(). 573 */ 574 if (test_bit(MMF_OOM_SKIP, &mm->flags)) { 575 trace_skip_task_reaping(tsk->pid); 576 goto out_unlock; 577 } 578 579 trace_start_task_reaping(tsk->pid); 580 581 /* failed to reap part of the address space. Try again later */ 582 ret = __oom_reap_task_mm(mm); 583 if (!ret) 584 goto out_finish; 585 586 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n", 587 task_pid_nr(tsk), tsk->comm, 588 K(get_mm_counter(mm, MM_ANONPAGES)), 589 K(get_mm_counter(mm, MM_FILEPAGES)), 590 K(get_mm_counter(mm, MM_SHMEMPAGES))); 591 out_finish: 592 trace_finish_task_reaping(tsk->pid); 593 out_unlock: 594 up_read(&mm->mmap_sem); 595 596 return ret; 597 } 598 599 #define MAX_OOM_REAP_RETRIES 10 600 static void oom_reap_task(struct task_struct *tsk) 601 { 602 int attempts = 0; 603 struct mm_struct *mm = tsk->signal->oom_mm; 604 605 /* Retry the down_read_trylock(mmap_sem) a few times */ 606 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm)) 607 schedule_timeout_idle(HZ/10); 608 609 if (attempts <= MAX_OOM_REAP_RETRIES || 610 test_bit(MMF_OOM_SKIP, &mm->flags)) 611 goto done; 612 613 pr_info("oom_reaper: unable to reap pid:%d (%s)\n", 614 task_pid_nr(tsk), tsk->comm); 615 debug_show_all_locks(); 616 617 done: 618 tsk->oom_reaper_list = NULL; 619 620 /* 621 * Hide this mm from OOM killer because it has been either reaped or 622 * somebody can't call up_write(mmap_sem). 623 */ 624 set_bit(MMF_OOM_SKIP, &mm->flags); 625 626 /* Drop a reference taken by wake_oom_reaper */ 627 put_task_struct(tsk); 628 } 629 630 static int oom_reaper(void *unused) 631 { 632 while (true) { 633 struct task_struct *tsk = NULL; 634 635 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL); 636 spin_lock(&oom_reaper_lock); 637 if (oom_reaper_list != NULL) { 638 tsk = oom_reaper_list; 639 oom_reaper_list = tsk->oom_reaper_list; 640 } 641 spin_unlock(&oom_reaper_lock); 642 643 if (tsk) 644 oom_reap_task(tsk); 645 } 646 647 return 0; 648 } 649 650 static void wake_oom_reaper(struct task_struct *tsk) 651 { 652 /* mm is already queued? */ 653 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags)) 654 return; 655 656 get_task_struct(tsk); 657 658 spin_lock(&oom_reaper_lock); 659 tsk->oom_reaper_list = oom_reaper_list; 660 oom_reaper_list = tsk; 661 spin_unlock(&oom_reaper_lock); 662 trace_wake_reaper(tsk->pid); 663 wake_up(&oom_reaper_wait); 664 } 665 666 static int __init oom_init(void) 667 { 668 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper"); 669 return 0; 670 } 671 subsys_initcall(oom_init) 672 #else 673 static inline void wake_oom_reaper(struct task_struct *tsk) 674 { 675 } 676 #endif /* CONFIG_MMU */ 677 678 /** 679 * mark_oom_victim - mark the given task as OOM victim 680 * @tsk: task to mark 681 * 682 * Has to be called with oom_lock held and never after 683 * oom has been disabled already. 684 * 685 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either 686 * under task_lock or operate on the current). 687 */ 688 static void mark_oom_victim(struct task_struct *tsk) 689 { 690 struct mm_struct *mm = tsk->mm; 691 692 WARN_ON(oom_killer_disabled); 693 /* OOM killer might race with memcg OOM */ 694 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE)) 695 return; 696 697 /* oom_mm is bound to the signal struct life time. */ 698 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) { 699 mmgrab(tsk->signal->oom_mm); 700 set_bit(MMF_OOM_VICTIM, &mm->flags); 701 } 702 703 /* 704 * Make sure that the task is woken up from uninterruptible sleep 705 * if it is frozen because OOM killer wouldn't be able to free 706 * any memory and livelock. freezing_slow_path will tell the freezer 707 * that TIF_MEMDIE tasks should be ignored. 708 */ 709 __thaw_task(tsk); 710 atomic_inc(&oom_victims); 711 trace_mark_victim(tsk->pid); 712 } 713 714 /** 715 * exit_oom_victim - note the exit of an OOM victim 716 */ 717 void exit_oom_victim(void) 718 { 719 clear_thread_flag(TIF_MEMDIE); 720 721 if (!atomic_dec_return(&oom_victims)) 722 wake_up_all(&oom_victims_wait); 723 } 724 725 /** 726 * oom_killer_enable - enable OOM killer 727 */ 728 void oom_killer_enable(void) 729 { 730 oom_killer_disabled = false; 731 pr_info("OOM killer enabled.\n"); 732 } 733 734 /** 735 * oom_killer_disable - disable OOM killer 736 * @timeout: maximum timeout to wait for oom victims in jiffies 737 * 738 * Forces all page allocations to fail rather than trigger OOM killer. 739 * Will block and wait until all OOM victims are killed or the given 740 * timeout expires. 741 * 742 * The function cannot be called when there are runnable user tasks because 743 * the userspace would see unexpected allocation failures as a result. Any 744 * new usage of this function should be consulted with MM people. 745 * 746 * Returns true if successful and false if the OOM killer cannot be 747 * disabled. 748 */ 749 bool oom_killer_disable(signed long timeout) 750 { 751 signed long ret; 752 753 /* 754 * Make sure to not race with an ongoing OOM killer. Check that the 755 * current is not killed (possibly due to sharing the victim's memory). 756 */ 757 if (mutex_lock_killable(&oom_lock)) 758 return false; 759 oom_killer_disabled = true; 760 mutex_unlock(&oom_lock); 761 762 ret = wait_event_interruptible_timeout(oom_victims_wait, 763 !atomic_read(&oom_victims), timeout); 764 if (ret <= 0) { 765 oom_killer_enable(); 766 return false; 767 } 768 pr_info("OOM killer disabled.\n"); 769 770 return true; 771 } 772 773 static inline bool __task_will_free_mem(struct task_struct *task) 774 { 775 struct signal_struct *sig = task->signal; 776 777 /* 778 * A coredumping process may sleep for an extended period in exit_mm(), 779 * so the oom killer cannot assume that the process will promptly exit 780 * and release memory. 781 */ 782 if (sig->flags & SIGNAL_GROUP_COREDUMP) 783 return false; 784 785 if (sig->flags & SIGNAL_GROUP_EXIT) 786 return true; 787 788 if (thread_group_empty(task) && (task->flags & PF_EXITING)) 789 return true; 790 791 return false; 792 } 793 794 /* 795 * Checks whether the given task is dying or exiting and likely to 796 * release its address space. This means that all threads and processes 797 * sharing the same mm have to be killed or exiting. 798 * Caller has to make sure that task->mm is stable (hold task_lock or 799 * it operates on the current). 800 */ 801 static bool task_will_free_mem(struct task_struct *task) 802 { 803 struct mm_struct *mm = task->mm; 804 struct task_struct *p; 805 bool ret = true; 806 807 /* 808 * Skip tasks without mm because it might have passed its exit_mm and 809 * exit_oom_victim. oom_reaper could have rescued that but do not rely 810 * on that for now. We can consider find_lock_task_mm in future. 811 */ 812 if (!mm) 813 return false; 814 815 if (!__task_will_free_mem(task)) 816 return false; 817 818 /* 819 * This task has already been drained by the oom reaper so there are 820 * only small chances it will free some more 821 */ 822 if (test_bit(MMF_OOM_SKIP, &mm->flags)) 823 return false; 824 825 if (atomic_read(&mm->mm_users) <= 1) 826 return true; 827 828 /* 829 * Make sure that all tasks which share the mm with the given tasks 830 * are dying as well to make sure that a) nobody pins its mm and 831 * b) the task is also reapable by the oom reaper. 832 */ 833 rcu_read_lock(); 834 for_each_process(p) { 835 if (!process_shares_mm(p, mm)) 836 continue; 837 if (same_thread_group(task, p)) 838 continue; 839 ret = __task_will_free_mem(p); 840 if (!ret) 841 break; 842 } 843 rcu_read_unlock(); 844 845 return ret; 846 } 847 848 static void __oom_kill_process(struct task_struct *victim, const char *message) 849 { 850 struct task_struct *p; 851 struct mm_struct *mm; 852 bool can_oom_reap = true; 853 854 p = find_lock_task_mm(victim); 855 if (!p) { 856 put_task_struct(victim); 857 return; 858 } else if (victim != p) { 859 get_task_struct(p); 860 put_task_struct(victim); 861 victim = p; 862 } 863 864 /* Get a reference to safely compare mm after task_unlock(victim) */ 865 mm = victim->mm; 866 mmgrab(mm); 867 868 /* Raise event before sending signal: task reaper must see this */ 869 count_vm_event(OOM_KILL); 870 memcg_memory_event_mm(mm, MEMCG_OOM_KILL); 871 872 /* 873 * We should send SIGKILL before granting access to memory reserves 874 * in order to prevent the OOM victim from depleting the memory 875 * reserves from the user space under its control. 876 */ 877 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID); 878 mark_oom_victim(victim); 879 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n", 880 message, task_pid_nr(victim), victim->comm, 881 K(victim->mm->total_vm), 882 K(get_mm_counter(victim->mm, MM_ANONPAGES)), 883 K(get_mm_counter(victim->mm, MM_FILEPAGES)), 884 K(get_mm_counter(victim->mm, MM_SHMEMPAGES))); 885 task_unlock(victim); 886 887 /* 888 * Kill all user processes sharing victim->mm in other thread groups, if 889 * any. They don't get access to memory reserves, though, to avoid 890 * depletion of all memory. This prevents mm->mmap_sem livelock when an 891 * oom killed thread cannot exit because it requires the semaphore and 892 * its contended by another thread trying to allocate memory itself. 893 * That thread will now get access to memory reserves since it has a 894 * pending fatal signal. 895 */ 896 rcu_read_lock(); 897 for_each_process(p) { 898 if (!process_shares_mm(p, mm)) 899 continue; 900 if (same_thread_group(p, victim)) 901 continue; 902 if (is_global_init(p)) { 903 can_oom_reap = false; 904 set_bit(MMF_OOM_SKIP, &mm->flags); 905 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n", 906 task_pid_nr(victim), victim->comm, 907 task_pid_nr(p), p->comm); 908 continue; 909 } 910 /* 911 * No use_mm() user needs to read from the userspace so we are 912 * ok to reap it. 913 */ 914 if (unlikely(p->flags & PF_KTHREAD)) 915 continue; 916 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID); 917 } 918 rcu_read_unlock(); 919 920 if (can_oom_reap) 921 wake_oom_reaper(victim); 922 923 mmdrop(mm); 924 put_task_struct(victim); 925 } 926 #undef K 927 928 /* 929 * Kill provided task unless it's secured by setting 930 * oom_score_adj to OOM_SCORE_ADJ_MIN. 931 */ 932 static int oom_kill_memcg_member(struct task_struct *task, void *message) 933 { 934 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN && 935 !is_global_init(task)) { 936 get_task_struct(task); 937 __oom_kill_process(task, message); 938 } 939 return 0; 940 } 941 942 static void oom_kill_process(struct oom_control *oc, const char *message) 943 { 944 struct task_struct *victim = oc->chosen; 945 struct mem_cgroup *oom_group; 946 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL, 947 DEFAULT_RATELIMIT_BURST); 948 949 /* 950 * If the task is already exiting, don't alarm the sysadmin or kill 951 * its children or threads, just give it access to memory reserves 952 * so it can die quickly 953 */ 954 task_lock(victim); 955 if (task_will_free_mem(victim)) { 956 mark_oom_victim(victim); 957 wake_oom_reaper(victim); 958 task_unlock(victim); 959 put_task_struct(victim); 960 return; 961 } 962 task_unlock(victim); 963 964 if (__ratelimit(&oom_rs)) 965 dump_header(oc, victim); 966 967 /* 968 * Do we need to kill the entire memory cgroup? 969 * Or even one of the ancestor memory cgroups? 970 * Check this out before killing the victim task. 971 */ 972 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg); 973 974 __oom_kill_process(victim, message); 975 976 /* 977 * If necessary, kill all tasks in the selected memory cgroup. 978 */ 979 if (oom_group) { 980 mem_cgroup_print_oom_group(oom_group); 981 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member, 982 (void*)message); 983 mem_cgroup_put(oom_group); 984 } 985 } 986 987 /* 988 * Determines whether the kernel must panic because of the panic_on_oom sysctl. 989 */ 990 static void check_panic_on_oom(struct oom_control *oc, 991 enum oom_constraint constraint) 992 { 993 if (likely(!sysctl_panic_on_oom)) 994 return; 995 if (sysctl_panic_on_oom != 2) { 996 /* 997 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel 998 * does not panic for cpuset, mempolicy, or memcg allocation 999 * failures. 1000 */ 1001 if (constraint != CONSTRAINT_NONE) 1002 return; 1003 } 1004 /* Do not panic for oom kills triggered by sysrq */ 1005 if (is_sysrq_oom(oc)) 1006 return; 1007 dump_header(oc, NULL); 1008 panic("Out of memory: %s panic_on_oom is enabled\n", 1009 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); 1010 } 1011 1012 static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 1013 1014 int register_oom_notifier(struct notifier_block *nb) 1015 { 1016 return blocking_notifier_chain_register(&oom_notify_list, nb); 1017 } 1018 EXPORT_SYMBOL_GPL(register_oom_notifier); 1019 1020 int unregister_oom_notifier(struct notifier_block *nb) 1021 { 1022 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 1023 } 1024 EXPORT_SYMBOL_GPL(unregister_oom_notifier); 1025 1026 /** 1027 * out_of_memory - kill the "best" process when we run out of memory 1028 * @oc: pointer to struct oom_control 1029 * 1030 * If we run out of memory, we have the choice between either 1031 * killing a random task (bad), letting the system crash (worse) 1032 * OR try to be smart about which process to kill. Note that we 1033 * don't have to be perfect here, we just have to be good. 1034 */ 1035 bool out_of_memory(struct oom_control *oc) 1036 { 1037 unsigned long freed = 0; 1038 enum oom_constraint constraint = CONSTRAINT_NONE; 1039 1040 if (oom_killer_disabled) 1041 return false; 1042 1043 if (!is_memcg_oom(oc)) { 1044 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 1045 if (freed > 0) 1046 /* Got some memory back in the last second. */ 1047 return true; 1048 } 1049 1050 /* 1051 * If current has a pending SIGKILL or is exiting, then automatically 1052 * select it. The goal is to allow it to allocate so that it may 1053 * quickly exit and free its memory. 1054 */ 1055 if (task_will_free_mem(current)) { 1056 mark_oom_victim(current); 1057 wake_oom_reaper(current); 1058 return true; 1059 } 1060 1061 /* 1062 * The OOM killer does not compensate for IO-less reclaim. 1063 * pagefault_out_of_memory lost its gfp context so we have to 1064 * make sure exclude 0 mask - all other users should have at least 1065 * ___GFP_DIRECT_RECLAIM to get here. 1066 */ 1067 if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS)) 1068 return true; 1069 1070 /* 1071 * Check if there were limitations on the allocation (only relevant for 1072 * NUMA and memcg) that may require different handling. 1073 */ 1074 constraint = constrained_alloc(oc); 1075 if (constraint != CONSTRAINT_MEMORY_POLICY) 1076 oc->nodemask = NULL; 1077 check_panic_on_oom(oc, constraint); 1078 1079 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task && 1080 current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) && 1081 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) { 1082 get_task_struct(current); 1083 oc->chosen = current; 1084 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)"); 1085 return true; 1086 } 1087 1088 select_bad_process(oc); 1089 /* Found nothing?!?! */ 1090 if (!oc->chosen) { 1091 dump_header(oc, NULL); 1092 pr_warn("Out of memory and no killable processes...\n"); 1093 /* 1094 * If we got here due to an actual allocation at the 1095 * system level, we cannot survive this and will enter 1096 * an endless loop in the allocator. Bail out now. 1097 */ 1098 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc)) 1099 panic("System is deadlocked on memory\n"); 1100 } 1101 if (oc->chosen && oc->chosen != (void *)-1UL) 1102 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" : 1103 "Memory cgroup out of memory"); 1104 return !!oc->chosen; 1105 } 1106 1107 /* 1108 * The pagefault handler calls here because it is out of memory, so kill a 1109 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom 1110 * killing is already in progress so do nothing. 1111 */ 1112 void pagefault_out_of_memory(void) 1113 { 1114 struct oom_control oc = { 1115 .zonelist = NULL, 1116 .nodemask = NULL, 1117 .memcg = NULL, 1118 .gfp_mask = 0, 1119 .order = 0, 1120 }; 1121 1122 if (mem_cgroup_oom_synchronize(true)) 1123 return; 1124 1125 if (!mutex_trylock(&oom_lock)) 1126 return; 1127 out_of_memory(&oc); 1128 mutex_unlock(&oom_lock); 1129 } 1130