xref: /openbmc/linux/mm/oom_kill.c (revision f3a8b664)
1 /*
2  *  linux/mm/oom_kill.c
3  *
4  *  Copyright (C)  1998,2000  Rik van Riel
5  *	Thanks go out to Claus Fischer for some serious inspiration and
6  *	for goading me into coding this file...
7  *  Copyright (C)  2010  Google, Inc.
8  *	Rewritten by David Rientjes
9  *
10  *  The routines in this file are used to kill a process when
11  *  we're seriously out of memory. This gets called from __alloc_pages()
12  *  in mm/page_alloc.c when we really run out of memory.
13  *
14  *  Since we won't call these routines often (on a well-configured
15  *  machine) this file will double as a 'coding guide' and a signpost
16  *  for newbie kernel hackers. It features several pointers to major
17  *  kernel subsystems and hints as to where to find out what things do.
18  */
19 
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/swap.h>
26 #include <linux/timex.h>
27 #include <linux/jiffies.h>
28 #include <linux/cpuset.h>
29 #include <linux/export.h>
30 #include <linux/notifier.h>
31 #include <linux/memcontrol.h>
32 #include <linux/mempolicy.h>
33 #include <linux/security.h>
34 #include <linux/ptrace.h>
35 #include <linux/freezer.h>
36 #include <linux/ftrace.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kthread.h>
39 #include <linux/init.h>
40 
41 #include <asm/tlb.h>
42 #include "internal.h"
43 
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/oom.h>
46 
47 int sysctl_panic_on_oom;
48 int sysctl_oom_kill_allocating_task;
49 int sysctl_oom_dump_tasks = 1;
50 
51 DEFINE_MUTEX(oom_lock);
52 
53 #ifdef CONFIG_NUMA
54 /**
55  * has_intersects_mems_allowed() - check task eligiblity for kill
56  * @start: task struct of which task to consider
57  * @mask: nodemask passed to page allocator for mempolicy ooms
58  *
59  * Task eligibility is determined by whether or not a candidate task, @tsk,
60  * shares the same mempolicy nodes as current if it is bound by such a policy
61  * and whether or not it has the same set of allowed cpuset nodes.
62  */
63 static bool has_intersects_mems_allowed(struct task_struct *start,
64 					const nodemask_t *mask)
65 {
66 	struct task_struct *tsk;
67 	bool ret = false;
68 
69 	rcu_read_lock();
70 	for_each_thread(start, tsk) {
71 		if (mask) {
72 			/*
73 			 * If this is a mempolicy constrained oom, tsk's
74 			 * cpuset is irrelevant.  Only return true if its
75 			 * mempolicy intersects current, otherwise it may be
76 			 * needlessly killed.
77 			 */
78 			ret = mempolicy_nodemask_intersects(tsk, mask);
79 		} else {
80 			/*
81 			 * This is not a mempolicy constrained oom, so only
82 			 * check the mems of tsk's cpuset.
83 			 */
84 			ret = cpuset_mems_allowed_intersects(current, tsk);
85 		}
86 		if (ret)
87 			break;
88 	}
89 	rcu_read_unlock();
90 
91 	return ret;
92 }
93 #else
94 static bool has_intersects_mems_allowed(struct task_struct *tsk,
95 					const nodemask_t *mask)
96 {
97 	return true;
98 }
99 #endif /* CONFIG_NUMA */
100 
101 /*
102  * The process p may have detached its own ->mm while exiting or through
103  * use_mm(), but one or more of its subthreads may still have a valid
104  * pointer.  Return p, or any of its subthreads with a valid ->mm, with
105  * task_lock() held.
106  */
107 struct task_struct *find_lock_task_mm(struct task_struct *p)
108 {
109 	struct task_struct *t;
110 
111 	rcu_read_lock();
112 
113 	for_each_thread(p, t) {
114 		task_lock(t);
115 		if (likely(t->mm))
116 			goto found;
117 		task_unlock(t);
118 	}
119 	t = NULL;
120 found:
121 	rcu_read_unlock();
122 
123 	return t;
124 }
125 
126 /*
127  * order == -1 means the oom kill is required by sysrq, otherwise only
128  * for display purposes.
129  */
130 static inline bool is_sysrq_oom(struct oom_control *oc)
131 {
132 	return oc->order == -1;
133 }
134 
135 static inline bool is_memcg_oom(struct oom_control *oc)
136 {
137 	return oc->memcg != NULL;
138 }
139 
140 /* return true if the task is not adequate as candidate victim task. */
141 static bool oom_unkillable_task(struct task_struct *p,
142 		struct mem_cgroup *memcg, const nodemask_t *nodemask)
143 {
144 	if (is_global_init(p))
145 		return true;
146 	if (p->flags & PF_KTHREAD)
147 		return true;
148 
149 	/* When mem_cgroup_out_of_memory() and p is not member of the group */
150 	if (memcg && !task_in_mem_cgroup(p, memcg))
151 		return true;
152 
153 	/* p may not have freeable memory in nodemask */
154 	if (!has_intersects_mems_allowed(p, nodemask))
155 		return true;
156 
157 	return false;
158 }
159 
160 /**
161  * oom_badness - heuristic function to determine which candidate task to kill
162  * @p: task struct of which task we should calculate
163  * @totalpages: total present RAM allowed for page allocation
164  *
165  * The heuristic for determining which task to kill is made to be as simple and
166  * predictable as possible.  The goal is to return the highest value for the
167  * task consuming the most memory to avoid subsequent oom failures.
168  */
169 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
170 			  const nodemask_t *nodemask, unsigned long totalpages)
171 {
172 	long points;
173 	long adj;
174 
175 	if (oom_unkillable_task(p, memcg, nodemask))
176 		return 0;
177 
178 	p = find_lock_task_mm(p);
179 	if (!p)
180 		return 0;
181 
182 	/*
183 	 * Do not even consider tasks which are explicitly marked oom
184 	 * unkillable or have been already oom reaped or the are in
185 	 * the middle of vfork
186 	 */
187 	adj = (long)p->signal->oom_score_adj;
188 	if (adj == OOM_SCORE_ADJ_MIN ||
189 			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
190 			in_vfork(p)) {
191 		task_unlock(p);
192 		return 0;
193 	}
194 
195 	/*
196 	 * The baseline for the badness score is the proportion of RAM that each
197 	 * task's rss, pagetable and swap space use.
198 	 */
199 	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
200 		atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
201 	task_unlock(p);
202 
203 	/*
204 	 * Root processes get 3% bonus, just like the __vm_enough_memory()
205 	 * implementation used by LSMs.
206 	 */
207 	if (has_capability_noaudit(p, CAP_SYS_ADMIN))
208 		points -= (points * 3) / 100;
209 
210 	/* Normalize to oom_score_adj units */
211 	adj *= totalpages / 1000;
212 	points += adj;
213 
214 	/*
215 	 * Never return 0 for an eligible task regardless of the root bonus and
216 	 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
217 	 */
218 	return points > 0 ? points : 1;
219 }
220 
221 enum oom_constraint {
222 	CONSTRAINT_NONE,
223 	CONSTRAINT_CPUSET,
224 	CONSTRAINT_MEMORY_POLICY,
225 	CONSTRAINT_MEMCG,
226 };
227 
228 /*
229  * Determine the type of allocation constraint.
230  */
231 static enum oom_constraint constrained_alloc(struct oom_control *oc)
232 {
233 	struct zone *zone;
234 	struct zoneref *z;
235 	enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
236 	bool cpuset_limited = false;
237 	int nid;
238 
239 	if (is_memcg_oom(oc)) {
240 		oc->totalpages = mem_cgroup_get_limit(oc->memcg) ?: 1;
241 		return CONSTRAINT_MEMCG;
242 	}
243 
244 	/* Default to all available memory */
245 	oc->totalpages = totalram_pages + total_swap_pages;
246 
247 	if (!IS_ENABLED(CONFIG_NUMA))
248 		return CONSTRAINT_NONE;
249 
250 	if (!oc->zonelist)
251 		return CONSTRAINT_NONE;
252 	/*
253 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
254 	 * to kill current.We have to random task kill in this case.
255 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
256 	 */
257 	if (oc->gfp_mask & __GFP_THISNODE)
258 		return CONSTRAINT_NONE;
259 
260 	/*
261 	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
262 	 * the page allocator means a mempolicy is in effect.  Cpuset policy
263 	 * is enforced in get_page_from_freelist().
264 	 */
265 	if (oc->nodemask &&
266 	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
267 		oc->totalpages = total_swap_pages;
268 		for_each_node_mask(nid, *oc->nodemask)
269 			oc->totalpages += node_spanned_pages(nid);
270 		return CONSTRAINT_MEMORY_POLICY;
271 	}
272 
273 	/* Check this allocation failure is caused by cpuset's wall function */
274 	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
275 			high_zoneidx, oc->nodemask)
276 		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
277 			cpuset_limited = true;
278 
279 	if (cpuset_limited) {
280 		oc->totalpages = total_swap_pages;
281 		for_each_node_mask(nid, cpuset_current_mems_allowed)
282 			oc->totalpages += node_spanned_pages(nid);
283 		return CONSTRAINT_CPUSET;
284 	}
285 	return CONSTRAINT_NONE;
286 }
287 
288 static int oom_evaluate_task(struct task_struct *task, void *arg)
289 {
290 	struct oom_control *oc = arg;
291 	unsigned long points;
292 
293 	if (oom_unkillable_task(task, NULL, oc->nodemask))
294 		goto next;
295 
296 	/*
297 	 * This task already has access to memory reserves and is being killed.
298 	 * Don't allow any other task to have access to the reserves unless
299 	 * the task has MMF_OOM_SKIP because chances that it would release
300 	 * any memory is quite low.
301 	 */
302 	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
303 		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
304 			goto next;
305 		goto abort;
306 	}
307 
308 	/*
309 	 * If task is allocating a lot of memory and has been marked to be
310 	 * killed first if it triggers an oom, then select it.
311 	 */
312 	if (oom_task_origin(task)) {
313 		points = ULONG_MAX;
314 		goto select;
315 	}
316 
317 	points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
318 	if (!points || points < oc->chosen_points)
319 		goto next;
320 
321 	/* Prefer thread group leaders for display purposes */
322 	if (points == oc->chosen_points && thread_group_leader(oc->chosen))
323 		goto next;
324 select:
325 	if (oc->chosen)
326 		put_task_struct(oc->chosen);
327 	get_task_struct(task);
328 	oc->chosen = task;
329 	oc->chosen_points = points;
330 next:
331 	return 0;
332 abort:
333 	if (oc->chosen)
334 		put_task_struct(oc->chosen);
335 	oc->chosen = (void *)-1UL;
336 	return 1;
337 }
338 
339 /*
340  * Simple selection loop. We choose the process with the highest number of
341  * 'points'. In case scan was aborted, oc->chosen is set to -1.
342  */
343 static void select_bad_process(struct oom_control *oc)
344 {
345 	if (is_memcg_oom(oc))
346 		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
347 	else {
348 		struct task_struct *p;
349 
350 		rcu_read_lock();
351 		for_each_process(p)
352 			if (oom_evaluate_task(p, oc))
353 				break;
354 		rcu_read_unlock();
355 	}
356 
357 	oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
358 }
359 
360 /**
361  * dump_tasks - dump current memory state of all system tasks
362  * @memcg: current's memory controller, if constrained
363  * @nodemask: nodemask passed to page allocator for mempolicy ooms
364  *
365  * Dumps the current memory state of all eligible tasks.  Tasks not in the same
366  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
367  * are not shown.
368  * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
369  * swapents, oom_score_adj value, and name.
370  */
371 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
372 {
373 	struct task_struct *p;
374 	struct task_struct *task;
375 
376 	pr_info("[ pid ]   uid  tgid total_vm      rss nr_ptes nr_pmds swapents oom_score_adj name\n");
377 	rcu_read_lock();
378 	for_each_process(p) {
379 		if (oom_unkillable_task(p, memcg, nodemask))
380 			continue;
381 
382 		task = find_lock_task_mm(p);
383 		if (!task) {
384 			/*
385 			 * This is a kthread or all of p's threads have already
386 			 * detached their mm's.  There's no need to report
387 			 * them; they can't be oom killed anyway.
388 			 */
389 			continue;
390 		}
391 
392 		pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu         %5hd %s\n",
393 			task->pid, from_kuid(&init_user_ns, task_uid(task)),
394 			task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
395 			atomic_long_read(&task->mm->nr_ptes),
396 			mm_nr_pmds(task->mm),
397 			get_mm_counter(task->mm, MM_SWAPENTS),
398 			task->signal->oom_score_adj, task->comm);
399 		task_unlock(task);
400 	}
401 	rcu_read_unlock();
402 }
403 
404 static void dump_header(struct oom_control *oc, struct task_struct *p)
405 {
406 	nodemask_t *nm = (oc->nodemask) ? oc->nodemask : &cpuset_current_mems_allowed;
407 
408 	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), nodemask=%*pbl, order=%d, oom_score_adj=%hd\n",
409 		current->comm, oc->gfp_mask, &oc->gfp_mask,
410 		nodemask_pr_args(nm), oc->order,
411 		current->signal->oom_score_adj);
412 	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
413 		pr_warn("COMPACTION is disabled!!!\n");
414 
415 	cpuset_print_current_mems_allowed();
416 	dump_stack();
417 	if (oc->memcg)
418 		mem_cgroup_print_oom_info(oc->memcg, p);
419 	else
420 		show_mem(SHOW_MEM_FILTER_NODES);
421 	if (sysctl_oom_dump_tasks)
422 		dump_tasks(oc->memcg, oc->nodemask);
423 }
424 
425 /*
426  * Number of OOM victims in flight
427  */
428 static atomic_t oom_victims = ATOMIC_INIT(0);
429 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
430 
431 static bool oom_killer_disabled __read_mostly;
432 
433 #define K(x) ((x) << (PAGE_SHIFT-10))
434 
435 /*
436  * task->mm can be NULL if the task is the exited group leader.  So to
437  * determine whether the task is using a particular mm, we examine all the
438  * task's threads: if one of those is using this mm then this task was also
439  * using it.
440  */
441 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
442 {
443 	struct task_struct *t;
444 
445 	for_each_thread(p, t) {
446 		struct mm_struct *t_mm = READ_ONCE(t->mm);
447 		if (t_mm)
448 			return t_mm == mm;
449 	}
450 	return false;
451 }
452 
453 
454 #ifdef CONFIG_MMU
455 /*
456  * OOM Reaper kernel thread which tries to reap the memory used by the OOM
457  * victim (if that is possible) to help the OOM killer to move on.
458  */
459 static struct task_struct *oom_reaper_th;
460 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
461 static struct task_struct *oom_reaper_list;
462 static DEFINE_SPINLOCK(oom_reaper_lock);
463 
464 static bool __oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
465 {
466 	struct mmu_gather tlb;
467 	struct vm_area_struct *vma;
468 	struct zap_details details = {.check_swap_entries = true,
469 				      .ignore_dirty = true};
470 	bool ret = true;
471 
472 	/*
473 	 * We have to make sure to not race with the victim exit path
474 	 * and cause premature new oom victim selection:
475 	 * __oom_reap_task_mm		exit_mm
476 	 *   mmget_not_zero
477 	 *				  mmput
478 	 *				    atomic_dec_and_test
479 	 *				  exit_oom_victim
480 	 *				[...]
481 	 *				out_of_memory
482 	 *				  select_bad_process
483 	 *				    # no TIF_MEMDIE task selects new victim
484 	 *  unmap_page_range # frees some memory
485 	 */
486 	mutex_lock(&oom_lock);
487 
488 	if (!down_read_trylock(&mm->mmap_sem)) {
489 		ret = false;
490 		goto unlock_oom;
491 	}
492 
493 	/*
494 	 * increase mm_users only after we know we will reap something so
495 	 * that the mmput_async is called only when we have reaped something
496 	 * and delayed __mmput doesn't matter that much
497 	 */
498 	if (!mmget_not_zero(mm)) {
499 		up_read(&mm->mmap_sem);
500 		goto unlock_oom;
501 	}
502 
503 	/*
504 	 * Tell all users of get_user/copy_from_user etc... that the content
505 	 * is no longer stable. No barriers really needed because unmapping
506 	 * should imply barriers already and the reader would hit a page fault
507 	 * if it stumbled over a reaped memory.
508 	 */
509 	set_bit(MMF_UNSTABLE, &mm->flags);
510 
511 	tlb_gather_mmu(&tlb, mm, 0, -1);
512 	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
513 		if (is_vm_hugetlb_page(vma))
514 			continue;
515 
516 		/*
517 		 * mlocked VMAs require explicit munlocking before unmap.
518 		 * Let's keep it simple here and skip such VMAs.
519 		 */
520 		if (vma->vm_flags & VM_LOCKED)
521 			continue;
522 
523 		/*
524 		 * Only anonymous pages have a good chance to be dropped
525 		 * without additional steps which we cannot afford as we
526 		 * are OOM already.
527 		 *
528 		 * We do not even care about fs backed pages because all
529 		 * which are reclaimable have already been reclaimed and
530 		 * we do not want to block exit_mmap by keeping mm ref
531 		 * count elevated without a good reason.
532 		 */
533 		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED))
534 			unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
535 					 &details);
536 	}
537 	tlb_finish_mmu(&tlb, 0, -1);
538 	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
539 			task_pid_nr(tsk), tsk->comm,
540 			K(get_mm_counter(mm, MM_ANONPAGES)),
541 			K(get_mm_counter(mm, MM_FILEPAGES)),
542 			K(get_mm_counter(mm, MM_SHMEMPAGES)));
543 	up_read(&mm->mmap_sem);
544 
545 	/*
546 	 * Drop our reference but make sure the mmput slow path is called from a
547 	 * different context because we shouldn't risk we get stuck there and
548 	 * put the oom_reaper out of the way.
549 	 */
550 	mmput_async(mm);
551 unlock_oom:
552 	mutex_unlock(&oom_lock);
553 	return ret;
554 }
555 
556 #define MAX_OOM_REAP_RETRIES 10
557 static void oom_reap_task(struct task_struct *tsk)
558 {
559 	int attempts = 0;
560 	struct mm_struct *mm = tsk->signal->oom_mm;
561 
562 	/* Retry the down_read_trylock(mmap_sem) a few times */
563 	while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task_mm(tsk, mm))
564 		schedule_timeout_idle(HZ/10);
565 
566 	if (attempts <= MAX_OOM_REAP_RETRIES)
567 		goto done;
568 
569 
570 	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
571 		task_pid_nr(tsk), tsk->comm);
572 	debug_show_all_locks();
573 
574 done:
575 	tsk->oom_reaper_list = NULL;
576 
577 	/*
578 	 * Hide this mm from OOM killer because it has been either reaped or
579 	 * somebody can't call up_write(mmap_sem).
580 	 */
581 	set_bit(MMF_OOM_SKIP, &mm->flags);
582 
583 	/* Drop a reference taken by wake_oom_reaper */
584 	put_task_struct(tsk);
585 }
586 
587 static int oom_reaper(void *unused)
588 {
589 	while (true) {
590 		struct task_struct *tsk = NULL;
591 
592 		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
593 		spin_lock(&oom_reaper_lock);
594 		if (oom_reaper_list != NULL) {
595 			tsk = oom_reaper_list;
596 			oom_reaper_list = tsk->oom_reaper_list;
597 		}
598 		spin_unlock(&oom_reaper_lock);
599 
600 		if (tsk)
601 			oom_reap_task(tsk);
602 	}
603 
604 	return 0;
605 }
606 
607 static void wake_oom_reaper(struct task_struct *tsk)
608 {
609 	if (!oom_reaper_th)
610 		return;
611 
612 	/* tsk is already queued? */
613 	if (tsk == oom_reaper_list || tsk->oom_reaper_list)
614 		return;
615 
616 	get_task_struct(tsk);
617 
618 	spin_lock(&oom_reaper_lock);
619 	tsk->oom_reaper_list = oom_reaper_list;
620 	oom_reaper_list = tsk;
621 	spin_unlock(&oom_reaper_lock);
622 	wake_up(&oom_reaper_wait);
623 }
624 
625 static int __init oom_init(void)
626 {
627 	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
628 	if (IS_ERR(oom_reaper_th)) {
629 		pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
630 				PTR_ERR(oom_reaper_th));
631 		oom_reaper_th = NULL;
632 	}
633 	return 0;
634 }
635 subsys_initcall(oom_init)
636 #else
637 static inline void wake_oom_reaper(struct task_struct *tsk)
638 {
639 }
640 #endif /* CONFIG_MMU */
641 
642 /**
643  * mark_oom_victim - mark the given task as OOM victim
644  * @tsk: task to mark
645  *
646  * Has to be called with oom_lock held and never after
647  * oom has been disabled already.
648  *
649  * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
650  * under task_lock or operate on the current).
651  */
652 static void mark_oom_victim(struct task_struct *tsk)
653 {
654 	struct mm_struct *mm = tsk->mm;
655 
656 	WARN_ON(oom_killer_disabled);
657 	/* OOM killer might race with memcg OOM */
658 	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
659 		return;
660 
661 	/* oom_mm is bound to the signal struct life time. */
662 	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
663 		atomic_inc(&tsk->signal->oom_mm->mm_count);
664 
665 	/*
666 	 * Make sure that the task is woken up from uninterruptible sleep
667 	 * if it is frozen because OOM killer wouldn't be able to free
668 	 * any memory and livelock. freezing_slow_path will tell the freezer
669 	 * that TIF_MEMDIE tasks should be ignored.
670 	 */
671 	__thaw_task(tsk);
672 	atomic_inc(&oom_victims);
673 }
674 
675 /**
676  * exit_oom_victim - note the exit of an OOM victim
677  */
678 void exit_oom_victim(void)
679 {
680 	clear_thread_flag(TIF_MEMDIE);
681 
682 	if (!atomic_dec_return(&oom_victims))
683 		wake_up_all(&oom_victims_wait);
684 }
685 
686 /**
687  * oom_killer_enable - enable OOM killer
688  */
689 void oom_killer_enable(void)
690 {
691 	oom_killer_disabled = false;
692 }
693 
694 /**
695  * oom_killer_disable - disable OOM killer
696  * @timeout: maximum timeout to wait for oom victims in jiffies
697  *
698  * Forces all page allocations to fail rather than trigger OOM killer.
699  * Will block and wait until all OOM victims are killed or the given
700  * timeout expires.
701  *
702  * The function cannot be called when there are runnable user tasks because
703  * the userspace would see unexpected allocation failures as a result. Any
704  * new usage of this function should be consulted with MM people.
705  *
706  * Returns true if successful and false if the OOM killer cannot be
707  * disabled.
708  */
709 bool oom_killer_disable(signed long timeout)
710 {
711 	signed long ret;
712 
713 	/*
714 	 * Make sure to not race with an ongoing OOM killer. Check that the
715 	 * current is not killed (possibly due to sharing the victim's memory).
716 	 */
717 	if (mutex_lock_killable(&oom_lock))
718 		return false;
719 	oom_killer_disabled = true;
720 	mutex_unlock(&oom_lock);
721 
722 	ret = wait_event_interruptible_timeout(oom_victims_wait,
723 			!atomic_read(&oom_victims), timeout);
724 	if (ret <= 0) {
725 		oom_killer_enable();
726 		return false;
727 	}
728 
729 	return true;
730 }
731 
732 static inline bool __task_will_free_mem(struct task_struct *task)
733 {
734 	struct signal_struct *sig = task->signal;
735 
736 	/*
737 	 * A coredumping process may sleep for an extended period in exit_mm(),
738 	 * so the oom killer cannot assume that the process will promptly exit
739 	 * and release memory.
740 	 */
741 	if (sig->flags & SIGNAL_GROUP_COREDUMP)
742 		return false;
743 
744 	if (sig->flags & SIGNAL_GROUP_EXIT)
745 		return true;
746 
747 	if (thread_group_empty(task) && (task->flags & PF_EXITING))
748 		return true;
749 
750 	return false;
751 }
752 
753 /*
754  * Checks whether the given task is dying or exiting and likely to
755  * release its address space. This means that all threads and processes
756  * sharing the same mm have to be killed or exiting.
757  * Caller has to make sure that task->mm is stable (hold task_lock or
758  * it operates on the current).
759  */
760 static bool task_will_free_mem(struct task_struct *task)
761 {
762 	struct mm_struct *mm = task->mm;
763 	struct task_struct *p;
764 	bool ret = true;
765 
766 	/*
767 	 * Skip tasks without mm because it might have passed its exit_mm and
768 	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
769 	 * on that for now. We can consider find_lock_task_mm in future.
770 	 */
771 	if (!mm)
772 		return false;
773 
774 	if (!__task_will_free_mem(task))
775 		return false;
776 
777 	/*
778 	 * This task has already been drained by the oom reaper so there are
779 	 * only small chances it will free some more
780 	 */
781 	if (test_bit(MMF_OOM_SKIP, &mm->flags))
782 		return false;
783 
784 	if (atomic_read(&mm->mm_users) <= 1)
785 		return true;
786 
787 	/*
788 	 * Make sure that all tasks which share the mm with the given tasks
789 	 * are dying as well to make sure that a) nobody pins its mm and
790 	 * b) the task is also reapable by the oom reaper.
791 	 */
792 	rcu_read_lock();
793 	for_each_process(p) {
794 		if (!process_shares_mm(p, mm))
795 			continue;
796 		if (same_thread_group(task, p))
797 			continue;
798 		ret = __task_will_free_mem(p);
799 		if (!ret)
800 			break;
801 	}
802 	rcu_read_unlock();
803 
804 	return ret;
805 }
806 
807 static void oom_kill_process(struct oom_control *oc, const char *message)
808 {
809 	struct task_struct *p = oc->chosen;
810 	unsigned int points = oc->chosen_points;
811 	struct task_struct *victim = p;
812 	struct task_struct *child;
813 	struct task_struct *t;
814 	struct mm_struct *mm;
815 	unsigned int victim_points = 0;
816 	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
817 					      DEFAULT_RATELIMIT_BURST);
818 	bool can_oom_reap = true;
819 
820 	/*
821 	 * If the task is already exiting, don't alarm the sysadmin or kill
822 	 * its children or threads, just set TIF_MEMDIE so it can die quickly
823 	 */
824 	task_lock(p);
825 	if (task_will_free_mem(p)) {
826 		mark_oom_victim(p);
827 		wake_oom_reaper(p);
828 		task_unlock(p);
829 		put_task_struct(p);
830 		return;
831 	}
832 	task_unlock(p);
833 
834 	if (__ratelimit(&oom_rs))
835 		dump_header(oc, p);
836 
837 	pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
838 		message, task_pid_nr(p), p->comm, points);
839 
840 	/*
841 	 * If any of p's children has a different mm and is eligible for kill,
842 	 * the one with the highest oom_badness() score is sacrificed for its
843 	 * parent.  This attempts to lose the minimal amount of work done while
844 	 * still freeing memory.
845 	 */
846 	read_lock(&tasklist_lock);
847 	for_each_thread(p, t) {
848 		list_for_each_entry(child, &t->children, sibling) {
849 			unsigned int child_points;
850 
851 			if (process_shares_mm(child, p->mm))
852 				continue;
853 			/*
854 			 * oom_badness() returns 0 if the thread is unkillable
855 			 */
856 			child_points = oom_badness(child,
857 				oc->memcg, oc->nodemask, oc->totalpages);
858 			if (child_points > victim_points) {
859 				put_task_struct(victim);
860 				victim = child;
861 				victim_points = child_points;
862 				get_task_struct(victim);
863 			}
864 		}
865 	}
866 	read_unlock(&tasklist_lock);
867 
868 	p = find_lock_task_mm(victim);
869 	if (!p) {
870 		put_task_struct(victim);
871 		return;
872 	} else if (victim != p) {
873 		get_task_struct(p);
874 		put_task_struct(victim);
875 		victim = p;
876 	}
877 
878 	/* Get a reference to safely compare mm after task_unlock(victim) */
879 	mm = victim->mm;
880 	atomic_inc(&mm->mm_count);
881 	/*
882 	 * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
883 	 * the OOM victim from depleting the memory reserves from the user
884 	 * space under its control.
885 	 */
886 	do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
887 	mark_oom_victim(victim);
888 	pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
889 		task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
890 		K(get_mm_counter(victim->mm, MM_ANONPAGES)),
891 		K(get_mm_counter(victim->mm, MM_FILEPAGES)),
892 		K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
893 	task_unlock(victim);
894 
895 	/*
896 	 * Kill all user processes sharing victim->mm in other thread groups, if
897 	 * any.  They don't get access to memory reserves, though, to avoid
898 	 * depletion of all memory.  This prevents mm->mmap_sem livelock when an
899 	 * oom killed thread cannot exit because it requires the semaphore and
900 	 * its contended by another thread trying to allocate memory itself.
901 	 * That thread will now get access to memory reserves since it has a
902 	 * pending fatal signal.
903 	 */
904 	rcu_read_lock();
905 	for_each_process(p) {
906 		if (!process_shares_mm(p, mm))
907 			continue;
908 		if (same_thread_group(p, victim))
909 			continue;
910 		if (is_global_init(p)) {
911 			can_oom_reap = false;
912 			set_bit(MMF_OOM_SKIP, &mm->flags);
913 			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
914 					task_pid_nr(victim), victim->comm,
915 					task_pid_nr(p), p->comm);
916 			continue;
917 		}
918 		/*
919 		 * No use_mm() user needs to read from the userspace so we are
920 		 * ok to reap it.
921 		 */
922 		if (unlikely(p->flags & PF_KTHREAD))
923 			continue;
924 		do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
925 	}
926 	rcu_read_unlock();
927 
928 	if (can_oom_reap)
929 		wake_oom_reaper(victim);
930 
931 	mmdrop(mm);
932 	put_task_struct(victim);
933 }
934 #undef K
935 
936 /*
937  * Determines whether the kernel must panic because of the panic_on_oom sysctl.
938  */
939 static void check_panic_on_oom(struct oom_control *oc,
940 			       enum oom_constraint constraint)
941 {
942 	if (likely(!sysctl_panic_on_oom))
943 		return;
944 	if (sysctl_panic_on_oom != 2) {
945 		/*
946 		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
947 		 * does not panic for cpuset, mempolicy, or memcg allocation
948 		 * failures.
949 		 */
950 		if (constraint != CONSTRAINT_NONE)
951 			return;
952 	}
953 	/* Do not panic for oom kills triggered by sysrq */
954 	if (is_sysrq_oom(oc))
955 		return;
956 	dump_header(oc, NULL);
957 	panic("Out of memory: %s panic_on_oom is enabled\n",
958 		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
959 }
960 
961 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
962 
963 int register_oom_notifier(struct notifier_block *nb)
964 {
965 	return blocking_notifier_chain_register(&oom_notify_list, nb);
966 }
967 EXPORT_SYMBOL_GPL(register_oom_notifier);
968 
969 int unregister_oom_notifier(struct notifier_block *nb)
970 {
971 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
972 }
973 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
974 
975 /**
976  * out_of_memory - kill the "best" process when we run out of memory
977  * @oc: pointer to struct oom_control
978  *
979  * If we run out of memory, we have the choice between either
980  * killing a random task (bad), letting the system crash (worse)
981  * OR try to be smart about which process to kill. Note that we
982  * don't have to be perfect here, we just have to be good.
983  */
984 bool out_of_memory(struct oom_control *oc)
985 {
986 	unsigned long freed = 0;
987 	enum oom_constraint constraint = CONSTRAINT_NONE;
988 
989 	if (oom_killer_disabled)
990 		return false;
991 
992 	if (!is_memcg_oom(oc)) {
993 		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
994 		if (freed > 0)
995 			/* Got some memory back in the last second. */
996 			return true;
997 	}
998 
999 	/*
1000 	 * If current has a pending SIGKILL or is exiting, then automatically
1001 	 * select it.  The goal is to allow it to allocate so that it may
1002 	 * quickly exit and free its memory.
1003 	 */
1004 	if (task_will_free_mem(current)) {
1005 		mark_oom_victim(current);
1006 		wake_oom_reaper(current);
1007 		return true;
1008 	}
1009 
1010 	/*
1011 	 * The OOM killer does not compensate for IO-less reclaim.
1012 	 * pagefault_out_of_memory lost its gfp context so we have to
1013 	 * make sure exclude 0 mask - all other users should have at least
1014 	 * ___GFP_DIRECT_RECLAIM to get here.
1015 	 */
1016 	if (oc->gfp_mask && !(oc->gfp_mask & (__GFP_FS|__GFP_NOFAIL)))
1017 		return true;
1018 
1019 	/*
1020 	 * Check if there were limitations on the allocation (only relevant for
1021 	 * NUMA and memcg) that may require different handling.
1022 	 */
1023 	constraint = constrained_alloc(oc);
1024 	if (constraint != CONSTRAINT_MEMORY_POLICY)
1025 		oc->nodemask = NULL;
1026 	check_panic_on_oom(oc, constraint);
1027 
1028 	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1029 	    current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
1030 	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1031 		get_task_struct(current);
1032 		oc->chosen = current;
1033 		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1034 		return true;
1035 	}
1036 
1037 	select_bad_process(oc);
1038 	/* Found nothing?!?! Either we hang forever, or we panic. */
1039 	if (!oc->chosen && !is_sysrq_oom(oc) && !is_memcg_oom(oc)) {
1040 		dump_header(oc, NULL);
1041 		panic("Out of memory and no killable processes...\n");
1042 	}
1043 	if (oc->chosen && oc->chosen != (void *)-1UL) {
1044 		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1045 				 "Memory cgroup out of memory");
1046 		/*
1047 		 * Give the killed process a good chance to exit before trying
1048 		 * to allocate memory again.
1049 		 */
1050 		schedule_timeout_killable(1);
1051 	}
1052 	return !!oc->chosen;
1053 }
1054 
1055 /*
1056  * The pagefault handler calls here because it is out of memory, so kill a
1057  * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1058  * killing is already in progress so do nothing.
1059  */
1060 void pagefault_out_of_memory(void)
1061 {
1062 	struct oom_control oc = {
1063 		.zonelist = NULL,
1064 		.nodemask = NULL,
1065 		.memcg = NULL,
1066 		.gfp_mask = 0,
1067 		.order = 0,
1068 	};
1069 
1070 	if (mem_cgroup_oom_synchronize(true))
1071 		return;
1072 
1073 	if (!mutex_trylock(&oom_lock))
1074 		return;
1075 	out_of_memory(&oc);
1076 	mutex_unlock(&oom_lock);
1077 }
1078