xref: /openbmc/linux/mm/oom_kill.c (revision ed84ef1c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/oom_kill.c
4  *
5  *  Copyright (C)  1998,2000  Rik van Riel
6  *	Thanks go out to Claus Fischer for some serious inspiration and
7  *	for goading me into coding this file...
8  *  Copyright (C)  2010  Google, Inc.
9  *	Rewritten by David Rientjes
10  *
11  *  The routines in this file are used to kill a process when
12  *  we're seriously out of memory. This gets called from __alloc_pages()
13  *  in mm/page_alloc.c when we really run out of memory.
14  *
15  *  Since we won't call these routines often (on a well-configured
16  *  machine) this file will double as a 'coding guide' and a signpost
17  *  for newbie kernel hackers. It features several pointers to major
18  *  kernel subsystems and hints as to where to find out what things do.
19  */
20 
21 #include <linux/oom.h>
22 #include <linux/mm.h>
23 #include <linux/err.h>
24 #include <linux/gfp.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/coredump.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/debug.h>
30 #include <linux/swap.h>
31 #include <linux/syscalls.h>
32 #include <linux/timex.h>
33 #include <linux/jiffies.h>
34 #include <linux/cpuset.h>
35 #include <linux/export.h>
36 #include <linux/notifier.h>
37 #include <linux/memcontrol.h>
38 #include <linux/mempolicy.h>
39 #include <linux/security.h>
40 #include <linux/ptrace.h>
41 #include <linux/freezer.h>
42 #include <linux/ftrace.h>
43 #include <linux/ratelimit.h>
44 #include <linux/kthread.h>
45 #include <linux/init.h>
46 #include <linux/mmu_notifier.h>
47 
48 #include <asm/tlb.h>
49 #include "internal.h"
50 #include "slab.h"
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/oom.h>
54 
55 int sysctl_panic_on_oom;
56 int sysctl_oom_kill_allocating_task;
57 int sysctl_oom_dump_tasks = 1;
58 
59 /*
60  * Serializes oom killer invocations (out_of_memory()) from all contexts to
61  * prevent from over eager oom killing (e.g. when the oom killer is invoked
62  * from different domains).
63  *
64  * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
65  * and mark_oom_victim
66  */
67 DEFINE_MUTEX(oom_lock);
68 /* Serializes oom_score_adj and oom_score_adj_min updates */
69 DEFINE_MUTEX(oom_adj_mutex);
70 
71 static inline bool is_memcg_oom(struct oom_control *oc)
72 {
73 	return oc->memcg != NULL;
74 }
75 
76 #ifdef CONFIG_NUMA
77 /**
78  * oom_cpuset_eligible() - check task eligibility for kill
79  * @start: task struct of which task to consider
80  * @oc: pointer to struct oom_control
81  *
82  * Task eligibility is determined by whether or not a candidate task, @tsk,
83  * shares the same mempolicy nodes as current if it is bound by such a policy
84  * and whether or not it has the same set of allowed cpuset nodes.
85  *
86  * This function is assuming oom-killer context and 'current' has triggered
87  * the oom-killer.
88  */
89 static bool oom_cpuset_eligible(struct task_struct *start,
90 				struct oom_control *oc)
91 {
92 	struct task_struct *tsk;
93 	bool ret = false;
94 	const nodemask_t *mask = oc->nodemask;
95 
96 	if (is_memcg_oom(oc))
97 		return true;
98 
99 	rcu_read_lock();
100 	for_each_thread(start, tsk) {
101 		if (mask) {
102 			/*
103 			 * If this is a mempolicy constrained oom, tsk's
104 			 * cpuset is irrelevant.  Only return true if its
105 			 * mempolicy intersects current, otherwise it may be
106 			 * needlessly killed.
107 			 */
108 			ret = mempolicy_in_oom_domain(tsk, mask);
109 		} else {
110 			/*
111 			 * This is not a mempolicy constrained oom, so only
112 			 * check the mems of tsk's cpuset.
113 			 */
114 			ret = cpuset_mems_allowed_intersects(current, tsk);
115 		}
116 		if (ret)
117 			break;
118 	}
119 	rcu_read_unlock();
120 
121 	return ret;
122 }
123 #else
124 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
125 {
126 	return true;
127 }
128 #endif /* CONFIG_NUMA */
129 
130 /*
131  * The process p may have detached its own ->mm while exiting or through
132  * kthread_use_mm(), but one or more of its subthreads may still have a valid
133  * pointer.  Return p, or any of its subthreads with a valid ->mm, with
134  * task_lock() held.
135  */
136 struct task_struct *find_lock_task_mm(struct task_struct *p)
137 {
138 	struct task_struct *t;
139 
140 	rcu_read_lock();
141 
142 	for_each_thread(p, t) {
143 		task_lock(t);
144 		if (likely(t->mm))
145 			goto found;
146 		task_unlock(t);
147 	}
148 	t = NULL;
149 found:
150 	rcu_read_unlock();
151 
152 	return t;
153 }
154 
155 /*
156  * order == -1 means the oom kill is required by sysrq, otherwise only
157  * for display purposes.
158  */
159 static inline bool is_sysrq_oom(struct oom_control *oc)
160 {
161 	return oc->order == -1;
162 }
163 
164 /* return true if the task is not adequate as candidate victim task. */
165 static bool oom_unkillable_task(struct task_struct *p)
166 {
167 	if (is_global_init(p))
168 		return true;
169 	if (p->flags & PF_KTHREAD)
170 		return true;
171 	return false;
172 }
173 
174 /*
175  * Check whether unreclaimable slab amount is greater than
176  * all user memory(LRU pages).
177  * dump_unreclaimable_slab() could help in the case that
178  * oom due to too much unreclaimable slab used by kernel.
179 */
180 static bool should_dump_unreclaim_slab(void)
181 {
182 	unsigned long nr_lru;
183 
184 	nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
185 		 global_node_page_state(NR_INACTIVE_ANON) +
186 		 global_node_page_state(NR_ACTIVE_FILE) +
187 		 global_node_page_state(NR_INACTIVE_FILE) +
188 		 global_node_page_state(NR_ISOLATED_ANON) +
189 		 global_node_page_state(NR_ISOLATED_FILE) +
190 		 global_node_page_state(NR_UNEVICTABLE);
191 
192 	return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
193 }
194 
195 /**
196  * oom_badness - heuristic function to determine which candidate task to kill
197  * @p: task struct of which task we should calculate
198  * @totalpages: total present RAM allowed for page allocation
199  *
200  * The heuristic for determining which task to kill is made to be as simple and
201  * predictable as possible.  The goal is to return the highest value for the
202  * task consuming the most memory to avoid subsequent oom failures.
203  */
204 long oom_badness(struct task_struct *p, unsigned long totalpages)
205 {
206 	long points;
207 	long adj;
208 
209 	if (oom_unkillable_task(p))
210 		return LONG_MIN;
211 
212 	p = find_lock_task_mm(p);
213 	if (!p)
214 		return LONG_MIN;
215 
216 	/*
217 	 * Do not even consider tasks which are explicitly marked oom
218 	 * unkillable or have been already oom reaped or the are in
219 	 * the middle of vfork
220 	 */
221 	adj = (long)p->signal->oom_score_adj;
222 	if (adj == OOM_SCORE_ADJ_MIN ||
223 			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
224 			in_vfork(p)) {
225 		task_unlock(p);
226 		return LONG_MIN;
227 	}
228 
229 	/*
230 	 * The baseline for the badness score is the proportion of RAM that each
231 	 * task's rss, pagetable and swap space use.
232 	 */
233 	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
234 		mm_pgtables_bytes(p->mm) / PAGE_SIZE;
235 	task_unlock(p);
236 
237 	/* Normalize to oom_score_adj units */
238 	adj *= totalpages / 1000;
239 	points += adj;
240 
241 	return points;
242 }
243 
244 static const char * const oom_constraint_text[] = {
245 	[CONSTRAINT_NONE] = "CONSTRAINT_NONE",
246 	[CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
247 	[CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
248 	[CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
249 };
250 
251 /*
252  * Determine the type of allocation constraint.
253  */
254 static enum oom_constraint constrained_alloc(struct oom_control *oc)
255 {
256 	struct zone *zone;
257 	struct zoneref *z;
258 	enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
259 	bool cpuset_limited = false;
260 	int nid;
261 
262 	if (is_memcg_oom(oc)) {
263 		oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
264 		return CONSTRAINT_MEMCG;
265 	}
266 
267 	/* Default to all available memory */
268 	oc->totalpages = totalram_pages() + total_swap_pages;
269 
270 	if (!IS_ENABLED(CONFIG_NUMA))
271 		return CONSTRAINT_NONE;
272 
273 	if (!oc->zonelist)
274 		return CONSTRAINT_NONE;
275 	/*
276 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
277 	 * to kill current.We have to random task kill in this case.
278 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
279 	 */
280 	if (oc->gfp_mask & __GFP_THISNODE)
281 		return CONSTRAINT_NONE;
282 
283 	/*
284 	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
285 	 * the page allocator means a mempolicy is in effect.  Cpuset policy
286 	 * is enforced in get_page_from_freelist().
287 	 */
288 	if (oc->nodemask &&
289 	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
290 		oc->totalpages = total_swap_pages;
291 		for_each_node_mask(nid, *oc->nodemask)
292 			oc->totalpages += node_present_pages(nid);
293 		return CONSTRAINT_MEMORY_POLICY;
294 	}
295 
296 	/* Check this allocation failure is caused by cpuset's wall function */
297 	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
298 			highest_zoneidx, oc->nodemask)
299 		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
300 			cpuset_limited = true;
301 
302 	if (cpuset_limited) {
303 		oc->totalpages = total_swap_pages;
304 		for_each_node_mask(nid, cpuset_current_mems_allowed)
305 			oc->totalpages += node_present_pages(nid);
306 		return CONSTRAINT_CPUSET;
307 	}
308 	return CONSTRAINT_NONE;
309 }
310 
311 static int oom_evaluate_task(struct task_struct *task, void *arg)
312 {
313 	struct oom_control *oc = arg;
314 	long points;
315 
316 	if (oom_unkillable_task(task))
317 		goto next;
318 
319 	/* p may not have freeable memory in nodemask */
320 	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
321 		goto next;
322 
323 	/*
324 	 * This task already has access to memory reserves and is being killed.
325 	 * Don't allow any other task to have access to the reserves unless
326 	 * the task has MMF_OOM_SKIP because chances that it would release
327 	 * any memory is quite low.
328 	 */
329 	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
330 		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
331 			goto next;
332 		goto abort;
333 	}
334 
335 	/*
336 	 * If task is allocating a lot of memory and has been marked to be
337 	 * killed first if it triggers an oom, then select it.
338 	 */
339 	if (oom_task_origin(task)) {
340 		points = LONG_MAX;
341 		goto select;
342 	}
343 
344 	points = oom_badness(task, oc->totalpages);
345 	if (points == LONG_MIN || points < oc->chosen_points)
346 		goto next;
347 
348 select:
349 	if (oc->chosen)
350 		put_task_struct(oc->chosen);
351 	get_task_struct(task);
352 	oc->chosen = task;
353 	oc->chosen_points = points;
354 next:
355 	return 0;
356 abort:
357 	if (oc->chosen)
358 		put_task_struct(oc->chosen);
359 	oc->chosen = (void *)-1UL;
360 	return 1;
361 }
362 
363 /*
364  * Simple selection loop. We choose the process with the highest number of
365  * 'points'. In case scan was aborted, oc->chosen is set to -1.
366  */
367 static void select_bad_process(struct oom_control *oc)
368 {
369 	oc->chosen_points = LONG_MIN;
370 
371 	if (is_memcg_oom(oc))
372 		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
373 	else {
374 		struct task_struct *p;
375 
376 		rcu_read_lock();
377 		for_each_process(p)
378 			if (oom_evaluate_task(p, oc))
379 				break;
380 		rcu_read_unlock();
381 	}
382 }
383 
384 static int dump_task(struct task_struct *p, void *arg)
385 {
386 	struct oom_control *oc = arg;
387 	struct task_struct *task;
388 
389 	if (oom_unkillable_task(p))
390 		return 0;
391 
392 	/* p may not have freeable memory in nodemask */
393 	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
394 		return 0;
395 
396 	task = find_lock_task_mm(p);
397 	if (!task) {
398 		/*
399 		 * All of p's threads have already detached their mm's. There's
400 		 * no need to report them; they can't be oom killed anyway.
401 		 */
402 		return 0;
403 	}
404 
405 	pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu         %5hd %s\n",
406 		task->pid, from_kuid(&init_user_ns, task_uid(task)),
407 		task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
408 		mm_pgtables_bytes(task->mm),
409 		get_mm_counter(task->mm, MM_SWAPENTS),
410 		task->signal->oom_score_adj, task->comm);
411 	task_unlock(task);
412 
413 	return 0;
414 }
415 
416 /**
417  * dump_tasks - dump current memory state of all system tasks
418  * @oc: pointer to struct oom_control
419  *
420  * Dumps the current memory state of all eligible tasks.  Tasks not in the same
421  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
422  * are not shown.
423  * State information includes task's pid, uid, tgid, vm size, rss,
424  * pgtables_bytes, swapents, oom_score_adj value, and name.
425  */
426 static void dump_tasks(struct oom_control *oc)
427 {
428 	pr_info("Tasks state (memory values in pages):\n");
429 	pr_info("[  pid  ]   uid  tgid total_vm      rss pgtables_bytes swapents oom_score_adj name\n");
430 
431 	if (is_memcg_oom(oc))
432 		mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
433 	else {
434 		struct task_struct *p;
435 
436 		rcu_read_lock();
437 		for_each_process(p)
438 			dump_task(p, oc);
439 		rcu_read_unlock();
440 	}
441 }
442 
443 static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
444 {
445 	/* one line summary of the oom killer context. */
446 	pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
447 			oom_constraint_text[oc->constraint],
448 			nodemask_pr_args(oc->nodemask));
449 	cpuset_print_current_mems_allowed();
450 	mem_cgroup_print_oom_context(oc->memcg, victim);
451 	pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
452 		from_kuid(&init_user_ns, task_uid(victim)));
453 }
454 
455 static void dump_header(struct oom_control *oc, struct task_struct *p)
456 {
457 	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
458 		current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
459 			current->signal->oom_score_adj);
460 	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
461 		pr_warn("COMPACTION is disabled!!!\n");
462 
463 	dump_stack();
464 	if (is_memcg_oom(oc))
465 		mem_cgroup_print_oom_meminfo(oc->memcg);
466 	else {
467 		show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
468 		if (should_dump_unreclaim_slab())
469 			dump_unreclaimable_slab();
470 	}
471 	if (sysctl_oom_dump_tasks)
472 		dump_tasks(oc);
473 	if (p)
474 		dump_oom_summary(oc, p);
475 }
476 
477 /*
478  * Number of OOM victims in flight
479  */
480 static atomic_t oom_victims = ATOMIC_INIT(0);
481 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
482 
483 static bool oom_killer_disabled __read_mostly;
484 
485 #define K(x) ((x) << (PAGE_SHIFT-10))
486 
487 /*
488  * task->mm can be NULL if the task is the exited group leader.  So to
489  * determine whether the task is using a particular mm, we examine all the
490  * task's threads: if one of those is using this mm then this task was also
491  * using it.
492  */
493 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
494 {
495 	struct task_struct *t;
496 
497 	for_each_thread(p, t) {
498 		struct mm_struct *t_mm = READ_ONCE(t->mm);
499 		if (t_mm)
500 			return t_mm == mm;
501 	}
502 	return false;
503 }
504 
505 #ifdef CONFIG_MMU
506 /*
507  * OOM Reaper kernel thread which tries to reap the memory used by the OOM
508  * victim (if that is possible) to help the OOM killer to move on.
509  */
510 static struct task_struct *oom_reaper_th;
511 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
512 static struct task_struct *oom_reaper_list;
513 static DEFINE_SPINLOCK(oom_reaper_lock);
514 
515 bool __oom_reap_task_mm(struct mm_struct *mm)
516 {
517 	struct vm_area_struct *vma;
518 	bool ret = true;
519 
520 	/*
521 	 * Tell all users of get_user/copy_from_user etc... that the content
522 	 * is no longer stable. No barriers really needed because unmapping
523 	 * should imply barriers already and the reader would hit a page fault
524 	 * if it stumbled over a reaped memory.
525 	 */
526 	set_bit(MMF_UNSTABLE, &mm->flags);
527 
528 	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
529 		if (!can_madv_lru_vma(vma))
530 			continue;
531 
532 		/*
533 		 * Only anonymous pages have a good chance to be dropped
534 		 * without additional steps which we cannot afford as we
535 		 * are OOM already.
536 		 *
537 		 * We do not even care about fs backed pages because all
538 		 * which are reclaimable have already been reclaimed and
539 		 * we do not want to block exit_mmap by keeping mm ref
540 		 * count elevated without a good reason.
541 		 */
542 		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
543 			struct mmu_notifier_range range;
544 			struct mmu_gather tlb;
545 
546 			mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
547 						vma, mm, vma->vm_start,
548 						vma->vm_end);
549 			tlb_gather_mmu(&tlb, mm);
550 			if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
551 				tlb_finish_mmu(&tlb);
552 				ret = false;
553 				continue;
554 			}
555 			unmap_page_range(&tlb, vma, range.start, range.end, NULL);
556 			mmu_notifier_invalidate_range_end(&range);
557 			tlb_finish_mmu(&tlb);
558 		}
559 	}
560 
561 	return ret;
562 }
563 
564 /*
565  * Reaps the address space of the give task.
566  *
567  * Returns true on success and false if none or part of the address space
568  * has been reclaimed and the caller should retry later.
569  */
570 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
571 {
572 	bool ret = true;
573 
574 	if (!mmap_read_trylock(mm)) {
575 		trace_skip_task_reaping(tsk->pid);
576 		return false;
577 	}
578 
579 	/*
580 	 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
581 	 * work on the mm anymore. The check for MMF_OOM_SKIP must run
582 	 * under mmap_lock for reading because it serializes against the
583 	 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
584 	 */
585 	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
586 		trace_skip_task_reaping(tsk->pid);
587 		goto out_unlock;
588 	}
589 
590 	trace_start_task_reaping(tsk->pid);
591 
592 	/* failed to reap part of the address space. Try again later */
593 	ret = __oom_reap_task_mm(mm);
594 	if (!ret)
595 		goto out_finish;
596 
597 	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
598 			task_pid_nr(tsk), tsk->comm,
599 			K(get_mm_counter(mm, MM_ANONPAGES)),
600 			K(get_mm_counter(mm, MM_FILEPAGES)),
601 			K(get_mm_counter(mm, MM_SHMEMPAGES)));
602 out_finish:
603 	trace_finish_task_reaping(tsk->pid);
604 out_unlock:
605 	mmap_read_unlock(mm);
606 
607 	return ret;
608 }
609 
610 #define MAX_OOM_REAP_RETRIES 10
611 static void oom_reap_task(struct task_struct *tsk)
612 {
613 	int attempts = 0;
614 	struct mm_struct *mm = tsk->signal->oom_mm;
615 
616 	/* Retry the mmap_read_trylock(mm) a few times */
617 	while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
618 		schedule_timeout_idle(HZ/10);
619 
620 	if (attempts <= MAX_OOM_REAP_RETRIES ||
621 	    test_bit(MMF_OOM_SKIP, &mm->flags))
622 		goto done;
623 
624 	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
625 		task_pid_nr(tsk), tsk->comm);
626 	sched_show_task(tsk);
627 	debug_show_all_locks();
628 
629 done:
630 	tsk->oom_reaper_list = NULL;
631 
632 	/*
633 	 * Hide this mm from OOM killer because it has been either reaped or
634 	 * somebody can't call mmap_write_unlock(mm).
635 	 */
636 	set_bit(MMF_OOM_SKIP, &mm->flags);
637 
638 	/* Drop a reference taken by wake_oom_reaper */
639 	put_task_struct(tsk);
640 }
641 
642 static int oom_reaper(void *unused)
643 {
644 	while (true) {
645 		struct task_struct *tsk = NULL;
646 
647 		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
648 		spin_lock(&oom_reaper_lock);
649 		if (oom_reaper_list != NULL) {
650 			tsk = oom_reaper_list;
651 			oom_reaper_list = tsk->oom_reaper_list;
652 		}
653 		spin_unlock(&oom_reaper_lock);
654 
655 		if (tsk)
656 			oom_reap_task(tsk);
657 	}
658 
659 	return 0;
660 }
661 
662 static void wake_oom_reaper(struct task_struct *tsk)
663 {
664 	/* mm is already queued? */
665 	if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
666 		return;
667 
668 	get_task_struct(tsk);
669 
670 	spin_lock(&oom_reaper_lock);
671 	tsk->oom_reaper_list = oom_reaper_list;
672 	oom_reaper_list = tsk;
673 	spin_unlock(&oom_reaper_lock);
674 	trace_wake_reaper(tsk->pid);
675 	wake_up(&oom_reaper_wait);
676 }
677 
678 static int __init oom_init(void)
679 {
680 	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
681 	return 0;
682 }
683 subsys_initcall(oom_init)
684 #else
685 static inline void wake_oom_reaper(struct task_struct *tsk)
686 {
687 }
688 #endif /* CONFIG_MMU */
689 
690 /**
691  * mark_oom_victim - mark the given task as OOM victim
692  * @tsk: task to mark
693  *
694  * Has to be called with oom_lock held and never after
695  * oom has been disabled already.
696  *
697  * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
698  * under task_lock or operate on the current).
699  */
700 static void mark_oom_victim(struct task_struct *tsk)
701 {
702 	struct mm_struct *mm = tsk->mm;
703 
704 	WARN_ON(oom_killer_disabled);
705 	/* OOM killer might race with memcg OOM */
706 	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
707 		return;
708 
709 	/* oom_mm is bound to the signal struct life time. */
710 	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
711 		mmgrab(tsk->signal->oom_mm);
712 		set_bit(MMF_OOM_VICTIM, &mm->flags);
713 	}
714 
715 	/*
716 	 * Make sure that the task is woken up from uninterruptible sleep
717 	 * if it is frozen because OOM killer wouldn't be able to free
718 	 * any memory and livelock. freezing_slow_path will tell the freezer
719 	 * that TIF_MEMDIE tasks should be ignored.
720 	 */
721 	__thaw_task(tsk);
722 	atomic_inc(&oom_victims);
723 	trace_mark_victim(tsk->pid);
724 }
725 
726 /**
727  * exit_oom_victim - note the exit of an OOM victim
728  */
729 void exit_oom_victim(void)
730 {
731 	clear_thread_flag(TIF_MEMDIE);
732 
733 	if (!atomic_dec_return(&oom_victims))
734 		wake_up_all(&oom_victims_wait);
735 }
736 
737 /**
738  * oom_killer_enable - enable OOM killer
739  */
740 void oom_killer_enable(void)
741 {
742 	oom_killer_disabled = false;
743 	pr_info("OOM killer enabled.\n");
744 }
745 
746 /**
747  * oom_killer_disable - disable OOM killer
748  * @timeout: maximum timeout to wait for oom victims in jiffies
749  *
750  * Forces all page allocations to fail rather than trigger OOM killer.
751  * Will block and wait until all OOM victims are killed or the given
752  * timeout expires.
753  *
754  * The function cannot be called when there are runnable user tasks because
755  * the userspace would see unexpected allocation failures as a result. Any
756  * new usage of this function should be consulted with MM people.
757  *
758  * Returns true if successful and false if the OOM killer cannot be
759  * disabled.
760  */
761 bool oom_killer_disable(signed long timeout)
762 {
763 	signed long ret;
764 
765 	/*
766 	 * Make sure to not race with an ongoing OOM killer. Check that the
767 	 * current is not killed (possibly due to sharing the victim's memory).
768 	 */
769 	if (mutex_lock_killable(&oom_lock))
770 		return false;
771 	oom_killer_disabled = true;
772 	mutex_unlock(&oom_lock);
773 
774 	ret = wait_event_interruptible_timeout(oom_victims_wait,
775 			!atomic_read(&oom_victims), timeout);
776 	if (ret <= 0) {
777 		oom_killer_enable();
778 		return false;
779 	}
780 	pr_info("OOM killer disabled.\n");
781 
782 	return true;
783 }
784 
785 static inline bool __task_will_free_mem(struct task_struct *task)
786 {
787 	struct signal_struct *sig = task->signal;
788 
789 	/*
790 	 * A coredumping process may sleep for an extended period in exit_mm(),
791 	 * so the oom killer cannot assume that the process will promptly exit
792 	 * and release memory.
793 	 */
794 	if (sig->flags & SIGNAL_GROUP_COREDUMP)
795 		return false;
796 
797 	if (sig->flags & SIGNAL_GROUP_EXIT)
798 		return true;
799 
800 	if (thread_group_empty(task) && (task->flags & PF_EXITING))
801 		return true;
802 
803 	return false;
804 }
805 
806 /*
807  * Checks whether the given task is dying or exiting and likely to
808  * release its address space. This means that all threads and processes
809  * sharing the same mm have to be killed or exiting.
810  * Caller has to make sure that task->mm is stable (hold task_lock or
811  * it operates on the current).
812  */
813 static bool task_will_free_mem(struct task_struct *task)
814 {
815 	struct mm_struct *mm = task->mm;
816 	struct task_struct *p;
817 	bool ret = true;
818 
819 	/*
820 	 * Skip tasks without mm because it might have passed its exit_mm and
821 	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
822 	 * on that for now. We can consider find_lock_task_mm in future.
823 	 */
824 	if (!mm)
825 		return false;
826 
827 	if (!__task_will_free_mem(task))
828 		return false;
829 
830 	/*
831 	 * This task has already been drained by the oom reaper so there are
832 	 * only small chances it will free some more
833 	 */
834 	if (test_bit(MMF_OOM_SKIP, &mm->flags))
835 		return false;
836 
837 	if (atomic_read(&mm->mm_users) <= 1)
838 		return true;
839 
840 	/*
841 	 * Make sure that all tasks which share the mm with the given tasks
842 	 * are dying as well to make sure that a) nobody pins its mm and
843 	 * b) the task is also reapable by the oom reaper.
844 	 */
845 	rcu_read_lock();
846 	for_each_process(p) {
847 		if (!process_shares_mm(p, mm))
848 			continue;
849 		if (same_thread_group(task, p))
850 			continue;
851 		ret = __task_will_free_mem(p);
852 		if (!ret)
853 			break;
854 	}
855 	rcu_read_unlock();
856 
857 	return ret;
858 }
859 
860 static void __oom_kill_process(struct task_struct *victim, const char *message)
861 {
862 	struct task_struct *p;
863 	struct mm_struct *mm;
864 	bool can_oom_reap = true;
865 
866 	p = find_lock_task_mm(victim);
867 	if (!p) {
868 		pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
869 			message, task_pid_nr(victim), victim->comm);
870 		put_task_struct(victim);
871 		return;
872 	} else if (victim != p) {
873 		get_task_struct(p);
874 		put_task_struct(victim);
875 		victim = p;
876 	}
877 
878 	/* Get a reference to safely compare mm after task_unlock(victim) */
879 	mm = victim->mm;
880 	mmgrab(mm);
881 
882 	/* Raise event before sending signal: task reaper must see this */
883 	count_vm_event(OOM_KILL);
884 	memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
885 
886 	/*
887 	 * We should send SIGKILL before granting access to memory reserves
888 	 * in order to prevent the OOM victim from depleting the memory
889 	 * reserves from the user space under its control.
890 	 */
891 	do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
892 	mark_oom_victim(victim);
893 	pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
894 		message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
895 		K(get_mm_counter(mm, MM_ANONPAGES)),
896 		K(get_mm_counter(mm, MM_FILEPAGES)),
897 		K(get_mm_counter(mm, MM_SHMEMPAGES)),
898 		from_kuid(&init_user_ns, task_uid(victim)),
899 		mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
900 	task_unlock(victim);
901 
902 	/*
903 	 * Kill all user processes sharing victim->mm in other thread groups, if
904 	 * any.  They don't get access to memory reserves, though, to avoid
905 	 * depletion of all memory.  This prevents mm->mmap_lock livelock when an
906 	 * oom killed thread cannot exit because it requires the semaphore and
907 	 * its contended by another thread trying to allocate memory itself.
908 	 * That thread will now get access to memory reserves since it has a
909 	 * pending fatal signal.
910 	 */
911 	rcu_read_lock();
912 	for_each_process(p) {
913 		if (!process_shares_mm(p, mm))
914 			continue;
915 		if (same_thread_group(p, victim))
916 			continue;
917 		if (is_global_init(p)) {
918 			can_oom_reap = false;
919 			set_bit(MMF_OOM_SKIP, &mm->flags);
920 			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
921 					task_pid_nr(victim), victim->comm,
922 					task_pid_nr(p), p->comm);
923 			continue;
924 		}
925 		/*
926 		 * No kthread_use_mm() user needs to read from the userspace so
927 		 * we are ok to reap it.
928 		 */
929 		if (unlikely(p->flags & PF_KTHREAD))
930 			continue;
931 		do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
932 	}
933 	rcu_read_unlock();
934 
935 	if (can_oom_reap)
936 		wake_oom_reaper(victim);
937 
938 	mmdrop(mm);
939 	put_task_struct(victim);
940 }
941 #undef K
942 
943 /*
944  * Kill provided task unless it's secured by setting
945  * oom_score_adj to OOM_SCORE_ADJ_MIN.
946  */
947 static int oom_kill_memcg_member(struct task_struct *task, void *message)
948 {
949 	if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
950 	    !is_global_init(task)) {
951 		get_task_struct(task);
952 		__oom_kill_process(task, message);
953 	}
954 	return 0;
955 }
956 
957 static void oom_kill_process(struct oom_control *oc, const char *message)
958 {
959 	struct task_struct *victim = oc->chosen;
960 	struct mem_cgroup *oom_group;
961 	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
962 					      DEFAULT_RATELIMIT_BURST);
963 
964 	/*
965 	 * If the task is already exiting, don't alarm the sysadmin or kill
966 	 * its children or threads, just give it access to memory reserves
967 	 * so it can die quickly
968 	 */
969 	task_lock(victim);
970 	if (task_will_free_mem(victim)) {
971 		mark_oom_victim(victim);
972 		wake_oom_reaper(victim);
973 		task_unlock(victim);
974 		put_task_struct(victim);
975 		return;
976 	}
977 	task_unlock(victim);
978 
979 	if (__ratelimit(&oom_rs))
980 		dump_header(oc, victim);
981 
982 	/*
983 	 * Do we need to kill the entire memory cgroup?
984 	 * Or even one of the ancestor memory cgroups?
985 	 * Check this out before killing the victim task.
986 	 */
987 	oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
988 
989 	__oom_kill_process(victim, message);
990 
991 	/*
992 	 * If necessary, kill all tasks in the selected memory cgroup.
993 	 */
994 	if (oom_group) {
995 		mem_cgroup_print_oom_group(oom_group);
996 		mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
997 				      (void *)message);
998 		mem_cgroup_put(oom_group);
999 	}
1000 }
1001 
1002 /*
1003  * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1004  */
1005 static void check_panic_on_oom(struct oom_control *oc)
1006 {
1007 	if (likely(!sysctl_panic_on_oom))
1008 		return;
1009 	if (sysctl_panic_on_oom != 2) {
1010 		/*
1011 		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1012 		 * does not panic for cpuset, mempolicy, or memcg allocation
1013 		 * failures.
1014 		 */
1015 		if (oc->constraint != CONSTRAINT_NONE)
1016 			return;
1017 	}
1018 	/* Do not panic for oom kills triggered by sysrq */
1019 	if (is_sysrq_oom(oc))
1020 		return;
1021 	dump_header(oc, NULL);
1022 	panic("Out of memory: %s panic_on_oom is enabled\n",
1023 		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1024 }
1025 
1026 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1027 
1028 int register_oom_notifier(struct notifier_block *nb)
1029 {
1030 	return blocking_notifier_chain_register(&oom_notify_list, nb);
1031 }
1032 EXPORT_SYMBOL_GPL(register_oom_notifier);
1033 
1034 int unregister_oom_notifier(struct notifier_block *nb)
1035 {
1036 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1037 }
1038 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1039 
1040 /**
1041  * out_of_memory - kill the "best" process when we run out of memory
1042  * @oc: pointer to struct oom_control
1043  *
1044  * If we run out of memory, we have the choice between either
1045  * killing a random task (bad), letting the system crash (worse)
1046  * OR try to be smart about which process to kill. Note that we
1047  * don't have to be perfect here, we just have to be good.
1048  */
1049 bool out_of_memory(struct oom_control *oc)
1050 {
1051 	unsigned long freed = 0;
1052 
1053 	if (oom_killer_disabled)
1054 		return false;
1055 
1056 	if (!is_memcg_oom(oc)) {
1057 		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1058 		if (freed > 0)
1059 			/* Got some memory back in the last second. */
1060 			return true;
1061 	}
1062 
1063 	/*
1064 	 * If current has a pending SIGKILL or is exiting, then automatically
1065 	 * select it.  The goal is to allow it to allocate so that it may
1066 	 * quickly exit and free its memory.
1067 	 */
1068 	if (task_will_free_mem(current)) {
1069 		mark_oom_victim(current);
1070 		wake_oom_reaper(current);
1071 		return true;
1072 	}
1073 
1074 	/*
1075 	 * The OOM killer does not compensate for IO-less reclaim.
1076 	 * pagefault_out_of_memory lost its gfp context so we have to
1077 	 * make sure exclude 0 mask - all other users should have at least
1078 	 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to
1079 	 * invoke the OOM killer even if it is a GFP_NOFS allocation.
1080 	 */
1081 	if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1082 		return true;
1083 
1084 	/*
1085 	 * Check if there were limitations on the allocation (only relevant for
1086 	 * NUMA and memcg) that may require different handling.
1087 	 */
1088 	oc->constraint = constrained_alloc(oc);
1089 	if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1090 		oc->nodemask = NULL;
1091 	check_panic_on_oom(oc);
1092 
1093 	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1094 	    current->mm && !oom_unkillable_task(current) &&
1095 	    oom_cpuset_eligible(current, oc) &&
1096 	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1097 		get_task_struct(current);
1098 		oc->chosen = current;
1099 		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1100 		return true;
1101 	}
1102 
1103 	select_bad_process(oc);
1104 	/* Found nothing?!?! */
1105 	if (!oc->chosen) {
1106 		dump_header(oc, NULL);
1107 		pr_warn("Out of memory and no killable processes...\n");
1108 		/*
1109 		 * If we got here due to an actual allocation at the
1110 		 * system level, we cannot survive this and will enter
1111 		 * an endless loop in the allocator. Bail out now.
1112 		 */
1113 		if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1114 			panic("System is deadlocked on memory\n");
1115 	}
1116 	if (oc->chosen && oc->chosen != (void *)-1UL)
1117 		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1118 				 "Memory cgroup out of memory");
1119 	return !!oc->chosen;
1120 }
1121 
1122 /*
1123  * The pagefault handler calls here because it is out of memory, so kill a
1124  * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1125  * killing is already in progress so do nothing.
1126  */
1127 void pagefault_out_of_memory(void)
1128 {
1129 	struct oom_control oc = {
1130 		.zonelist = NULL,
1131 		.nodemask = NULL,
1132 		.memcg = NULL,
1133 		.gfp_mask = 0,
1134 		.order = 0,
1135 	};
1136 
1137 	if (mem_cgroup_oom_synchronize(true))
1138 		return;
1139 
1140 	if (!mutex_trylock(&oom_lock))
1141 		return;
1142 	out_of_memory(&oc);
1143 	mutex_unlock(&oom_lock);
1144 }
1145 
1146 SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags)
1147 {
1148 #ifdef CONFIG_MMU
1149 	struct mm_struct *mm = NULL;
1150 	struct task_struct *task;
1151 	struct task_struct *p;
1152 	unsigned int f_flags;
1153 	bool reap = true;
1154 	struct pid *pid;
1155 	long ret = 0;
1156 
1157 	if (flags)
1158 		return -EINVAL;
1159 
1160 	pid = pidfd_get_pid(pidfd, &f_flags);
1161 	if (IS_ERR(pid))
1162 		return PTR_ERR(pid);
1163 
1164 	task = get_pid_task(pid, PIDTYPE_TGID);
1165 	if (!task) {
1166 		ret = -ESRCH;
1167 		goto put_pid;
1168 	}
1169 
1170 	/*
1171 	 * Make sure to choose a thread which still has a reference to mm
1172 	 * during the group exit
1173 	 */
1174 	p = find_lock_task_mm(task);
1175 	if (!p) {
1176 		ret = -ESRCH;
1177 		goto put_task;
1178 	}
1179 
1180 	mm = p->mm;
1181 	mmgrab(mm);
1182 
1183 	/* If the work has been done already, just exit with success */
1184 	if (test_bit(MMF_OOM_SKIP, &mm->flags))
1185 		reap = false;
1186 	else if (!task_will_free_mem(p)) {
1187 		reap = false;
1188 		ret = -EINVAL;
1189 	}
1190 	task_unlock(p);
1191 
1192 	if (!reap)
1193 		goto drop_mm;
1194 
1195 	if (mmap_read_lock_killable(mm)) {
1196 		ret = -EINTR;
1197 		goto drop_mm;
1198 	}
1199 	if (!__oom_reap_task_mm(mm))
1200 		ret = -EAGAIN;
1201 	mmap_read_unlock(mm);
1202 
1203 drop_mm:
1204 	mmdrop(mm);
1205 put_task:
1206 	put_task_struct(task);
1207 put_pid:
1208 	put_pid(pid);
1209 	return ret;
1210 #else
1211 	return -ENOSYS;
1212 #endif /* CONFIG_MMU */
1213 }
1214