xref: /openbmc/linux/mm/oom_kill.c (revision eb3fcf00)
1 /*
2  *  linux/mm/oom_kill.c
3  *
4  *  Copyright (C)  1998,2000  Rik van Riel
5  *	Thanks go out to Claus Fischer for some serious inspiration and
6  *	for goading me into coding this file...
7  *  Copyright (C)  2010  Google, Inc.
8  *	Rewritten by David Rientjes
9  *
10  *  The routines in this file are used to kill a process when
11  *  we're seriously out of memory. This gets called from __alloc_pages()
12  *  in mm/page_alloc.c when we really run out of memory.
13  *
14  *  Since we won't call these routines often (on a well-configured
15  *  machine) this file will double as a 'coding guide' and a signpost
16  *  for newbie kernel hackers. It features several pointers to major
17  *  kernel subsystems and hints as to where to find out what things do.
18  */
19 
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/swap.h>
26 #include <linux/timex.h>
27 #include <linux/jiffies.h>
28 #include <linux/cpuset.h>
29 #include <linux/export.h>
30 #include <linux/notifier.h>
31 #include <linux/memcontrol.h>
32 #include <linux/mempolicy.h>
33 #include <linux/security.h>
34 #include <linux/ptrace.h>
35 #include <linux/freezer.h>
36 #include <linux/ftrace.h>
37 #include <linux/ratelimit.h>
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/oom.h>
41 
42 int sysctl_panic_on_oom;
43 int sysctl_oom_kill_allocating_task;
44 int sysctl_oom_dump_tasks = 1;
45 
46 DEFINE_MUTEX(oom_lock);
47 
48 #ifdef CONFIG_NUMA
49 /**
50  * has_intersects_mems_allowed() - check task eligiblity for kill
51  * @start: task struct of which task to consider
52  * @mask: nodemask passed to page allocator for mempolicy ooms
53  *
54  * Task eligibility is determined by whether or not a candidate task, @tsk,
55  * shares the same mempolicy nodes as current if it is bound by such a policy
56  * and whether or not it has the same set of allowed cpuset nodes.
57  */
58 static bool has_intersects_mems_allowed(struct task_struct *start,
59 					const nodemask_t *mask)
60 {
61 	struct task_struct *tsk;
62 	bool ret = false;
63 
64 	rcu_read_lock();
65 	for_each_thread(start, tsk) {
66 		if (mask) {
67 			/*
68 			 * If this is a mempolicy constrained oom, tsk's
69 			 * cpuset is irrelevant.  Only return true if its
70 			 * mempolicy intersects current, otherwise it may be
71 			 * needlessly killed.
72 			 */
73 			ret = mempolicy_nodemask_intersects(tsk, mask);
74 		} else {
75 			/*
76 			 * This is not a mempolicy constrained oom, so only
77 			 * check the mems of tsk's cpuset.
78 			 */
79 			ret = cpuset_mems_allowed_intersects(current, tsk);
80 		}
81 		if (ret)
82 			break;
83 	}
84 	rcu_read_unlock();
85 
86 	return ret;
87 }
88 #else
89 static bool has_intersects_mems_allowed(struct task_struct *tsk,
90 					const nodemask_t *mask)
91 {
92 	return true;
93 }
94 #endif /* CONFIG_NUMA */
95 
96 /*
97  * The process p may have detached its own ->mm while exiting or through
98  * use_mm(), but one or more of its subthreads may still have a valid
99  * pointer.  Return p, or any of its subthreads with a valid ->mm, with
100  * task_lock() held.
101  */
102 struct task_struct *find_lock_task_mm(struct task_struct *p)
103 {
104 	struct task_struct *t;
105 
106 	rcu_read_lock();
107 
108 	for_each_thread(p, t) {
109 		task_lock(t);
110 		if (likely(t->mm))
111 			goto found;
112 		task_unlock(t);
113 	}
114 	t = NULL;
115 found:
116 	rcu_read_unlock();
117 
118 	return t;
119 }
120 
121 /* return true if the task is not adequate as candidate victim task. */
122 static bool oom_unkillable_task(struct task_struct *p,
123 		struct mem_cgroup *memcg, const nodemask_t *nodemask)
124 {
125 	if (is_global_init(p))
126 		return true;
127 	if (p->flags & PF_KTHREAD)
128 		return true;
129 
130 	/* When mem_cgroup_out_of_memory() and p is not member of the group */
131 	if (memcg && !task_in_mem_cgroup(p, memcg))
132 		return true;
133 
134 	/* p may not have freeable memory in nodemask */
135 	if (!has_intersects_mems_allowed(p, nodemask))
136 		return true;
137 
138 	return false;
139 }
140 
141 /**
142  * oom_badness - heuristic function to determine which candidate task to kill
143  * @p: task struct of which task we should calculate
144  * @totalpages: total present RAM allowed for page allocation
145  *
146  * The heuristic for determining which task to kill is made to be as simple and
147  * predictable as possible.  The goal is to return the highest value for the
148  * task consuming the most memory to avoid subsequent oom failures.
149  */
150 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
151 			  const nodemask_t *nodemask, unsigned long totalpages)
152 {
153 	long points;
154 	long adj;
155 
156 	if (oom_unkillable_task(p, memcg, nodemask))
157 		return 0;
158 
159 	p = find_lock_task_mm(p);
160 	if (!p)
161 		return 0;
162 
163 	adj = (long)p->signal->oom_score_adj;
164 	if (adj == OOM_SCORE_ADJ_MIN) {
165 		task_unlock(p);
166 		return 0;
167 	}
168 
169 	/*
170 	 * The baseline for the badness score is the proportion of RAM that each
171 	 * task's rss, pagetable and swap space use.
172 	 */
173 	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
174 		atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
175 	task_unlock(p);
176 
177 	/*
178 	 * Root processes get 3% bonus, just like the __vm_enough_memory()
179 	 * implementation used by LSMs.
180 	 */
181 	if (has_capability_noaudit(p, CAP_SYS_ADMIN))
182 		points -= (points * 3) / 100;
183 
184 	/* Normalize to oom_score_adj units */
185 	adj *= totalpages / 1000;
186 	points += adj;
187 
188 	/*
189 	 * Never return 0 for an eligible task regardless of the root bonus and
190 	 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
191 	 */
192 	return points > 0 ? points : 1;
193 }
194 
195 /*
196  * Determine the type of allocation constraint.
197  */
198 #ifdef CONFIG_NUMA
199 static enum oom_constraint constrained_alloc(struct oom_control *oc,
200 					     unsigned long *totalpages)
201 {
202 	struct zone *zone;
203 	struct zoneref *z;
204 	enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
205 	bool cpuset_limited = false;
206 	int nid;
207 
208 	/* Default to all available memory */
209 	*totalpages = totalram_pages + total_swap_pages;
210 
211 	if (!oc->zonelist)
212 		return CONSTRAINT_NONE;
213 	/*
214 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
215 	 * to kill current.We have to random task kill in this case.
216 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
217 	 */
218 	if (oc->gfp_mask & __GFP_THISNODE)
219 		return CONSTRAINT_NONE;
220 
221 	/*
222 	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
223 	 * the page allocator means a mempolicy is in effect.  Cpuset policy
224 	 * is enforced in get_page_from_freelist().
225 	 */
226 	if (oc->nodemask &&
227 	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
228 		*totalpages = total_swap_pages;
229 		for_each_node_mask(nid, *oc->nodemask)
230 			*totalpages += node_spanned_pages(nid);
231 		return CONSTRAINT_MEMORY_POLICY;
232 	}
233 
234 	/* Check this allocation failure is caused by cpuset's wall function */
235 	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
236 			high_zoneidx, oc->nodemask)
237 		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
238 			cpuset_limited = true;
239 
240 	if (cpuset_limited) {
241 		*totalpages = total_swap_pages;
242 		for_each_node_mask(nid, cpuset_current_mems_allowed)
243 			*totalpages += node_spanned_pages(nid);
244 		return CONSTRAINT_CPUSET;
245 	}
246 	return CONSTRAINT_NONE;
247 }
248 #else
249 static enum oom_constraint constrained_alloc(struct oom_control *oc,
250 					     unsigned long *totalpages)
251 {
252 	*totalpages = totalram_pages + total_swap_pages;
253 	return CONSTRAINT_NONE;
254 }
255 #endif
256 
257 enum oom_scan_t oom_scan_process_thread(struct oom_control *oc,
258 			struct task_struct *task, unsigned long totalpages)
259 {
260 	if (oom_unkillable_task(task, NULL, oc->nodemask))
261 		return OOM_SCAN_CONTINUE;
262 
263 	/*
264 	 * This task already has access to memory reserves and is being killed.
265 	 * Don't allow any other task to have access to the reserves.
266 	 */
267 	if (test_tsk_thread_flag(task, TIF_MEMDIE)) {
268 		if (oc->order != -1)
269 			return OOM_SCAN_ABORT;
270 	}
271 	if (!task->mm)
272 		return OOM_SCAN_CONTINUE;
273 
274 	/*
275 	 * If task is allocating a lot of memory and has been marked to be
276 	 * killed first if it triggers an oom, then select it.
277 	 */
278 	if (oom_task_origin(task))
279 		return OOM_SCAN_SELECT;
280 
281 	if (task_will_free_mem(task) && oc->order != -1)
282 		return OOM_SCAN_ABORT;
283 
284 	return OOM_SCAN_OK;
285 }
286 
287 /*
288  * Simple selection loop. We chose the process with the highest
289  * number of 'points'.  Returns -1 on scan abort.
290  */
291 static struct task_struct *select_bad_process(struct oom_control *oc,
292 		unsigned int *ppoints, unsigned long totalpages)
293 {
294 	struct task_struct *g, *p;
295 	struct task_struct *chosen = NULL;
296 	unsigned long chosen_points = 0;
297 
298 	rcu_read_lock();
299 	for_each_process_thread(g, p) {
300 		unsigned int points;
301 
302 		switch (oom_scan_process_thread(oc, p, totalpages)) {
303 		case OOM_SCAN_SELECT:
304 			chosen = p;
305 			chosen_points = ULONG_MAX;
306 			/* fall through */
307 		case OOM_SCAN_CONTINUE:
308 			continue;
309 		case OOM_SCAN_ABORT:
310 			rcu_read_unlock();
311 			return (struct task_struct *)(-1UL);
312 		case OOM_SCAN_OK:
313 			break;
314 		};
315 		points = oom_badness(p, NULL, oc->nodemask, totalpages);
316 		if (!points || points < chosen_points)
317 			continue;
318 		/* Prefer thread group leaders for display purposes */
319 		if (points == chosen_points && thread_group_leader(chosen))
320 			continue;
321 
322 		chosen = p;
323 		chosen_points = points;
324 	}
325 	if (chosen)
326 		get_task_struct(chosen);
327 	rcu_read_unlock();
328 
329 	*ppoints = chosen_points * 1000 / totalpages;
330 	return chosen;
331 }
332 
333 /**
334  * dump_tasks - dump current memory state of all system tasks
335  * @memcg: current's memory controller, if constrained
336  * @nodemask: nodemask passed to page allocator for mempolicy ooms
337  *
338  * Dumps the current memory state of all eligible tasks.  Tasks not in the same
339  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
340  * are not shown.
341  * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
342  * swapents, oom_score_adj value, and name.
343  */
344 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
345 {
346 	struct task_struct *p;
347 	struct task_struct *task;
348 
349 	pr_info("[ pid ]   uid  tgid total_vm      rss nr_ptes nr_pmds swapents oom_score_adj name\n");
350 	rcu_read_lock();
351 	for_each_process(p) {
352 		if (oom_unkillable_task(p, memcg, nodemask))
353 			continue;
354 
355 		task = find_lock_task_mm(p);
356 		if (!task) {
357 			/*
358 			 * This is a kthread or all of p's threads have already
359 			 * detached their mm's.  There's no need to report
360 			 * them; they can't be oom killed anyway.
361 			 */
362 			continue;
363 		}
364 
365 		pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu         %5hd %s\n",
366 			task->pid, from_kuid(&init_user_ns, task_uid(task)),
367 			task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
368 			atomic_long_read(&task->mm->nr_ptes),
369 			mm_nr_pmds(task->mm),
370 			get_mm_counter(task->mm, MM_SWAPENTS),
371 			task->signal->oom_score_adj, task->comm);
372 		task_unlock(task);
373 	}
374 	rcu_read_unlock();
375 }
376 
377 static void dump_header(struct oom_control *oc, struct task_struct *p,
378 			struct mem_cgroup *memcg)
379 {
380 	task_lock(current);
381 	pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, "
382 		"oom_score_adj=%hd\n",
383 		current->comm, oc->gfp_mask, oc->order,
384 		current->signal->oom_score_adj);
385 	cpuset_print_task_mems_allowed(current);
386 	task_unlock(current);
387 	dump_stack();
388 	if (memcg)
389 		mem_cgroup_print_oom_info(memcg, p);
390 	else
391 		show_mem(SHOW_MEM_FILTER_NODES);
392 	if (sysctl_oom_dump_tasks)
393 		dump_tasks(memcg, oc->nodemask);
394 }
395 
396 /*
397  * Number of OOM victims in flight
398  */
399 static atomic_t oom_victims = ATOMIC_INIT(0);
400 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
401 
402 bool oom_killer_disabled __read_mostly;
403 
404 /**
405  * mark_oom_victim - mark the given task as OOM victim
406  * @tsk: task to mark
407  *
408  * Has to be called with oom_lock held and never after
409  * oom has been disabled already.
410  */
411 void mark_oom_victim(struct task_struct *tsk)
412 {
413 	WARN_ON(oom_killer_disabled);
414 	/* OOM killer might race with memcg OOM */
415 	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
416 		return;
417 	/*
418 	 * Make sure that the task is woken up from uninterruptible sleep
419 	 * if it is frozen because OOM killer wouldn't be able to free
420 	 * any memory and livelock. freezing_slow_path will tell the freezer
421 	 * that TIF_MEMDIE tasks should be ignored.
422 	 */
423 	__thaw_task(tsk);
424 	atomic_inc(&oom_victims);
425 }
426 
427 /**
428  * exit_oom_victim - note the exit of an OOM victim
429  */
430 void exit_oom_victim(void)
431 {
432 	clear_thread_flag(TIF_MEMDIE);
433 
434 	if (!atomic_dec_return(&oom_victims))
435 		wake_up_all(&oom_victims_wait);
436 }
437 
438 /**
439  * oom_killer_disable - disable OOM killer
440  *
441  * Forces all page allocations to fail rather than trigger OOM killer.
442  * Will block and wait until all OOM victims are killed.
443  *
444  * The function cannot be called when there are runnable user tasks because
445  * the userspace would see unexpected allocation failures as a result. Any
446  * new usage of this function should be consulted with MM people.
447  *
448  * Returns true if successful and false if the OOM killer cannot be
449  * disabled.
450  */
451 bool oom_killer_disable(void)
452 {
453 	/*
454 	 * Make sure to not race with an ongoing OOM killer
455 	 * and that the current is not the victim.
456 	 */
457 	mutex_lock(&oom_lock);
458 	if (test_thread_flag(TIF_MEMDIE)) {
459 		mutex_unlock(&oom_lock);
460 		return false;
461 	}
462 
463 	oom_killer_disabled = true;
464 	mutex_unlock(&oom_lock);
465 
466 	wait_event(oom_victims_wait, !atomic_read(&oom_victims));
467 
468 	return true;
469 }
470 
471 /**
472  * oom_killer_enable - enable OOM killer
473  */
474 void oom_killer_enable(void)
475 {
476 	oom_killer_disabled = false;
477 }
478 
479 #define K(x) ((x) << (PAGE_SHIFT-10))
480 /*
481  * Must be called while holding a reference to p, which will be released upon
482  * returning.
483  */
484 void oom_kill_process(struct oom_control *oc, struct task_struct *p,
485 		      unsigned int points, unsigned long totalpages,
486 		      struct mem_cgroup *memcg, const char *message)
487 {
488 	struct task_struct *victim = p;
489 	struct task_struct *child;
490 	struct task_struct *t;
491 	struct mm_struct *mm;
492 	unsigned int victim_points = 0;
493 	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
494 					      DEFAULT_RATELIMIT_BURST);
495 
496 	/*
497 	 * If the task is already exiting, don't alarm the sysadmin or kill
498 	 * its children or threads, just set TIF_MEMDIE so it can die quickly
499 	 */
500 	task_lock(p);
501 	if (p->mm && task_will_free_mem(p)) {
502 		mark_oom_victim(p);
503 		task_unlock(p);
504 		put_task_struct(p);
505 		return;
506 	}
507 	task_unlock(p);
508 
509 	if (__ratelimit(&oom_rs))
510 		dump_header(oc, p, memcg);
511 
512 	task_lock(p);
513 	pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
514 		message, task_pid_nr(p), p->comm, points);
515 	task_unlock(p);
516 
517 	/*
518 	 * If any of p's children has a different mm and is eligible for kill,
519 	 * the one with the highest oom_badness() score is sacrificed for its
520 	 * parent.  This attempts to lose the minimal amount of work done while
521 	 * still freeing memory.
522 	 */
523 	read_lock(&tasklist_lock);
524 	for_each_thread(p, t) {
525 		list_for_each_entry(child, &t->children, sibling) {
526 			unsigned int child_points;
527 
528 			if (child->mm == p->mm)
529 				continue;
530 			/*
531 			 * oom_badness() returns 0 if the thread is unkillable
532 			 */
533 			child_points = oom_badness(child, memcg, oc->nodemask,
534 								totalpages);
535 			if (child_points > victim_points) {
536 				put_task_struct(victim);
537 				victim = child;
538 				victim_points = child_points;
539 				get_task_struct(victim);
540 			}
541 		}
542 	}
543 	read_unlock(&tasklist_lock);
544 
545 	p = find_lock_task_mm(victim);
546 	if (!p) {
547 		put_task_struct(victim);
548 		return;
549 	} else if (victim != p) {
550 		get_task_struct(p);
551 		put_task_struct(victim);
552 		victim = p;
553 	}
554 
555 	/* mm cannot safely be dereferenced after task_unlock(victim) */
556 	mm = victim->mm;
557 	mark_oom_victim(victim);
558 	pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n",
559 		task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
560 		K(get_mm_counter(victim->mm, MM_ANONPAGES)),
561 		K(get_mm_counter(victim->mm, MM_FILEPAGES)));
562 	task_unlock(victim);
563 
564 	/*
565 	 * Kill all user processes sharing victim->mm in other thread groups, if
566 	 * any.  They don't get access to memory reserves, though, to avoid
567 	 * depletion of all memory.  This prevents mm->mmap_sem livelock when an
568 	 * oom killed thread cannot exit because it requires the semaphore and
569 	 * its contended by another thread trying to allocate memory itself.
570 	 * That thread will now get access to memory reserves since it has a
571 	 * pending fatal signal.
572 	 */
573 	rcu_read_lock();
574 	for_each_process(p)
575 		if (p->mm == mm && !same_thread_group(p, victim) &&
576 		    !(p->flags & PF_KTHREAD)) {
577 			if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
578 				continue;
579 
580 			task_lock(p);	/* Protect ->comm from prctl() */
581 			pr_err("Kill process %d (%s) sharing same memory\n",
582 				task_pid_nr(p), p->comm);
583 			task_unlock(p);
584 			do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
585 		}
586 	rcu_read_unlock();
587 
588 	do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
589 	put_task_struct(victim);
590 }
591 #undef K
592 
593 /*
594  * Determines whether the kernel must panic because of the panic_on_oom sysctl.
595  */
596 void check_panic_on_oom(struct oom_control *oc, enum oom_constraint constraint,
597 			struct mem_cgroup *memcg)
598 {
599 	if (likely(!sysctl_panic_on_oom))
600 		return;
601 	if (sysctl_panic_on_oom != 2) {
602 		/*
603 		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
604 		 * does not panic for cpuset, mempolicy, or memcg allocation
605 		 * failures.
606 		 */
607 		if (constraint != CONSTRAINT_NONE)
608 			return;
609 	}
610 	/* Do not panic for oom kills triggered by sysrq */
611 	if (oc->order == -1)
612 		return;
613 	dump_header(oc, NULL, memcg);
614 	panic("Out of memory: %s panic_on_oom is enabled\n",
615 		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
616 }
617 
618 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
619 
620 int register_oom_notifier(struct notifier_block *nb)
621 {
622 	return blocking_notifier_chain_register(&oom_notify_list, nb);
623 }
624 EXPORT_SYMBOL_GPL(register_oom_notifier);
625 
626 int unregister_oom_notifier(struct notifier_block *nb)
627 {
628 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
629 }
630 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
631 
632 /**
633  * out_of_memory - kill the "best" process when we run out of memory
634  * @oc: pointer to struct oom_control
635  *
636  * If we run out of memory, we have the choice between either
637  * killing a random task (bad), letting the system crash (worse)
638  * OR try to be smart about which process to kill. Note that we
639  * don't have to be perfect here, we just have to be good.
640  */
641 bool out_of_memory(struct oom_control *oc)
642 {
643 	struct task_struct *p;
644 	unsigned long totalpages;
645 	unsigned long freed = 0;
646 	unsigned int uninitialized_var(points);
647 	enum oom_constraint constraint = CONSTRAINT_NONE;
648 
649 	if (oom_killer_disabled)
650 		return false;
651 
652 	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
653 	if (freed > 0)
654 		/* Got some memory back in the last second. */
655 		return true;
656 
657 	/*
658 	 * If current has a pending SIGKILL or is exiting, then automatically
659 	 * select it.  The goal is to allow it to allocate so that it may
660 	 * quickly exit and free its memory.
661 	 *
662 	 * But don't select if current has already released its mm and cleared
663 	 * TIF_MEMDIE flag at exit_mm(), otherwise an OOM livelock may occur.
664 	 */
665 	if (current->mm &&
666 	    (fatal_signal_pending(current) || task_will_free_mem(current))) {
667 		mark_oom_victim(current);
668 		return true;
669 	}
670 
671 	/*
672 	 * Check if there were limitations on the allocation (only relevant for
673 	 * NUMA) that may require different handling.
674 	 */
675 	constraint = constrained_alloc(oc, &totalpages);
676 	if (constraint != CONSTRAINT_MEMORY_POLICY)
677 		oc->nodemask = NULL;
678 	check_panic_on_oom(oc, constraint, NULL);
679 
680 	if (sysctl_oom_kill_allocating_task && current->mm &&
681 	    !oom_unkillable_task(current, NULL, oc->nodemask) &&
682 	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
683 		get_task_struct(current);
684 		oom_kill_process(oc, current, 0, totalpages, NULL,
685 				 "Out of memory (oom_kill_allocating_task)");
686 		return true;
687 	}
688 
689 	p = select_bad_process(oc, &points, totalpages);
690 	/* Found nothing?!?! Either we hang forever, or we panic. */
691 	if (!p && oc->order != -1) {
692 		dump_header(oc, NULL, NULL);
693 		panic("Out of memory and no killable processes...\n");
694 	}
695 	if (p && p != (void *)-1UL) {
696 		oom_kill_process(oc, p, points, totalpages, NULL,
697 				 "Out of memory");
698 		/*
699 		 * Give the killed process a good chance to exit before trying
700 		 * to allocate memory again.
701 		 */
702 		schedule_timeout_killable(1);
703 	}
704 	return true;
705 }
706 
707 /*
708  * The pagefault handler calls here because it is out of memory, so kill a
709  * memory-hogging task.  If any populated zone has ZONE_OOM_LOCKED set, a
710  * parallel oom killing is already in progress so do nothing.
711  */
712 void pagefault_out_of_memory(void)
713 {
714 	struct oom_control oc = {
715 		.zonelist = NULL,
716 		.nodemask = NULL,
717 		.gfp_mask = 0,
718 		.order = 0,
719 	};
720 
721 	if (mem_cgroup_oom_synchronize(true))
722 		return;
723 
724 	if (!mutex_trylock(&oom_lock))
725 		return;
726 
727 	if (!out_of_memory(&oc)) {
728 		/*
729 		 * There shouldn't be any user tasks runnable while the
730 		 * OOM killer is disabled, so the current task has to
731 		 * be a racing OOM victim for which oom_killer_disable()
732 		 * is waiting for.
733 		 */
734 		WARN_ON(test_thread_flag(TIF_MEMDIE));
735 	}
736 
737 	mutex_unlock(&oom_lock);
738 }
739