1 /* 2 * linux/mm/oom_kill.c 3 * 4 * Copyright (C) 1998,2000 Rik van Riel 5 * Thanks go out to Claus Fischer for some serious inspiration and 6 * for goading me into coding this file... 7 * Copyright (C) 2010 Google, Inc. 8 * Rewritten by David Rientjes 9 * 10 * The routines in this file are used to kill a process when 11 * we're seriously out of memory. This gets called from __alloc_pages() 12 * in mm/page_alloc.c when we really run out of memory. 13 * 14 * Since we won't call these routines often (on a well-configured 15 * machine) this file will double as a 'coding guide' and a signpost 16 * for newbie kernel hackers. It features several pointers to major 17 * kernel subsystems and hints as to where to find out what things do. 18 */ 19 20 #include <linux/oom.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/gfp.h> 24 #include <linux/sched.h> 25 #include <linux/swap.h> 26 #include <linux/timex.h> 27 #include <linux/jiffies.h> 28 #include <linux/cpuset.h> 29 #include <linux/export.h> 30 #include <linux/notifier.h> 31 #include <linux/memcontrol.h> 32 #include <linux/mempolicy.h> 33 #include <linux/security.h> 34 #include <linux/ptrace.h> 35 #include <linux/freezer.h> 36 #include <linux/ftrace.h> 37 #include <linux/ratelimit.h> 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/oom.h> 41 42 int sysctl_panic_on_oom; 43 int sysctl_oom_kill_allocating_task; 44 int sysctl_oom_dump_tasks = 1; 45 46 DEFINE_MUTEX(oom_lock); 47 48 #ifdef CONFIG_NUMA 49 /** 50 * has_intersects_mems_allowed() - check task eligiblity for kill 51 * @start: task struct of which task to consider 52 * @mask: nodemask passed to page allocator for mempolicy ooms 53 * 54 * Task eligibility is determined by whether or not a candidate task, @tsk, 55 * shares the same mempolicy nodes as current if it is bound by such a policy 56 * and whether or not it has the same set of allowed cpuset nodes. 57 */ 58 static bool has_intersects_mems_allowed(struct task_struct *start, 59 const nodemask_t *mask) 60 { 61 struct task_struct *tsk; 62 bool ret = false; 63 64 rcu_read_lock(); 65 for_each_thread(start, tsk) { 66 if (mask) { 67 /* 68 * If this is a mempolicy constrained oom, tsk's 69 * cpuset is irrelevant. Only return true if its 70 * mempolicy intersects current, otherwise it may be 71 * needlessly killed. 72 */ 73 ret = mempolicy_nodemask_intersects(tsk, mask); 74 } else { 75 /* 76 * This is not a mempolicy constrained oom, so only 77 * check the mems of tsk's cpuset. 78 */ 79 ret = cpuset_mems_allowed_intersects(current, tsk); 80 } 81 if (ret) 82 break; 83 } 84 rcu_read_unlock(); 85 86 return ret; 87 } 88 #else 89 static bool has_intersects_mems_allowed(struct task_struct *tsk, 90 const nodemask_t *mask) 91 { 92 return true; 93 } 94 #endif /* CONFIG_NUMA */ 95 96 /* 97 * The process p may have detached its own ->mm while exiting or through 98 * use_mm(), but one or more of its subthreads may still have a valid 99 * pointer. Return p, or any of its subthreads with a valid ->mm, with 100 * task_lock() held. 101 */ 102 struct task_struct *find_lock_task_mm(struct task_struct *p) 103 { 104 struct task_struct *t; 105 106 rcu_read_lock(); 107 108 for_each_thread(p, t) { 109 task_lock(t); 110 if (likely(t->mm)) 111 goto found; 112 task_unlock(t); 113 } 114 t = NULL; 115 found: 116 rcu_read_unlock(); 117 118 return t; 119 } 120 121 /* return true if the task is not adequate as candidate victim task. */ 122 static bool oom_unkillable_task(struct task_struct *p, 123 struct mem_cgroup *memcg, const nodemask_t *nodemask) 124 { 125 if (is_global_init(p)) 126 return true; 127 if (p->flags & PF_KTHREAD) 128 return true; 129 130 /* When mem_cgroup_out_of_memory() and p is not member of the group */ 131 if (memcg && !task_in_mem_cgroup(p, memcg)) 132 return true; 133 134 /* p may not have freeable memory in nodemask */ 135 if (!has_intersects_mems_allowed(p, nodemask)) 136 return true; 137 138 return false; 139 } 140 141 /** 142 * oom_badness - heuristic function to determine which candidate task to kill 143 * @p: task struct of which task we should calculate 144 * @totalpages: total present RAM allowed for page allocation 145 * 146 * The heuristic for determining which task to kill is made to be as simple and 147 * predictable as possible. The goal is to return the highest value for the 148 * task consuming the most memory to avoid subsequent oom failures. 149 */ 150 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg, 151 const nodemask_t *nodemask, unsigned long totalpages) 152 { 153 long points; 154 long adj; 155 156 if (oom_unkillable_task(p, memcg, nodemask)) 157 return 0; 158 159 p = find_lock_task_mm(p); 160 if (!p) 161 return 0; 162 163 adj = (long)p->signal->oom_score_adj; 164 if (adj == OOM_SCORE_ADJ_MIN) { 165 task_unlock(p); 166 return 0; 167 } 168 169 /* 170 * The baseline for the badness score is the proportion of RAM that each 171 * task's rss, pagetable and swap space use. 172 */ 173 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) + 174 atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm); 175 task_unlock(p); 176 177 /* 178 * Root processes get 3% bonus, just like the __vm_enough_memory() 179 * implementation used by LSMs. 180 */ 181 if (has_capability_noaudit(p, CAP_SYS_ADMIN)) 182 points -= (points * 3) / 100; 183 184 /* Normalize to oom_score_adj units */ 185 adj *= totalpages / 1000; 186 points += adj; 187 188 /* 189 * Never return 0 for an eligible task regardless of the root bonus and 190 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here). 191 */ 192 return points > 0 ? points : 1; 193 } 194 195 /* 196 * Determine the type of allocation constraint. 197 */ 198 #ifdef CONFIG_NUMA 199 static enum oom_constraint constrained_alloc(struct oom_control *oc, 200 unsigned long *totalpages) 201 { 202 struct zone *zone; 203 struct zoneref *z; 204 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask); 205 bool cpuset_limited = false; 206 int nid; 207 208 /* Default to all available memory */ 209 *totalpages = totalram_pages + total_swap_pages; 210 211 if (!oc->zonelist) 212 return CONSTRAINT_NONE; 213 /* 214 * Reach here only when __GFP_NOFAIL is used. So, we should avoid 215 * to kill current.We have to random task kill in this case. 216 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. 217 */ 218 if (oc->gfp_mask & __GFP_THISNODE) 219 return CONSTRAINT_NONE; 220 221 /* 222 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in 223 * the page allocator means a mempolicy is in effect. Cpuset policy 224 * is enforced in get_page_from_freelist(). 225 */ 226 if (oc->nodemask && 227 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) { 228 *totalpages = total_swap_pages; 229 for_each_node_mask(nid, *oc->nodemask) 230 *totalpages += node_spanned_pages(nid); 231 return CONSTRAINT_MEMORY_POLICY; 232 } 233 234 /* Check this allocation failure is caused by cpuset's wall function */ 235 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist, 236 high_zoneidx, oc->nodemask) 237 if (!cpuset_zone_allowed(zone, oc->gfp_mask)) 238 cpuset_limited = true; 239 240 if (cpuset_limited) { 241 *totalpages = total_swap_pages; 242 for_each_node_mask(nid, cpuset_current_mems_allowed) 243 *totalpages += node_spanned_pages(nid); 244 return CONSTRAINT_CPUSET; 245 } 246 return CONSTRAINT_NONE; 247 } 248 #else 249 static enum oom_constraint constrained_alloc(struct oom_control *oc, 250 unsigned long *totalpages) 251 { 252 *totalpages = totalram_pages + total_swap_pages; 253 return CONSTRAINT_NONE; 254 } 255 #endif 256 257 enum oom_scan_t oom_scan_process_thread(struct oom_control *oc, 258 struct task_struct *task, unsigned long totalpages) 259 { 260 if (oom_unkillable_task(task, NULL, oc->nodemask)) 261 return OOM_SCAN_CONTINUE; 262 263 /* 264 * This task already has access to memory reserves and is being killed. 265 * Don't allow any other task to have access to the reserves. 266 */ 267 if (test_tsk_thread_flag(task, TIF_MEMDIE)) { 268 if (oc->order != -1) 269 return OOM_SCAN_ABORT; 270 } 271 if (!task->mm) 272 return OOM_SCAN_CONTINUE; 273 274 /* 275 * If task is allocating a lot of memory and has been marked to be 276 * killed first if it triggers an oom, then select it. 277 */ 278 if (oom_task_origin(task)) 279 return OOM_SCAN_SELECT; 280 281 if (task_will_free_mem(task) && oc->order != -1) 282 return OOM_SCAN_ABORT; 283 284 return OOM_SCAN_OK; 285 } 286 287 /* 288 * Simple selection loop. We chose the process with the highest 289 * number of 'points'. Returns -1 on scan abort. 290 */ 291 static struct task_struct *select_bad_process(struct oom_control *oc, 292 unsigned int *ppoints, unsigned long totalpages) 293 { 294 struct task_struct *g, *p; 295 struct task_struct *chosen = NULL; 296 unsigned long chosen_points = 0; 297 298 rcu_read_lock(); 299 for_each_process_thread(g, p) { 300 unsigned int points; 301 302 switch (oom_scan_process_thread(oc, p, totalpages)) { 303 case OOM_SCAN_SELECT: 304 chosen = p; 305 chosen_points = ULONG_MAX; 306 /* fall through */ 307 case OOM_SCAN_CONTINUE: 308 continue; 309 case OOM_SCAN_ABORT: 310 rcu_read_unlock(); 311 return (struct task_struct *)(-1UL); 312 case OOM_SCAN_OK: 313 break; 314 }; 315 points = oom_badness(p, NULL, oc->nodemask, totalpages); 316 if (!points || points < chosen_points) 317 continue; 318 /* Prefer thread group leaders for display purposes */ 319 if (points == chosen_points && thread_group_leader(chosen)) 320 continue; 321 322 chosen = p; 323 chosen_points = points; 324 } 325 if (chosen) 326 get_task_struct(chosen); 327 rcu_read_unlock(); 328 329 *ppoints = chosen_points * 1000 / totalpages; 330 return chosen; 331 } 332 333 /** 334 * dump_tasks - dump current memory state of all system tasks 335 * @memcg: current's memory controller, if constrained 336 * @nodemask: nodemask passed to page allocator for mempolicy ooms 337 * 338 * Dumps the current memory state of all eligible tasks. Tasks not in the same 339 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes 340 * are not shown. 341 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes, 342 * swapents, oom_score_adj value, and name. 343 */ 344 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask) 345 { 346 struct task_struct *p; 347 struct task_struct *task; 348 349 pr_info("[ pid ] uid tgid total_vm rss nr_ptes nr_pmds swapents oom_score_adj name\n"); 350 rcu_read_lock(); 351 for_each_process(p) { 352 if (oom_unkillable_task(p, memcg, nodemask)) 353 continue; 354 355 task = find_lock_task_mm(p); 356 if (!task) { 357 /* 358 * This is a kthread or all of p's threads have already 359 * detached their mm's. There's no need to report 360 * them; they can't be oom killed anyway. 361 */ 362 continue; 363 } 364 365 pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu %5hd %s\n", 366 task->pid, from_kuid(&init_user_ns, task_uid(task)), 367 task->tgid, task->mm->total_vm, get_mm_rss(task->mm), 368 atomic_long_read(&task->mm->nr_ptes), 369 mm_nr_pmds(task->mm), 370 get_mm_counter(task->mm, MM_SWAPENTS), 371 task->signal->oom_score_adj, task->comm); 372 task_unlock(task); 373 } 374 rcu_read_unlock(); 375 } 376 377 static void dump_header(struct oom_control *oc, struct task_struct *p, 378 struct mem_cgroup *memcg) 379 { 380 task_lock(current); 381 pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, " 382 "oom_score_adj=%hd\n", 383 current->comm, oc->gfp_mask, oc->order, 384 current->signal->oom_score_adj); 385 cpuset_print_task_mems_allowed(current); 386 task_unlock(current); 387 dump_stack(); 388 if (memcg) 389 mem_cgroup_print_oom_info(memcg, p); 390 else 391 show_mem(SHOW_MEM_FILTER_NODES); 392 if (sysctl_oom_dump_tasks) 393 dump_tasks(memcg, oc->nodemask); 394 } 395 396 /* 397 * Number of OOM victims in flight 398 */ 399 static atomic_t oom_victims = ATOMIC_INIT(0); 400 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait); 401 402 bool oom_killer_disabled __read_mostly; 403 404 /** 405 * mark_oom_victim - mark the given task as OOM victim 406 * @tsk: task to mark 407 * 408 * Has to be called with oom_lock held and never after 409 * oom has been disabled already. 410 */ 411 void mark_oom_victim(struct task_struct *tsk) 412 { 413 WARN_ON(oom_killer_disabled); 414 /* OOM killer might race with memcg OOM */ 415 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE)) 416 return; 417 /* 418 * Make sure that the task is woken up from uninterruptible sleep 419 * if it is frozen because OOM killer wouldn't be able to free 420 * any memory and livelock. freezing_slow_path will tell the freezer 421 * that TIF_MEMDIE tasks should be ignored. 422 */ 423 __thaw_task(tsk); 424 atomic_inc(&oom_victims); 425 } 426 427 /** 428 * exit_oom_victim - note the exit of an OOM victim 429 */ 430 void exit_oom_victim(void) 431 { 432 clear_thread_flag(TIF_MEMDIE); 433 434 if (!atomic_dec_return(&oom_victims)) 435 wake_up_all(&oom_victims_wait); 436 } 437 438 /** 439 * oom_killer_disable - disable OOM killer 440 * 441 * Forces all page allocations to fail rather than trigger OOM killer. 442 * Will block and wait until all OOM victims are killed. 443 * 444 * The function cannot be called when there are runnable user tasks because 445 * the userspace would see unexpected allocation failures as a result. Any 446 * new usage of this function should be consulted with MM people. 447 * 448 * Returns true if successful and false if the OOM killer cannot be 449 * disabled. 450 */ 451 bool oom_killer_disable(void) 452 { 453 /* 454 * Make sure to not race with an ongoing OOM killer 455 * and that the current is not the victim. 456 */ 457 mutex_lock(&oom_lock); 458 if (test_thread_flag(TIF_MEMDIE)) { 459 mutex_unlock(&oom_lock); 460 return false; 461 } 462 463 oom_killer_disabled = true; 464 mutex_unlock(&oom_lock); 465 466 wait_event(oom_victims_wait, !atomic_read(&oom_victims)); 467 468 return true; 469 } 470 471 /** 472 * oom_killer_enable - enable OOM killer 473 */ 474 void oom_killer_enable(void) 475 { 476 oom_killer_disabled = false; 477 } 478 479 #define K(x) ((x) << (PAGE_SHIFT-10)) 480 /* 481 * Must be called while holding a reference to p, which will be released upon 482 * returning. 483 */ 484 void oom_kill_process(struct oom_control *oc, struct task_struct *p, 485 unsigned int points, unsigned long totalpages, 486 struct mem_cgroup *memcg, const char *message) 487 { 488 struct task_struct *victim = p; 489 struct task_struct *child; 490 struct task_struct *t; 491 struct mm_struct *mm; 492 unsigned int victim_points = 0; 493 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL, 494 DEFAULT_RATELIMIT_BURST); 495 496 /* 497 * If the task is already exiting, don't alarm the sysadmin or kill 498 * its children or threads, just set TIF_MEMDIE so it can die quickly 499 */ 500 task_lock(p); 501 if (p->mm && task_will_free_mem(p)) { 502 mark_oom_victim(p); 503 task_unlock(p); 504 put_task_struct(p); 505 return; 506 } 507 task_unlock(p); 508 509 if (__ratelimit(&oom_rs)) 510 dump_header(oc, p, memcg); 511 512 task_lock(p); 513 pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n", 514 message, task_pid_nr(p), p->comm, points); 515 task_unlock(p); 516 517 /* 518 * If any of p's children has a different mm and is eligible for kill, 519 * the one with the highest oom_badness() score is sacrificed for its 520 * parent. This attempts to lose the minimal amount of work done while 521 * still freeing memory. 522 */ 523 read_lock(&tasklist_lock); 524 for_each_thread(p, t) { 525 list_for_each_entry(child, &t->children, sibling) { 526 unsigned int child_points; 527 528 if (child->mm == p->mm) 529 continue; 530 /* 531 * oom_badness() returns 0 if the thread is unkillable 532 */ 533 child_points = oom_badness(child, memcg, oc->nodemask, 534 totalpages); 535 if (child_points > victim_points) { 536 put_task_struct(victim); 537 victim = child; 538 victim_points = child_points; 539 get_task_struct(victim); 540 } 541 } 542 } 543 read_unlock(&tasklist_lock); 544 545 p = find_lock_task_mm(victim); 546 if (!p) { 547 put_task_struct(victim); 548 return; 549 } else if (victim != p) { 550 get_task_struct(p); 551 put_task_struct(victim); 552 victim = p; 553 } 554 555 /* mm cannot safely be dereferenced after task_unlock(victim) */ 556 mm = victim->mm; 557 mark_oom_victim(victim); 558 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n", 559 task_pid_nr(victim), victim->comm, K(victim->mm->total_vm), 560 K(get_mm_counter(victim->mm, MM_ANONPAGES)), 561 K(get_mm_counter(victim->mm, MM_FILEPAGES))); 562 task_unlock(victim); 563 564 /* 565 * Kill all user processes sharing victim->mm in other thread groups, if 566 * any. They don't get access to memory reserves, though, to avoid 567 * depletion of all memory. This prevents mm->mmap_sem livelock when an 568 * oom killed thread cannot exit because it requires the semaphore and 569 * its contended by another thread trying to allocate memory itself. 570 * That thread will now get access to memory reserves since it has a 571 * pending fatal signal. 572 */ 573 rcu_read_lock(); 574 for_each_process(p) 575 if (p->mm == mm && !same_thread_group(p, victim) && 576 !(p->flags & PF_KTHREAD)) { 577 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) 578 continue; 579 580 task_lock(p); /* Protect ->comm from prctl() */ 581 pr_err("Kill process %d (%s) sharing same memory\n", 582 task_pid_nr(p), p->comm); 583 task_unlock(p); 584 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true); 585 } 586 rcu_read_unlock(); 587 588 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true); 589 put_task_struct(victim); 590 } 591 #undef K 592 593 /* 594 * Determines whether the kernel must panic because of the panic_on_oom sysctl. 595 */ 596 void check_panic_on_oom(struct oom_control *oc, enum oom_constraint constraint, 597 struct mem_cgroup *memcg) 598 { 599 if (likely(!sysctl_panic_on_oom)) 600 return; 601 if (sysctl_panic_on_oom != 2) { 602 /* 603 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel 604 * does not panic for cpuset, mempolicy, or memcg allocation 605 * failures. 606 */ 607 if (constraint != CONSTRAINT_NONE) 608 return; 609 } 610 /* Do not panic for oom kills triggered by sysrq */ 611 if (oc->order == -1) 612 return; 613 dump_header(oc, NULL, memcg); 614 panic("Out of memory: %s panic_on_oom is enabled\n", 615 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); 616 } 617 618 static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 619 620 int register_oom_notifier(struct notifier_block *nb) 621 { 622 return blocking_notifier_chain_register(&oom_notify_list, nb); 623 } 624 EXPORT_SYMBOL_GPL(register_oom_notifier); 625 626 int unregister_oom_notifier(struct notifier_block *nb) 627 { 628 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 629 } 630 EXPORT_SYMBOL_GPL(unregister_oom_notifier); 631 632 /** 633 * out_of_memory - kill the "best" process when we run out of memory 634 * @oc: pointer to struct oom_control 635 * 636 * If we run out of memory, we have the choice between either 637 * killing a random task (bad), letting the system crash (worse) 638 * OR try to be smart about which process to kill. Note that we 639 * don't have to be perfect here, we just have to be good. 640 */ 641 bool out_of_memory(struct oom_control *oc) 642 { 643 struct task_struct *p; 644 unsigned long totalpages; 645 unsigned long freed = 0; 646 unsigned int uninitialized_var(points); 647 enum oom_constraint constraint = CONSTRAINT_NONE; 648 649 if (oom_killer_disabled) 650 return false; 651 652 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 653 if (freed > 0) 654 /* Got some memory back in the last second. */ 655 return true; 656 657 /* 658 * If current has a pending SIGKILL or is exiting, then automatically 659 * select it. The goal is to allow it to allocate so that it may 660 * quickly exit and free its memory. 661 * 662 * But don't select if current has already released its mm and cleared 663 * TIF_MEMDIE flag at exit_mm(), otherwise an OOM livelock may occur. 664 */ 665 if (current->mm && 666 (fatal_signal_pending(current) || task_will_free_mem(current))) { 667 mark_oom_victim(current); 668 return true; 669 } 670 671 /* 672 * Check if there were limitations on the allocation (only relevant for 673 * NUMA) that may require different handling. 674 */ 675 constraint = constrained_alloc(oc, &totalpages); 676 if (constraint != CONSTRAINT_MEMORY_POLICY) 677 oc->nodemask = NULL; 678 check_panic_on_oom(oc, constraint, NULL); 679 680 if (sysctl_oom_kill_allocating_task && current->mm && 681 !oom_unkillable_task(current, NULL, oc->nodemask) && 682 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) { 683 get_task_struct(current); 684 oom_kill_process(oc, current, 0, totalpages, NULL, 685 "Out of memory (oom_kill_allocating_task)"); 686 return true; 687 } 688 689 p = select_bad_process(oc, &points, totalpages); 690 /* Found nothing?!?! Either we hang forever, or we panic. */ 691 if (!p && oc->order != -1) { 692 dump_header(oc, NULL, NULL); 693 panic("Out of memory and no killable processes...\n"); 694 } 695 if (p && p != (void *)-1UL) { 696 oom_kill_process(oc, p, points, totalpages, NULL, 697 "Out of memory"); 698 /* 699 * Give the killed process a good chance to exit before trying 700 * to allocate memory again. 701 */ 702 schedule_timeout_killable(1); 703 } 704 return true; 705 } 706 707 /* 708 * The pagefault handler calls here because it is out of memory, so kill a 709 * memory-hogging task. If any populated zone has ZONE_OOM_LOCKED set, a 710 * parallel oom killing is already in progress so do nothing. 711 */ 712 void pagefault_out_of_memory(void) 713 { 714 struct oom_control oc = { 715 .zonelist = NULL, 716 .nodemask = NULL, 717 .gfp_mask = 0, 718 .order = 0, 719 }; 720 721 if (mem_cgroup_oom_synchronize(true)) 722 return; 723 724 if (!mutex_trylock(&oom_lock)) 725 return; 726 727 if (!out_of_memory(&oc)) { 728 /* 729 * There shouldn't be any user tasks runnable while the 730 * OOM killer is disabled, so the current task has to 731 * be a racing OOM victim for which oom_killer_disable() 732 * is waiting for. 733 */ 734 WARN_ON(test_thread_flag(TIF_MEMDIE)); 735 } 736 737 mutex_unlock(&oom_lock); 738 } 739