xref: /openbmc/linux/mm/oom_kill.c (revision e6dec923)
1 /*
2  *  linux/mm/oom_kill.c
3  *
4  *  Copyright (C)  1998,2000  Rik van Riel
5  *	Thanks go out to Claus Fischer for some serious inspiration and
6  *	for goading me into coding this file...
7  *  Copyright (C)  2010  Google, Inc.
8  *	Rewritten by David Rientjes
9  *
10  *  The routines in this file are used to kill a process when
11  *  we're seriously out of memory. This gets called from __alloc_pages()
12  *  in mm/page_alloc.c when we really run out of memory.
13  *
14  *  Since we won't call these routines often (on a well-configured
15  *  machine) this file will double as a 'coding guide' and a signpost
16  *  for newbie kernel hackers. It features several pointers to major
17  *  kernel subsystems and hints as to where to find out what things do.
18  */
19 
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/sched/mm.h>
26 #include <linux/sched/coredump.h>
27 #include <linux/sched/task.h>
28 #include <linux/swap.h>
29 #include <linux/timex.h>
30 #include <linux/jiffies.h>
31 #include <linux/cpuset.h>
32 #include <linux/export.h>
33 #include <linux/notifier.h>
34 #include <linux/memcontrol.h>
35 #include <linux/mempolicy.h>
36 #include <linux/security.h>
37 #include <linux/ptrace.h>
38 #include <linux/freezer.h>
39 #include <linux/ftrace.h>
40 #include <linux/ratelimit.h>
41 #include <linux/kthread.h>
42 #include <linux/init.h>
43 
44 #include <asm/tlb.h>
45 #include "internal.h"
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/oom.h>
49 
50 int sysctl_panic_on_oom;
51 int sysctl_oom_kill_allocating_task;
52 int sysctl_oom_dump_tasks = 1;
53 
54 DEFINE_MUTEX(oom_lock);
55 
56 #ifdef CONFIG_NUMA
57 /**
58  * has_intersects_mems_allowed() - check task eligiblity for kill
59  * @start: task struct of which task to consider
60  * @mask: nodemask passed to page allocator for mempolicy ooms
61  *
62  * Task eligibility is determined by whether or not a candidate task, @tsk,
63  * shares the same mempolicy nodes as current if it is bound by such a policy
64  * and whether or not it has the same set of allowed cpuset nodes.
65  */
66 static bool has_intersects_mems_allowed(struct task_struct *start,
67 					const nodemask_t *mask)
68 {
69 	struct task_struct *tsk;
70 	bool ret = false;
71 
72 	rcu_read_lock();
73 	for_each_thread(start, tsk) {
74 		if (mask) {
75 			/*
76 			 * If this is a mempolicy constrained oom, tsk's
77 			 * cpuset is irrelevant.  Only return true if its
78 			 * mempolicy intersects current, otherwise it may be
79 			 * needlessly killed.
80 			 */
81 			ret = mempolicy_nodemask_intersects(tsk, mask);
82 		} else {
83 			/*
84 			 * This is not a mempolicy constrained oom, so only
85 			 * check the mems of tsk's cpuset.
86 			 */
87 			ret = cpuset_mems_allowed_intersects(current, tsk);
88 		}
89 		if (ret)
90 			break;
91 	}
92 	rcu_read_unlock();
93 
94 	return ret;
95 }
96 #else
97 static bool has_intersects_mems_allowed(struct task_struct *tsk,
98 					const nodemask_t *mask)
99 {
100 	return true;
101 }
102 #endif /* CONFIG_NUMA */
103 
104 /*
105  * The process p may have detached its own ->mm while exiting or through
106  * use_mm(), but one or more of its subthreads may still have a valid
107  * pointer.  Return p, or any of its subthreads with a valid ->mm, with
108  * task_lock() held.
109  */
110 struct task_struct *find_lock_task_mm(struct task_struct *p)
111 {
112 	struct task_struct *t;
113 
114 	rcu_read_lock();
115 
116 	for_each_thread(p, t) {
117 		task_lock(t);
118 		if (likely(t->mm))
119 			goto found;
120 		task_unlock(t);
121 	}
122 	t = NULL;
123 found:
124 	rcu_read_unlock();
125 
126 	return t;
127 }
128 
129 /*
130  * order == -1 means the oom kill is required by sysrq, otherwise only
131  * for display purposes.
132  */
133 static inline bool is_sysrq_oom(struct oom_control *oc)
134 {
135 	return oc->order == -1;
136 }
137 
138 static inline bool is_memcg_oom(struct oom_control *oc)
139 {
140 	return oc->memcg != NULL;
141 }
142 
143 /* return true if the task is not adequate as candidate victim task. */
144 static bool oom_unkillable_task(struct task_struct *p,
145 		struct mem_cgroup *memcg, const nodemask_t *nodemask)
146 {
147 	if (is_global_init(p))
148 		return true;
149 	if (p->flags & PF_KTHREAD)
150 		return true;
151 
152 	/* When mem_cgroup_out_of_memory() and p is not member of the group */
153 	if (memcg && !task_in_mem_cgroup(p, memcg))
154 		return true;
155 
156 	/* p may not have freeable memory in nodemask */
157 	if (!has_intersects_mems_allowed(p, nodemask))
158 		return true;
159 
160 	return false;
161 }
162 
163 /**
164  * oom_badness - heuristic function to determine which candidate task to kill
165  * @p: task struct of which task we should calculate
166  * @totalpages: total present RAM allowed for page allocation
167  *
168  * The heuristic for determining which task to kill is made to be as simple and
169  * predictable as possible.  The goal is to return the highest value for the
170  * task consuming the most memory to avoid subsequent oom failures.
171  */
172 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
173 			  const nodemask_t *nodemask, unsigned long totalpages)
174 {
175 	long points;
176 	long adj;
177 
178 	if (oom_unkillable_task(p, memcg, nodemask))
179 		return 0;
180 
181 	p = find_lock_task_mm(p);
182 	if (!p)
183 		return 0;
184 
185 	/*
186 	 * Do not even consider tasks which are explicitly marked oom
187 	 * unkillable or have been already oom reaped or the are in
188 	 * the middle of vfork
189 	 */
190 	adj = (long)p->signal->oom_score_adj;
191 	if (adj == OOM_SCORE_ADJ_MIN ||
192 			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
193 			in_vfork(p)) {
194 		task_unlock(p);
195 		return 0;
196 	}
197 
198 	/*
199 	 * The baseline for the badness score is the proportion of RAM that each
200 	 * task's rss, pagetable and swap space use.
201 	 */
202 	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
203 		atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
204 	task_unlock(p);
205 
206 	/*
207 	 * Root processes get 3% bonus, just like the __vm_enough_memory()
208 	 * implementation used by LSMs.
209 	 */
210 	if (has_capability_noaudit(p, CAP_SYS_ADMIN))
211 		points -= (points * 3) / 100;
212 
213 	/* Normalize to oom_score_adj units */
214 	adj *= totalpages / 1000;
215 	points += adj;
216 
217 	/*
218 	 * Never return 0 for an eligible task regardless of the root bonus and
219 	 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
220 	 */
221 	return points > 0 ? points : 1;
222 }
223 
224 enum oom_constraint {
225 	CONSTRAINT_NONE,
226 	CONSTRAINT_CPUSET,
227 	CONSTRAINT_MEMORY_POLICY,
228 	CONSTRAINT_MEMCG,
229 };
230 
231 /*
232  * Determine the type of allocation constraint.
233  */
234 static enum oom_constraint constrained_alloc(struct oom_control *oc)
235 {
236 	struct zone *zone;
237 	struct zoneref *z;
238 	enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
239 	bool cpuset_limited = false;
240 	int nid;
241 
242 	if (is_memcg_oom(oc)) {
243 		oc->totalpages = mem_cgroup_get_limit(oc->memcg) ?: 1;
244 		return CONSTRAINT_MEMCG;
245 	}
246 
247 	/* Default to all available memory */
248 	oc->totalpages = totalram_pages + total_swap_pages;
249 
250 	if (!IS_ENABLED(CONFIG_NUMA))
251 		return CONSTRAINT_NONE;
252 
253 	if (!oc->zonelist)
254 		return CONSTRAINT_NONE;
255 	/*
256 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
257 	 * to kill current.We have to random task kill in this case.
258 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
259 	 */
260 	if (oc->gfp_mask & __GFP_THISNODE)
261 		return CONSTRAINT_NONE;
262 
263 	/*
264 	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
265 	 * the page allocator means a mempolicy is in effect.  Cpuset policy
266 	 * is enforced in get_page_from_freelist().
267 	 */
268 	if (oc->nodemask &&
269 	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
270 		oc->totalpages = total_swap_pages;
271 		for_each_node_mask(nid, *oc->nodemask)
272 			oc->totalpages += node_spanned_pages(nid);
273 		return CONSTRAINT_MEMORY_POLICY;
274 	}
275 
276 	/* Check this allocation failure is caused by cpuset's wall function */
277 	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
278 			high_zoneidx, oc->nodemask)
279 		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
280 			cpuset_limited = true;
281 
282 	if (cpuset_limited) {
283 		oc->totalpages = total_swap_pages;
284 		for_each_node_mask(nid, cpuset_current_mems_allowed)
285 			oc->totalpages += node_spanned_pages(nid);
286 		return CONSTRAINT_CPUSET;
287 	}
288 	return CONSTRAINT_NONE;
289 }
290 
291 static int oom_evaluate_task(struct task_struct *task, void *arg)
292 {
293 	struct oom_control *oc = arg;
294 	unsigned long points;
295 
296 	if (oom_unkillable_task(task, NULL, oc->nodemask))
297 		goto next;
298 
299 	/*
300 	 * This task already has access to memory reserves and is being killed.
301 	 * Don't allow any other task to have access to the reserves unless
302 	 * the task has MMF_OOM_SKIP because chances that it would release
303 	 * any memory is quite low.
304 	 */
305 	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
306 		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
307 			goto next;
308 		goto abort;
309 	}
310 
311 	/*
312 	 * If task is allocating a lot of memory and has been marked to be
313 	 * killed first if it triggers an oom, then select it.
314 	 */
315 	if (oom_task_origin(task)) {
316 		points = ULONG_MAX;
317 		goto select;
318 	}
319 
320 	points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
321 	if (!points || points < oc->chosen_points)
322 		goto next;
323 
324 	/* Prefer thread group leaders for display purposes */
325 	if (points == oc->chosen_points && thread_group_leader(oc->chosen))
326 		goto next;
327 select:
328 	if (oc->chosen)
329 		put_task_struct(oc->chosen);
330 	get_task_struct(task);
331 	oc->chosen = task;
332 	oc->chosen_points = points;
333 next:
334 	return 0;
335 abort:
336 	if (oc->chosen)
337 		put_task_struct(oc->chosen);
338 	oc->chosen = (void *)-1UL;
339 	return 1;
340 }
341 
342 /*
343  * Simple selection loop. We choose the process with the highest number of
344  * 'points'. In case scan was aborted, oc->chosen is set to -1.
345  */
346 static void select_bad_process(struct oom_control *oc)
347 {
348 	if (is_memcg_oom(oc))
349 		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
350 	else {
351 		struct task_struct *p;
352 
353 		rcu_read_lock();
354 		for_each_process(p)
355 			if (oom_evaluate_task(p, oc))
356 				break;
357 		rcu_read_unlock();
358 	}
359 
360 	oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
361 }
362 
363 /**
364  * dump_tasks - dump current memory state of all system tasks
365  * @memcg: current's memory controller, if constrained
366  * @nodemask: nodemask passed to page allocator for mempolicy ooms
367  *
368  * Dumps the current memory state of all eligible tasks.  Tasks not in the same
369  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
370  * are not shown.
371  * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
372  * swapents, oom_score_adj value, and name.
373  */
374 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
375 {
376 	struct task_struct *p;
377 	struct task_struct *task;
378 
379 	pr_info("[ pid ]   uid  tgid total_vm      rss nr_ptes nr_pmds swapents oom_score_adj name\n");
380 	rcu_read_lock();
381 	for_each_process(p) {
382 		if (oom_unkillable_task(p, memcg, nodemask))
383 			continue;
384 
385 		task = find_lock_task_mm(p);
386 		if (!task) {
387 			/*
388 			 * This is a kthread or all of p's threads have already
389 			 * detached their mm's.  There's no need to report
390 			 * them; they can't be oom killed anyway.
391 			 */
392 			continue;
393 		}
394 
395 		pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu         %5hd %s\n",
396 			task->pid, from_kuid(&init_user_ns, task_uid(task)),
397 			task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
398 			atomic_long_read(&task->mm->nr_ptes),
399 			mm_nr_pmds(task->mm),
400 			get_mm_counter(task->mm, MM_SWAPENTS),
401 			task->signal->oom_score_adj, task->comm);
402 		task_unlock(task);
403 	}
404 	rcu_read_unlock();
405 }
406 
407 static void dump_header(struct oom_control *oc, struct task_struct *p)
408 {
409 	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), nodemask=",
410 		current->comm, oc->gfp_mask, &oc->gfp_mask);
411 	if (oc->nodemask)
412 		pr_cont("%*pbl", nodemask_pr_args(oc->nodemask));
413 	else
414 		pr_cont("(null)");
415 	pr_cont(",  order=%d, oom_score_adj=%hd\n",
416 		oc->order, current->signal->oom_score_adj);
417 	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
418 		pr_warn("COMPACTION is disabled!!!\n");
419 
420 	cpuset_print_current_mems_allowed();
421 	dump_stack();
422 	if (oc->memcg)
423 		mem_cgroup_print_oom_info(oc->memcg, p);
424 	else
425 		show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
426 	if (sysctl_oom_dump_tasks)
427 		dump_tasks(oc->memcg, oc->nodemask);
428 }
429 
430 /*
431  * Number of OOM victims in flight
432  */
433 static atomic_t oom_victims = ATOMIC_INIT(0);
434 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
435 
436 static bool oom_killer_disabled __read_mostly;
437 
438 #define K(x) ((x) << (PAGE_SHIFT-10))
439 
440 /*
441  * task->mm can be NULL if the task is the exited group leader.  So to
442  * determine whether the task is using a particular mm, we examine all the
443  * task's threads: if one of those is using this mm then this task was also
444  * using it.
445  */
446 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
447 {
448 	struct task_struct *t;
449 
450 	for_each_thread(p, t) {
451 		struct mm_struct *t_mm = READ_ONCE(t->mm);
452 		if (t_mm)
453 			return t_mm == mm;
454 	}
455 	return false;
456 }
457 
458 
459 #ifdef CONFIG_MMU
460 /*
461  * OOM Reaper kernel thread which tries to reap the memory used by the OOM
462  * victim (if that is possible) to help the OOM killer to move on.
463  */
464 static struct task_struct *oom_reaper_th;
465 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
466 static struct task_struct *oom_reaper_list;
467 static DEFINE_SPINLOCK(oom_reaper_lock);
468 
469 static bool __oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
470 {
471 	struct mmu_gather tlb;
472 	struct vm_area_struct *vma;
473 	bool ret = true;
474 
475 	/*
476 	 * We have to make sure to not race with the victim exit path
477 	 * and cause premature new oom victim selection:
478 	 * __oom_reap_task_mm		exit_mm
479 	 *   mmget_not_zero
480 	 *				  mmput
481 	 *				    atomic_dec_and_test
482 	 *				  exit_oom_victim
483 	 *				[...]
484 	 *				out_of_memory
485 	 *				  select_bad_process
486 	 *				    # no TIF_MEMDIE task selects new victim
487 	 *  unmap_page_range # frees some memory
488 	 */
489 	mutex_lock(&oom_lock);
490 
491 	if (!down_read_trylock(&mm->mmap_sem)) {
492 		ret = false;
493 		trace_skip_task_reaping(tsk->pid);
494 		goto unlock_oom;
495 	}
496 
497 	/*
498 	 * increase mm_users only after we know we will reap something so
499 	 * that the mmput_async is called only when we have reaped something
500 	 * and delayed __mmput doesn't matter that much
501 	 */
502 	if (!mmget_not_zero(mm)) {
503 		up_read(&mm->mmap_sem);
504 		trace_skip_task_reaping(tsk->pid);
505 		goto unlock_oom;
506 	}
507 
508 	trace_start_task_reaping(tsk->pid);
509 
510 	/*
511 	 * Tell all users of get_user/copy_from_user etc... that the content
512 	 * is no longer stable. No barriers really needed because unmapping
513 	 * should imply barriers already and the reader would hit a page fault
514 	 * if it stumbled over a reaped memory.
515 	 */
516 	set_bit(MMF_UNSTABLE, &mm->flags);
517 
518 	tlb_gather_mmu(&tlb, mm, 0, -1);
519 	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
520 		if (!can_madv_dontneed_vma(vma))
521 			continue;
522 
523 		/*
524 		 * Only anonymous pages have a good chance to be dropped
525 		 * without additional steps which we cannot afford as we
526 		 * are OOM already.
527 		 *
528 		 * We do not even care about fs backed pages because all
529 		 * which are reclaimable have already been reclaimed and
530 		 * we do not want to block exit_mmap by keeping mm ref
531 		 * count elevated without a good reason.
532 		 */
533 		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED))
534 			unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
535 					 NULL);
536 	}
537 	tlb_finish_mmu(&tlb, 0, -1);
538 	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
539 			task_pid_nr(tsk), tsk->comm,
540 			K(get_mm_counter(mm, MM_ANONPAGES)),
541 			K(get_mm_counter(mm, MM_FILEPAGES)),
542 			K(get_mm_counter(mm, MM_SHMEMPAGES)));
543 	up_read(&mm->mmap_sem);
544 
545 	/*
546 	 * Drop our reference but make sure the mmput slow path is called from a
547 	 * different context because we shouldn't risk we get stuck there and
548 	 * put the oom_reaper out of the way.
549 	 */
550 	mmput_async(mm);
551 	trace_finish_task_reaping(tsk->pid);
552 unlock_oom:
553 	mutex_unlock(&oom_lock);
554 	return ret;
555 }
556 
557 #define MAX_OOM_REAP_RETRIES 10
558 static void oom_reap_task(struct task_struct *tsk)
559 {
560 	int attempts = 0;
561 	struct mm_struct *mm = tsk->signal->oom_mm;
562 
563 	/* Retry the down_read_trylock(mmap_sem) a few times */
564 	while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task_mm(tsk, mm))
565 		schedule_timeout_idle(HZ/10);
566 
567 	if (attempts <= MAX_OOM_REAP_RETRIES)
568 		goto done;
569 
570 
571 	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
572 		task_pid_nr(tsk), tsk->comm);
573 	debug_show_all_locks();
574 
575 done:
576 	tsk->oom_reaper_list = NULL;
577 
578 	/*
579 	 * Hide this mm from OOM killer because it has been either reaped or
580 	 * somebody can't call up_write(mmap_sem).
581 	 */
582 	set_bit(MMF_OOM_SKIP, &mm->flags);
583 
584 	/* Drop a reference taken by wake_oom_reaper */
585 	put_task_struct(tsk);
586 }
587 
588 static int oom_reaper(void *unused)
589 {
590 	while (true) {
591 		struct task_struct *tsk = NULL;
592 
593 		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
594 		spin_lock(&oom_reaper_lock);
595 		if (oom_reaper_list != NULL) {
596 			tsk = oom_reaper_list;
597 			oom_reaper_list = tsk->oom_reaper_list;
598 		}
599 		spin_unlock(&oom_reaper_lock);
600 
601 		if (tsk)
602 			oom_reap_task(tsk);
603 	}
604 
605 	return 0;
606 }
607 
608 static void wake_oom_reaper(struct task_struct *tsk)
609 {
610 	if (!oom_reaper_th)
611 		return;
612 
613 	/* tsk is already queued? */
614 	if (tsk == oom_reaper_list || tsk->oom_reaper_list)
615 		return;
616 
617 	get_task_struct(tsk);
618 
619 	spin_lock(&oom_reaper_lock);
620 	tsk->oom_reaper_list = oom_reaper_list;
621 	oom_reaper_list = tsk;
622 	spin_unlock(&oom_reaper_lock);
623 	trace_wake_reaper(tsk->pid);
624 	wake_up(&oom_reaper_wait);
625 }
626 
627 static int __init oom_init(void)
628 {
629 	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
630 	if (IS_ERR(oom_reaper_th)) {
631 		pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
632 				PTR_ERR(oom_reaper_th));
633 		oom_reaper_th = NULL;
634 	}
635 	return 0;
636 }
637 subsys_initcall(oom_init)
638 #else
639 static inline void wake_oom_reaper(struct task_struct *tsk)
640 {
641 }
642 #endif /* CONFIG_MMU */
643 
644 /**
645  * mark_oom_victim - mark the given task as OOM victim
646  * @tsk: task to mark
647  *
648  * Has to be called with oom_lock held and never after
649  * oom has been disabled already.
650  *
651  * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
652  * under task_lock or operate on the current).
653  */
654 static void mark_oom_victim(struct task_struct *tsk)
655 {
656 	struct mm_struct *mm = tsk->mm;
657 
658 	WARN_ON(oom_killer_disabled);
659 	/* OOM killer might race with memcg OOM */
660 	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
661 		return;
662 
663 	/* oom_mm is bound to the signal struct life time. */
664 	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
665 		mmgrab(tsk->signal->oom_mm);
666 
667 	/*
668 	 * Make sure that the task is woken up from uninterruptible sleep
669 	 * if it is frozen because OOM killer wouldn't be able to free
670 	 * any memory and livelock. freezing_slow_path will tell the freezer
671 	 * that TIF_MEMDIE tasks should be ignored.
672 	 */
673 	__thaw_task(tsk);
674 	atomic_inc(&oom_victims);
675 	trace_mark_victim(tsk->pid);
676 }
677 
678 /**
679  * exit_oom_victim - note the exit of an OOM victim
680  */
681 void exit_oom_victim(void)
682 {
683 	clear_thread_flag(TIF_MEMDIE);
684 
685 	if (!atomic_dec_return(&oom_victims))
686 		wake_up_all(&oom_victims_wait);
687 }
688 
689 /**
690  * oom_killer_enable - enable OOM killer
691  */
692 void oom_killer_enable(void)
693 {
694 	oom_killer_disabled = false;
695 	pr_info("OOM killer enabled.\n");
696 }
697 
698 /**
699  * oom_killer_disable - disable OOM killer
700  * @timeout: maximum timeout to wait for oom victims in jiffies
701  *
702  * Forces all page allocations to fail rather than trigger OOM killer.
703  * Will block and wait until all OOM victims are killed or the given
704  * timeout expires.
705  *
706  * The function cannot be called when there are runnable user tasks because
707  * the userspace would see unexpected allocation failures as a result. Any
708  * new usage of this function should be consulted with MM people.
709  *
710  * Returns true if successful and false if the OOM killer cannot be
711  * disabled.
712  */
713 bool oom_killer_disable(signed long timeout)
714 {
715 	signed long ret;
716 
717 	/*
718 	 * Make sure to not race with an ongoing OOM killer. Check that the
719 	 * current is not killed (possibly due to sharing the victim's memory).
720 	 */
721 	if (mutex_lock_killable(&oom_lock))
722 		return false;
723 	oom_killer_disabled = true;
724 	mutex_unlock(&oom_lock);
725 
726 	ret = wait_event_interruptible_timeout(oom_victims_wait,
727 			!atomic_read(&oom_victims), timeout);
728 	if (ret <= 0) {
729 		oom_killer_enable();
730 		return false;
731 	}
732 	pr_info("OOM killer disabled.\n");
733 
734 	return true;
735 }
736 
737 static inline bool __task_will_free_mem(struct task_struct *task)
738 {
739 	struct signal_struct *sig = task->signal;
740 
741 	/*
742 	 * A coredumping process may sleep for an extended period in exit_mm(),
743 	 * so the oom killer cannot assume that the process will promptly exit
744 	 * and release memory.
745 	 */
746 	if (sig->flags & SIGNAL_GROUP_COREDUMP)
747 		return false;
748 
749 	if (sig->flags & SIGNAL_GROUP_EXIT)
750 		return true;
751 
752 	if (thread_group_empty(task) && (task->flags & PF_EXITING))
753 		return true;
754 
755 	return false;
756 }
757 
758 /*
759  * Checks whether the given task is dying or exiting and likely to
760  * release its address space. This means that all threads and processes
761  * sharing the same mm have to be killed or exiting.
762  * Caller has to make sure that task->mm is stable (hold task_lock or
763  * it operates on the current).
764  */
765 static bool task_will_free_mem(struct task_struct *task)
766 {
767 	struct mm_struct *mm = task->mm;
768 	struct task_struct *p;
769 	bool ret = true;
770 
771 	/*
772 	 * Skip tasks without mm because it might have passed its exit_mm and
773 	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
774 	 * on that for now. We can consider find_lock_task_mm in future.
775 	 */
776 	if (!mm)
777 		return false;
778 
779 	if (!__task_will_free_mem(task))
780 		return false;
781 
782 	/*
783 	 * This task has already been drained by the oom reaper so there are
784 	 * only small chances it will free some more
785 	 */
786 	if (test_bit(MMF_OOM_SKIP, &mm->flags))
787 		return false;
788 
789 	if (atomic_read(&mm->mm_users) <= 1)
790 		return true;
791 
792 	/*
793 	 * Make sure that all tasks which share the mm with the given tasks
794 	 * are dying as well to make sure that a) nobody pins its mm and
795 	 * b) the task is also reapable by the oom reaper.
796 	 */
797 	rcu_read_lock();
798 	for_each_process(p) {
799 		if (!process_shares_mm(p, mm))
800 			continue;
801 		if (same_thread_group(task, p))
802 			continue;
803 		ret = __task_will_free_mem(p);
804 		if (!ret)
805 			break;
806 	}
807 	rcu_read_unlock();
808 
809 	return ret;
810 }
811 
812 static void oom_kill_process(struct oom_control *oc, const char *message)
813 {
814 	struct task_struct *p = oc->chosen;
815 	unsigned int points = oc->chosen_points;
816 	struct task_struct *victim = p;
817 	struct task_struct *child;
818 	struct task_struct *t;
819 	struct mm_struct *mm;
820 	unsigned int victim_points = 0;
821 	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
822 					      DEFAULT_RATELIMIT_BURST);
823 	bool can_oom_reap = true;
824 
825 	/*
826 	 * If the task is already exiting, don't alarm the sysadmin or kill
827 	 * its children or threads, just set TIF_MEMDIE so it can die quickly
828 	 */
829 	task_lock(p);
830 	if (task_will_free_mem(p)) {
831 		mark_oom_victim(p);
832 		wake_oom_reaper(p);
833 		task_unlock(p);
834 		put_task_struct(p);
835 		return;
836 	}
837 	task_unlock(p);
838 
839 	if (__ratelimit(&oom_rs))
840 		dump_header(oc, p);
841 
842 	pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
843 		message, task_pid_nr(p), p->comm, points);
844 
845 	/*
846 	 * If any of p's children has a different mm and is eligible for kill,
847 	 * the one with the highest oom_badness() score is sacrificed for its
848 	 * parent.  This attempts to lose the minimal amount of work done while
849 	 * still freeing memory.
850 	 */
851 	read_lock(&tasklist_lock);
852 	for_each_thread(p, t) {
853 		list_for_each_entry(child, &t->children, sibling) {
854 			unsigned int child_points;
855 
856 			if (process_shares_mm(child, p->mm))
857 				continue;
858 			/*
859 			 * oom_badness() returns 0 if the thread is unkillable
860 			 */
861 			child_points = oom_badness(child,
862 				oc->memcg, oc->nodemask, oc->totalpages);
863 			if (child_points > victim_points) {
864 				put_task_struct(victim);
865 				victim = child;
866 				victim_points = child_points;
867 				get_task_struct(victim);
868 			}
869 		}
870 	}
871 	read_unlock(&tasklist_lock);
872 
873 	p = find_lock_task_mm(victim);
874 	if (!p) {
875 		put_task_struct(victim);
876 		return;
877 	} else if (victim != p) {
878 		get_task_struct(p);
879 		put_task_struct(victim);
880 		victim = p;
881 	}
882 
883 	/* Get a reference to safely compare mm after task_unlock(victim) */
884 	mm = victim->mm;
885 	mmgrab(mm);
886 
887 	/* Raise event before sending signal: task reaper must see this */
888 	count_vm_event(OOM_KILL);
889 	count_memcg_event_mm(mm, OOM_KILL);
890 
891 	/*
892 	 * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
893 	 * the OOM victim from depleting the memory reserves from the user
894 	 * space under its control.
895 	 */
896 	do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
897 	mark_oom_victim(victim);
898 	pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
899 		task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
900 		K(get_mm_counter(victim->mm, MM_ANONPAGES)),
901 		K(get_mm_counter(victim->mm, MM_FILEPAGES)),
902 		K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
903 	task_unlock(victim);
904 
905 	/*
906 	 * Kill all user processes sharing victim->mm in other thread groups, if
907 	 * any.  They don't get access to memory reserves, though, to avoid
908 	 * depletion of all memory.  This prevents mm->mmap_sem livelock when an
909 	 * oom killed thread cannot exit because it requires the semaphore and
910 	 * its contended by another thread trying to allocate memory itself.
911 	 * That thread will now get access to memory reserves since it has a
912 	 * pending fatal signal.
913 	 */
914 	rcu_read_lock();
915 	for_each_process(p) {
916 		if (!process_shares_mm(p, mm))
917 			continue;
918 		if (same_thread_group(p, victim))
919 			continue;
920 		if (is_global_init(p)) {
921 			can_oom_reap = false;
922 			set_bit(MMF_OOM_SKIP, &mm->flags);
923 			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
924 					task_pid_nr(victim), victim->comm,
925 					task_pid_nr(p), p->comm);
926 			continue;
927 		}
928 		/*
929 		 * No use_mm() user needs to read from the userspace so we are
930 		 * ok to reap it.
931 		 */
932 		if (unlikely(p->flags & PF_KTHREAD))
933 			continue;
934 		do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
935 	}
936 	rcu_read_unlock();
937 
938 	if (can_oom_reap)
939 		wake_oom_reaper(victim);
940 
941 	mmdrop(mm);
942 	put_task_struct(victim);
943 }
944 #undef K
945 
946 /*
947  * Determines whether the kernel must panic because of the panic_on_oom sysctl.
948  */
949 static void check_panic_on_oom(struct oom_control *oc,
950 			       enum oom_constraint constraint)
951 {
952 	if (likely(!sysctl_panic_on_oom))
953 		return;
954 	if (sysctl_panic_on_oom != 2) {
955 		/*
956 		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
957 		 * does not panic for cpuset, mempolicy, or memcg allocation
958 		 * failures.
959 		 */
960 		if (constraint != CONSTRAINT_NONE)
961 			return;
962 	}
963 	/* Do not panic for oom kills triggered by sysrq */
964 	if (is_sysrq_oom(oc))
965 		return;
966 	dump_header(oc, NULL);
967 	panic("Out of memory: %s panic_on_oom is enabled\n",
968 		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
969 }
970 
971 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
972 
973 int register_oom_notifier(struct notifier_block *nb)
974 {
975 	return blocking_notifier_chain_register(&oom_notify_list, nb);
976 }
977 EXPORT_SYMBOL_GPL(register_oom_notifier);
978 
979 int unregister_oom_notifier(struct notifier_block *nb)
980 {
981 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
982 }
983 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
984 
985 /**
986  * out_of_memory - kill the "best" process when we run out of memory
987  * @oc: pointer to struct oom_control
988  *
989  * If we run out of memory, we have the choice between either
990  * killing a random task (bad), letting the system crash (worse)
991  * OR try to be smart about which process to kill. Note that we
992  * don't have to be perfect here, we just have to be good.
993  */
994 bool out_of_memory(struct oom_control *oc)
995 {
996 	unsigned long freed = 0;
997 	enum oom_constraint constraint = CONSTRAINT_NONE;
998 
999 	if (oom_killer_disabled)
1000 		return false;
1001 
1002 	if (!is_memcg_oom(oc)) {
1003 		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1004 		if (freed > 0)
1005 			/* Got some memory back in the last second. */
1006 			return true;
1007 	}
1008 
1009 	/*
1010 	 * If current has a pending SIGKILL or is exiting, then automatically
1011 	 * select it.  The goal is to allow it to allocate so that it may
1012 	 * quickly exit and free its memory.
1013 	 */
1014 	if (task_will_free_mem(current)) {
1015 		mark_oom_victim(current);
1016 		wake_oom_reaper(current);
1017 		return true;
1018 	}
1019 
1020 	/*
1021 	 * The OOM killer does not compensate for IO-less reclaim.
1022 	 * pagefault_out_of_memory lost its gfp context so we have to
1023 	 * make sure exclude 0 mask - all other users should have at least
1024 	 * ___GFP_DIRECT_RECLAIM to get here.
1025 	 */
1026 	if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS))
1027 		return true;
1028 
1029 	/*
1030 	 * Check if there were limitations on the allocation (only relevant for
1031 	 * NUMA and memcg) that may require different handling.
1032 	 */
1033 	constraint = constrained_alloc(oc);
1034 	if (constraint != CONSTRAINT_MEMORY_POLICY)
1035 		oc->nodemask = NULL;
1036 	check_panic_on_oom(oc, constraint);
1037 
1038 	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1039 	    current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
1040 	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1041 		get_task_struct(current);
1042 		oc->chosen = current;
1043 		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1044 		return true;
1045 	}
1046 
1047 	select_bad_process(oc);
1048 	/* Found nothing?!?! Either we hang forever, or we panic. */
1049 	if (!oc->chosen && !is_sysrq_oom(oc) && !is_memcg_oom(oc)) {
1050 		dump_header(oc, NULL);
1051 		panic("Out of memory and no killable processes...\n");
1052 	}
1053 	if (oc->chosen && oc->chosen != (void *)-1UL) {
1054 		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1055 				 "Memory cgroup out of memory");
1056 		/*
1057 		 * Give the killed process a good chance to exit before trying
1058 		 * to allocate memory again.
1059 		 */
1060 		schedule_timeout_killable(1);
1061 	}
1062 	return !!oc->chosen;
1063 }
1064 
1065 /*
1066  * The pagefault handler calls here because it is out of memory, so kill a
1067  * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1068  * killing is already in progress so do nothing.
1069  */
1070 void pagefault_out_of_memory(void)
1071 {
1072 	struct oom_control oc = {
1073 		.zonelist = NULL,
1074 		.nodemask = NULL,
1075 		.memcg = NULL,
1076 		.gfp_mask = 0,
1077 		.order = 0,
1078 	};
1079 
1080 	if (mem_cgroup_oom_synchronize(true))
1081 		return;
1082 
1083 	if (!mutex_trylock(&oom_lock))
1084 		return;
1085 	out_of_memory(&oc);
1086 	mutex_unlock(&oom_lock);
1087 }
1088