xref: /openbmc/linux/mm/oom_kill.c (revision e105007c)
1 /*
2  *  linux/mm/oom_kill.c
3  *
4  *  Copyright (C)  1998,2000  Rik van Riel
5  *	Thanks go out to Claus Fischer for some serious inspiration and
6  *	for goading me into coding this file...
7  *
8  *  The routines in this file are used to kill a process when
9  *  we're seriously out of memory. This gets called from __alloc_pages()
10  *  in mm/page_alloc.c when we really run out of memory.
11  *
12  *  Since we won't call these routines often (on a well-configured
13  *  machine) this file will double as a 'coding guide' and a signpost
14  *  for newbie kernel hackers. It features several pointers to major
15  *  kernel subsystems and hints as to where to find out what things do.
16  */
17 
18 #include <linux/oom.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/sched.h>
22 #include <linux/swap.h>
23 #include <linux/timex.h>
24 #include <linux/jiffies.h>
25 #include <linux/cpuset.h>
26 #include <linux/module.h>
27 #include <linux/notifier.h>
28 #include <linux/memcontrol.h>
29 #include <linux/security.h>
30 
31 int sysctl_panic_on_oom;
32 int sysctl_oom_kill_allocating_task;
33 int sysctl_oom_dump_tasks;
34 static DEFINE_SPINLOCK(zone_scan_lock);
35 /* #define DEBUG */
36 
37 /*
38  * Is all threads of the target process nodes overlap ours?
39  */
40 static int has_intersects_mems_allowed(struct task_struct *tsk)
41 {
42 	struct task_struct *t;
43 
44 	t = tsk;
45 	do {
46 		if (cpuset_mems_allowed_intersects(current, t))
47 			return 1;
48 		t = next_thread(t);
49 	} while (t != tsk);
50 
51 	return 0;
52 }
53 
54 /**
55  * badness - calculate a numeric value for how bad this task has been
56  * @p: task struct of which task we should calculate
57  * @uptime: current uptime in seconds
58  *
59  * The formula used is relatively simple and documented inline in the
60  * function. The main rationale is that we want to select a good task
61  * to kill when we run out of memory.
62  *
63  * Good in this context means that:
64  * 1) we lose the minimum amount of work done
65  * 2) we recover a large amount of memory
66  * 3) we don't kill anything innocent of eating tons of memory
67  * 4) we want to kill the minimum amount of processes (one)
68  * 5) we try to kill the process the user expects us to kill, this
69  *    algorithm has been meticulously tuned to meet the principle
70  *    of least surprise ... (be careful when you change it)
71  */
72 
73 unsigned long badness(struct task_struct *p, unsigned long uptime)
74 {
75 	unsigned long points, cpu_time, run_time;
76 	struct mm_struct *mm;
77 	struct task_struct *child;
78 	int oom_adj = p->signal->oom_adj;
79 	struct task_cputime task_time;
80 	unsigned long utime;
81 	unsigned long stime;
82 
83 	if (oom_adj == OOM_DISABLE)
84 		return 0;
85 
86 	task_lock(p);
87 	mm = p->mm;
88 	if (!mm) {
89 		task_unlock(p);
90 		return 0;
91 	}
92 
93 	/*
94 	 * The memory size of the process is the basis for the badness.
95 	 */
96 	points = mm->total_vm;
97 
98 	/*
99 	 * After this unlock we can no longer dereference local variable `mm'
100 	 */
101 	task_unlock(p);
102 
103 	/*
104 	 * swapoff can easily use up all memory, so kill those first.
105 	 */
106 	if (p->flags & PF_OOM_ORIGIN)
107 		return ULONG_MAX;
108 
109 	/*
110 	 * Processes which fork a lot of child processes are likely
111 	 * a good choice. We add half the vmsize of the children if they
112 	 * have an own mm. This prevents forking servers to flood the
113 	 * machine with an endless amount of children. In case a single
114 	 * child is eating the vast majority of memory, adding only half
115 	 * to the parents will make the child our kill candidate of choice.
116 	 */
117 	list_for_each_entry(child, &p->children, sibling) {
118 		task_lock(child);
119 		if (child->mm != mm && child->mm)
120 			points += child->mm->total_vm/2 + 1;
121 		task_unlock(child);
122 	}
123 
124 	/*
125 	 * CPU time is in tens of seconds and run time is in thousands
126          * of seconds. There is no particular reason for this other than
127          * that it turned out to work very well in practice.
128 	 */
129 	thread_group_cputime(p, &task_time);
130 	utime = cputime_to_jiffies(task_time.utime);
131 	stime = cputime_to_jiffies(task_time.stime);
132 	cpu_time = (utime + stime) >> (SHIFT_HZ + 3);
133 
134 
135 	if (uptime >= p->start_time.tv_sec)
136 		run_time = (uptime - p->start_time.tv_sec) >> 10;
137 	else
138 		run_time = 0;
139 
140 	if (cpu_time)
141 		points /= int_sqrt(cpu_time);
142 	if (run_time)
143 		points /= int_sqrt(int_sqrt(run_time));
144 
145 	/*
146 	 * Niced processes are most likely less important, so double
147 	 * their badness points.
148 	 */
149 	if (task_nice(p) > 0)
150 		points *= 2;
151 
152 	/*
153 	 * Superuser processes are usually more important, so we make it
154 	 * less likely that we kill those.
155 	 */
156 	if (has_capability_noaudit(p, CAP_SYS_ADMIN) ||
157 	    has_capability_noaudit(p, CAP_SYS_RESOURCE))
158 		points /= 4;
159 
160 	/*
161 	 * We don't want to kill a process with direct hardware access.
162 	 * Not only could that mess up the hardware, but usually users
163 	 * tend to only have this flag set on applications they think
164 	 * of as important.
165 	 */
166 	if (has_capability_noaudit(p, CAP_SYS_RAWIO))
167 		points /= 4;
168 
169 	/*
170 	 * If p's nodes don't overlap ours, it may still help to kill p
171 	 * because p may have allocated or otherwise mapped memory on
172 	 * this node before. However it will be less likely.
173 	 */
174 	if (!has_intersects_mems_allowed(p))
175 		points /= 8;
176 
177 	/*
178 	 * Adjust the score by oom_adj.
179 	 */
180 	if (oom_adj) {
181 		if (oom_adj > 0) {
182 			if (!points)
183 				points = 1;
184 			points <<= oom_adj;
185 		} else
186 			points >>= -(oom_adj);
187 	}
188 
189 #ifdef DEBUG
190 	printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
191 	p->pid, p->comm, points);
192 #endif
193 	return points;
194 }
195 
196 /*
197  * Determine the type of allocation constraint.
198  */
199 #ifdef CONFIG_NUMA
200 static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
201 				    gfp_t gfp_mask, nodemask_t *nodemask)
202 {
203 	struct zone *zone;
204 	struct zoneref *z;
205 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
206 
207 	/*
208 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
209 	 * to kill current.We have to random task kill in this case.
210 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
211 	 */
212 	if (gfp_mask & __GFP_THISNODE)
213 		return CONSTRAINT_NONE;
214 
215 	/*
216 	 * The nodemask here is a nodemask passed to alloc_pages(). Now,
217 	 * cpuset doesn't use this nodemask for its hardwall/softwall/hierarchy
218 	 * feature. mempolicy is an only user of nodemask here.
219 	 * check mempolicy's nodemask contains all N_HIGH_MEMORY
220 	 */
221 	if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask))
222 		return CONSTRAINT_MEMORY_POLICY;
223 
224 	/* Check this allocation failure is caused by cpuset's wall function */
225 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
226 			high_zoneidx, nodemask)
227 		if (!cpuset_zone_allowed_softwall(zone, gfp_mask))
228 			return CONSTRAINT_CPUSET;
229 
230 	return CONSTRAINT_NONE;
231 }
232 #else
233 static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
234 				gfp_t gfp_mask, nodemask_t *nodemask)
235 {
236 	return CONSTRAINT_NONE;
237 }
238 #endif
239 
240 /*
241  * Simple selection loop. We chose the process with the highest
242  * number of 'points'. We expect the caller will lock the tasklist.
243  *
244  * (not docbooked, we don't want this one cluttering up the manual)
245  */
246 static struct task_struct *select_bad_process(unsigned long *ppoints,
247 						struct mem_cgroup *mem)
248 {
249 	struct task_struct *p;
250 	struct task_struct *chosen = NULL;
251 	struct timespec uptime;
252 	*ppoints = 0;
253 
254 	do_posix_clock_monotonic_gettime(&uptime);
255 	for_each_process(p) {
256 		unsigned long points;
257 
258 		/*
259 		 * skip kernel threads and tasks which have already released
260 		 * their mm.
261 		 */
262 		if (!p->mm)
263 			continue;
264 		/* skip the init task */
265 		if (is_global_init(p))
266 			continue;
267 		if (mem && !task_in_mem_cgroup(p, mem))
268 			continue;
269 
270 		/*
271 		 * This task already has access to memory reserves and is
272 		 * being killed. Don't allow any other task access to the
273 		 * memory reserve.
274 		 *
275 		 * Note: this may have a chance of deadlock if it gets
276 		 * blocked waiting for another task which itself is waiting
277 		 * for memory. Is there a better alternative?
278 		 */
279 		if (test_tsk_thread_flag(p, TIF_MEMDIE))
280 			return ERR_PTR(-1UL);
281 
282 		/*
283 		 * This is in the process of releasing memory so wait for it
284 		 * to finish before killing some other task by mistake.
285 		 *
286 		 * However, if p is the current task, we allow the 'kill' to
287 		 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
288 		 * which will allow it to gain access to memory reserves in
289 		 * the process of exiting and releasing its resources.
290 		 * Otherwise we could get an easy OOM deadlock.
291 		 */
292 		if (p->flags & PF_EXITING) {
293 			if (p != current)
294 				return ERR_PTR(-1UL);
295 
296 			chosen = p;
297 			*ppoints = ULONG_MAX;
298 		}
299 
300 		if (p->signal->oom_adj == OOM_DISABLE)
301 			continue;
302 
303 		points = badness(p, uptime.tv_sec);
304 		if (points > *ppoints || !chosen) {
305 			chosen = p;
306 			*ppoints = points;
307 		}
308 	}
309 
310 	return chosen;
311 }
312 
313 /**
314  * dump_tasks - dump current memory state of all system tasks
315  * @mem: target memory controller
316  *
317  * Dumps the current memory state of all system tasks, excluding kernel threads.
318  * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
319  * score, and name.
320  *
321  * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are
322  * shown.
323  *
324  * Call with tasklist_lock read-locked.
325  */
326 static void dump_tasks(const struct mem_cgroup *mem)
327 {
328 	struct task_struct *g, *p;
329 
330 	printk(KERN_INFO "[ pid ]   uid  tgid total_vm      rss cpu oom_adj "
331 	       "name\n");
332 	do_each_thread(g, p) {
333 		struct mm_struct *mm;
334 
335 		if (mem && !task_in_mem_cgroup(p, mem))
336 			continue;
337 		if (!thread_group_leader(p))
338 			continue;
339 
340 		task_lock(p);
341 		mm = p->mm;
342 		if (!mm) {
343 			/*
344 			 * total_vm and rss sizes do not exist for tasks with no
345 			 * mm so there's no need to report them; they can't be
346 			 * oom killed anyway.
347 			 */
348 			task_unlock(p);
349 			continue;
350 		}
351 		printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3d     %3d %s\n",
352 		       p->pid, __task_cred(p)->uid, p->tgid, mm->total_vm,
353 		       get_mm_rss(mm), (int)task_cpu(p), p->signal->oom_adj,
354 		       p->comm);
355 		task_unlock(p);
356 	} while_each_thread(g, p);
357 }
358 
359 static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order,
360 							struct mem_cgroup *mem)
361 {
362 	pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, "
363 		"oom_adj=%d\n",
364 		current->comm, gfp_mask, order, current->signal->oom_adj);
365 	task_lock(current);
366 	cpuset_print_task_mems_allowed(current);
367 	task_unlock(current);
368 	dump_stack();
369 	mem_cgroup_print_oom_info(mem, p);
370 	show_mem();
371 	if (sysctl_oom_dump_tasks)
372 		dump_tasks(mem);
373 }
374 
375 #define K(x) ((x) << (PAGE_SHIFT-10))
376 
377 /*
378  * Send SIGKILL to the selected  process irrespective of  CAP_SYS_RAW_IO
379  * flag though it's unlikely that  we select a process with CAP_SYS_RAW_IO
380  * set.
381  */
382 static void __oom_kill_task(struct task_struct *p, int verbose)
383 {
384 	if (is_global_init(p)) {
385 		WARN_ON(1);
386 		printk(KERN_WARNING "tried to kill init!\n");
387 		return;
388 	}
389 
390 	task_lock(p);
391 	if (!p->mm) {
392 		WARN_ON(1);
393 		printk(KERN_WARNING "tried to kill an mm-less task %d (%s)!\n",
394 			task_pid_nr(p), p->comm);
395 		task_unlock(p);
396 		return;
397 	}
398 
399 	if (verbose)
400 		printk(KERN_ERR "Killed process %d (%s) "
401 		       "vsz:%lukB, anon-rss:%lukB, file-rss:%lukB\n",
402 		       task_pid_nr(p), p->comm,
403 		       K(p->mm->total_vm),
404 		       K(get_mm_counter(p->mm, anon_rss)),
405 		       K(get_mm_counter(p->mm, file_rss)));
406 	task_unlock(p);
407 
408 	/*
409 	 * We give our sacrificial lamb high priority and access to
410 	 * all the memory it needs. That way it should be able to
411 	 * exit() and clear out its resources quickly...
412 	 */
413 	p->rt.time_slice = HZ;
414 	set_tsk_thread_flag(p, TIF_MEMDIE);
415 
416 	force_sig(SIGKILL, p);
417 }
418 
419 static int oom_kill_task(struct task_struct *p)
420 {
421 	/* WARNING: mm may not be dereferenced since we did not obtain its
422 	 * value from get_task_mm(p).  This is OK since all we need to do is
423 	 * compare mm to q->mm below.
424 	 *
425 	 * Furthermore, even if mm contains a non-NULL value, p->mm may
426 	 * change to NULL at any time since we do not hold task_lock(p).
427 	 * However, this is of no concern to us.
428 	 */
429 	if (!p->mm || p->signal->oom_adj == OOM_DISABLE)
430 		return 1;
431 
432 	__oom_kill_task(p, 1);
433 
434 	return 0;
435 }
436 
437 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
438 			    unsigned long points, struct mem_cgroup *mem,
439 			    const char *message)
440 {
441 	struct task_struct *c;
442 
443 	if (printk_ratelimit())
444 		dump_header(p, gfp_mask, order, mem);
445 
446 	/*
447 	 * If the task is already exiting, don't alarm the sysadmin or kill
448 	 * its children or threads, just set TIF_MEMDIE so it can die quickly
449 	 */
450 	if (p->flags & PF_EXITING) {
451 		__oom_kill_task(p, 0);
452 		return 0;
453 	}
454 
455 	printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
456 					message, task_pid_nr(p), p->comm, points);
457 
458 	/* Try to kill a child first */
459 	list_for_each_entry(c, &p->children, sibling) {
460 		if (c->mm == p->mm)
461 			continue;
462 		if (!oom_kill_task(c))
463 			return 0;
464 	}
465 	return oom_kill_task(p);
466 }
467 
468 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
469 void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
470 {
471 	unsigned long points = 0;
472 	struct task_struct *p;
473 
474 	read_lock(&tasklist_lock);
475 retry:
476 	p = select_bad_process(&points, mem);
477 	if (PTR_ERR(p) == -1UL)
478 		goto out;
479 
480 	if (!p)
481 		p = current;
482 
483 	if (oom_kill_process(p, gfp_mask, 0, points, mem,
484 				"Memory cgroup out of memory"))
485 		goto retry;
486 out:
487 	read_unlock(&tasklist_lock);
488 }
489 #endif
490 
491 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
492 
493 int register_oom_notifier(struct notifier_block *nb)
494 {
495 	return blocking_notifier_chain_register(&oom_notify_list, nb);
496 }
497 EXPORT_SYMBOL_GPL(register_oom_notifier);
498 
499 int unregister_oom_notifier(struct notifier_block *nb)
500 {
501 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
502 }
503 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
504 
505 /*
506  * Try to acquire the OOM killer lock for the zones in zonelist.  Returns zero
507  * if a parallel OOM killing is already taking place that includes a zone in
508  * the zonelist.  Otherwise, locks all zones in the zonelist and returns 1.
509  */
510 int try_set_zone_oom(struct zonelist *zonelist, gfp_t gfp_mask)
511 {
512 	struct zoneref *z;
513 	struct zone *zone;
514 	int ret = 1;
515 
516 	spin_lock(&zone_scan_lock);
517 	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
518 		if (zone_is_oom_locked(zone)) {
519 			ret = 0;
520 			goto out;
521 		}
522 	}
523 
524 	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
525 		/*
526 		 * Lock each zone in the zonelist under zone_scan_lock so a
527 		 * parallel invocation of try_set_zone_oom() doesn't succeed
528 		 * when it shouldn't.
529 		 */
530 		zone_set_flag(zone, ZONE_OOM_LOCKED);
531 	}
532 
533 out:
534 	spin_unlock(&zone_scan_lock);
535 	return ret;
536 }
537 
538 /*
539  * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
540  * allocation attempts with zonelists containing them may now recall the OOM
541  * killer, if necessary.
542  */
543 void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
544 {
545 	struct zoneref *z;
546 	struct zone *zone;
547 
548 	spin_lock(&zone_scan_lock);
549 	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
550 		zone_clear_flag(zone, ZONE_OOM_LOCKED);
551 	}
552 	spin_unlock(&zone_scan_lock);
553 }
554 
555 /*
556  * Must be called with tasklist_lock held for read.
557  */
558 static void __out_of_memory(gfp_t gfp_mask, int order)
559 {
560 	struct task_struct *p;
561 	unsigned long points;
562 
563 	if (sysctl_oom_kill_allocating_task)
564 		if (!oom_kill_process(current, gfp_mask, order, 0, NULL,
565 				"Out of memory (oom_kill_allocating_task)"))
566 			return;
567 retry:
568 	/*
569 	 * Rambo mode: Shoot down a process and hope it solves whatever
570 	 * issues we may have.
571 	 */
572 	p = select_bad_process(&points, NULL);
573 
574 	if (PTR_ERR(p) == -1UL)
575 		return;
576 
577 	/* Found nothing?!?! Either we hang forever, or we panic. */
578 	if (!p) {
579 		read_unlock(&tasklist_lock);
580 		dump_header(NULL, gfp_mask, order, NULL);
581 		panic("Out of memory and no killable processes...\n");
582 	}
583 
584 	if (oom_kill_process(p, gfp_mask, order, points, NULL,
585 			     "Out of memory"))
586 		goto retry;
587 }
588 
589 /*
590  * pagefault handler calls into here because it is out of memory but
591  * doesn't know exactly how or why.
592  */
593 void pagefault_out_of_memory(void)
594 {
595 	unsigned long freed = 0;
596 
597 	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
598 	if (freed > 0)
599 		/* Got some memory back in the last second. */
600 		return;
601 
602 	/*
603 	 * If this is from memcg, oom-killer is already invoked.
604 	 * and not worth to go system-wide-oom.
605 	 */
606 	if (mem_cgroup_oom_called(current))
607 		goto rest_and_return;
608 
609 	if (sysctl_panic_on_oom)
610 		panic("out of memory from page fault. panic_on_oom is selected.\n");
611 
612 	read_lock(&tasklist_lock);
613 	__out_of_memory(0, 0); /* unknown gfp_mask and order */
614 	read_unlock(&tasklist_lock);
615 
616 	/*
617 	 * Give "p" a good chance of killing itself before we
618 	 * retry to allocate memory.
619 	 */
620 rest_and_return:
621 	if (!test_thread_flag(TIF_MEMDIE))
622 		schedule_timeout_uninterruptible(1);
623 }
624 
625 /**
626  * out_of_memory - kill the "best" process when we run out of memory
627  * @zonelist: zonelist pointer
628  * @gfp_mask: memory allocation flags
629  * @order: amount of memory being requested as a power of 2
630  *
631  * If we run out of memory, we have the choice between either
632  * killing a random task (bad), letting the system crash (worse)
633  * OR try to be smart about which process to kill. Note that we
634  * don't have to be perfect here, we just have to be good.
635  */
636 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask,
637 		int order, nodemask_t *nodemask)
638 {
639 	unsigned long freed = 0;
640 	enum oom_constraint constraint;
641 
642 	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
643 	if (freed > 0)
644 		/* Got some memory back in the last second. */
645 		return;
646 
647 	if (sysctl_panic_on_oom == 2) {
648 		dump_header(NULL, gfp_mask, order, NULL);
649 		panic("out of memory. Compulsory panic_on_oom is selected.\n");
650 	}
651 
652 	/*
653 	 * Check if there were limitations on the allocation (only relevant for
654 	 * NUMA) that may require different handling.
655 	 */
656 	constraint = constrained_alloc(zonelist, gfp_mask, nodemask);
657 	read_lock(&tasklist_lock);
658 
659 	switch (constraint) {
660 	case CONSTRAINT_MEMORY_POLICY:
661 		oom_kill_process(current, gfp_mask, order, 0, NULL,
662 				"No available memory (MPOL_BIND)");
663 		break;
664 
665 	case CONSTRAINT_NONE:
666 		if (sysctl_panic_on_oom) {
667 			dump_header(NULL, gfp_mask, order, NULL);
668 			panic("out of memory. panic_on_oom is selected\n");
669 		}
670 		/* Fall-through */
671 	case CONSTRAINT_CPUSET:
672 		__out_of_memory(gfp_mask, order);
673 		break;
674 	}
675 
676 	read_unlock(&tasklist_lock);
677 
678 	/*
679 	 * Give "p" a good chance of killing itself before we
680 	 * retry to allocate memory unless "p" is current
681 	 */
682 	if (!test_thread_flag(TIF_MEMDIE))
683 		schedule_timeout_uninterruptible(1);
684 }
685