xref: /openbmc/linux/mm/oom_kill.c (revision e0f3d4c2)
1 /*
2  *  linux/mm/oom_kill.c
3  *
4  *  Copyright (C)  1998,2000  Rik van Riel
5  *	Thanks go out to Claus Fischer for some serious inspiration and
6  *	for goading me into coding this file...
7  *  Copyright (C)  2010  Google, Inc.
8  *	Rewritten by David Rientjes
9  *
10  *  The routines in this file are used to kill a process when
11  *  we're seriously out of memory. This gets called from __alloc_pages()
12  *  in mm/page_alloc.c when we really run out of memory.
13  *
14  *  Since we won't call these routines often (on a well-configured
15  *  machine) this file will double as a 'coding guide' and a signpost
16  *  for newbie kernel hackers. It features several pointers to major
17  *  kernel subsystems and hints as to where to find out what things do.
18  */
19 
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/sched/mm.h>
26 #include <linux/sched/coredump.h>
27 #include <linux/sched/task.h>
28 #include <linux/swap.h>
29 #include <linux/timex.h>
30 #include <linux/jiffies.h>
31 #include <linux/cpuset.h>
32 #include <linux/export.h>
33 #include <linux/notifier.h>
34 #include <linux/memcontrol.h>
35 #include <linux/mempolicy.h>
36 #include <linux/security.h>
37 #include <linux/ptrace.h>
38 #include <linux/freezer.h>
39 #include <linux/ftrace.h>
40 #include <linux/ratelimit.h>
41 #include <linux/kthread.h>
42 #include <linux/init.h>
43 #include <linux/mmu_notifier.h>
44 
45 #include <asm/tlb.h>
46 #include "internal.h"
47 #include "slab.h"
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/oom.h>
51 
52 int sysctl_panic_on_oom;
53 int sysctl_oom_kill_allocating_task;
54 int sysctl_oom_dump_tasks = 1;
55 
56 DEFINE_MUTEX(oom_lock);
57 
58 #ifdef CONFIG_NUMA
59 /**
60  * has_intersects_mems_allowed() - check task eligiblity for kill
61  * @start: task struct of which task to consider
62  * @mask: nodemask passed to page allocator for mempolicy ooms
63  *
64  * Task eligibility is determined by whether or not a candidate task, @tsk,
65  * shares the same mempolicy nodes as current if it is bound by such a policy
66  * and whether or not it has the same set of allowed cpuset nodes.
67  */
68 static bool has_intersects_mems_allowed(struct task_struct *start,
69 					const nodemask_t *mask)
70 {
71 	struct task_struct *tsk;
72 	bool ret = false;
73 
74 	rcu_read_lock();
75 	for_each_thread(start, tsk) {
76 		if (mask) {
77 			/*
78 			 * If this is a mempolicy constrained oom, tsk's
79 			 * cpuset is irrelevant.  Only return true if its
80 			 * mempolicy intersects current, otherwise it may be
81 			 * needlessly killed.
82 			 */
83 			ret = mempolicy_nodemask_intersects(tsk, mask);
84 		} else {
85 			/*
86 			 * This is not a mempolicy constrained oom, so only
87 			 * check the mems of tsk's cpuset.
88 			 */
89 			ret = cpuset_mems_allowed_intersects(current, tsk);
90 		}
91 		if (ret)
92 			break;
93 	}
94 	rcu_read_unlock();
95 
96 	return ret;
97 }
98 #else
99 static bool has_intersects_mems_allowed(struct task_struct *tsk,
100 					const nodemask_t *mask)
101 {
102 	return true;
103 }
104 #endif /* CONFIG_NUMA */
105 
106 /*
107  * The process p may have detached its own ->mm while exiting or through
108  * use_mm(), but one or more of its subthreads may still have a valid
109  * pointer.  Return p, or any of its subthreads with a valid ->mm, with
110  * task_lock() held.
111  */
112 struct task_struct *find_lock_task_mm(struct task_struct *p)
113 {
114 	struct task_struct *t;
115 
116 	rcu_read_lock();
117 
118 	for_each_thread(p, t) {
119 		task_lock(t);
120 		if (likely(t->mm))
121 			goto found;
122 		task_unlock(t);
123 	}
124 	t = NULL;
125 found:
126 	rcu_read_unlock();
127 
128 	return t;
129 }
130 
131 /*
132  * order == -1 means the oom kill is required by sysrq, otherwise only
133  * for display purposes.
134  */
135 static inline bool is_sysrq_oom(struct oom_control *oc)
136 {
137 	return oc->order == -1;
138 }
139 
140 static inline bool is_memcg_oom(struct oom_control *oc)
141 {
142 	return oc->memcg != NULL;
143 }
144 
145 /* return true if the task is not adequate as candidate victim task. */
146 static bool oom_unkillable_task(struct task_struct *p,
147 		struct mem_cgroup *memcg, const nodemask_t *nodemask)
148 {
149 	if (is_global_init(p))
150 		return true;
151 	if (p->flags & PF_KTHREAD)
152 		return true;
153 
154 	/* When mem_cgroup_out_of_memory() and p is not member of the group */
155 	if (memcg && !task_in_mem_cgroup(p, memcg))
156 		return true;
157 
158 	/* p may not have freeable memory in nodemask */
159 	if (!has_intersects_mems_allowed(p, nodemask))
160 		return true;
161 
162 	return false;
163 }
164 
165 /*
166  * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
167  * than all user memory (LRU pages)
168  */
169 static bool is_dump_unreclaim_slabs(void)
170 {
171 	unsigned long nr_lru;
172 
173 	nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
174 		 global_node_page_state(NR_INACTIVE_ANON) +
175 		 global_node_page_state(NR_ACTIVE_FILE) +
176 		 global_node_page_state(NR_INACTIVE_FILE) +
177 		 global_node_page_state(NR_ISOLATED_ANON) +
178 		 global_node_page_state(NR_ISOLATED_FILE) +
179 		 global_node_page_state(NR_UNEVICTABLE);
180 
181 	return (global_node_page_state(NR_SLAB_UNRECLAIMABLE) > nr_lru);
182 }
183 
184 /**
185  * oom_badness - heuristic function to determine which candidate task to kill
186  * @p: task struct of which task we should calculate
187  * @totalpages: total present RAM allowed for page allocation
188  *
189  * The heuristic for determining which task to kill is made to be as simple and
190  * predictable as possible.  The goal is to return the highest value for the
191  * task consuming the most memory to avoid subsequent oom failures.
192  */
193 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
194 			  const nodemask_t *nodemask, unsigned long totalpages)
195 {
196 	long points;
197 	long adj;
198 
199 	if (oom_unkillable_task(p, memcg, nodemask))
200 		return 0;
201 
202 	p = find_lock_task_mm(p);
203 	if (!p)
204 		return 0;
205 
206 	/*
207 	 * Do not even consider tasks which are explicitly marked oom
208 	 * unkillable or have been already oom reaped or the are in
209 	 * the middle of vfork
210 	 */
211 	adj = (long)p->signal->oom_score_adj;
212 	if (adj == OOM_SCORE_ADJ_MIN ||
213 			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
214 			in_vfork(p)) {
215 		task_unlock(p);
216 		return 0;
217 	}
218 
219 	/*
220 	 * The baseline for the badness score is the proportion of RAM that each
221 	 * task's rss, pagetable and swap space use.
222 	 */
223 	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
224 		mm_pgtables_bytes(p->mm) / PAGE_SIZE;
225 	task_unlock(p);
226 
227 	/*
228 	 * Root processes get 3% bonus, just like the __vm_enough_memory()
229 	 * implementation used by LSMs.
230 	 */
231 	if (has_capability_noaudit(p, CAP_SYS_ADMIN))
232 		points -= (points * 3) / 100;
233 
234 	/* Normalize to oom_score_adj units */
235 	adj *= totalpages / 1000;
236 	points += adj;
237 
238 	/*
239 	 * Never return 0 for an eligible task regardless of the root bonus and
240 	 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
241 	 */
242 	return points > 0 ? points : 1;
243 }
244 
245 enum oom_constraint {
246 	CONSTRAINT_NONE,
247 	CONSTRAINT_CPUSET,
248 	CONSTRAINT_MEMORY_POLICY,
249 	CONSTRAINT_MEMCG,
250 };
251 
252 /*
253  * Determine the type of allocation constraint.
254  */
255 static enum oom_constraint constrained_alloc(struct oom_control *oc)
256 {
257 	struct zone *zone;
258 	struct zoneref *z;
259 	enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
260 	bool cpuset_limited = false;
261 	int nid;
262 
263 	if (is_memcg_oom(oc)) {
264 		oc->totalpages = mem_cgroup_get_limit(oc->memcg) ?: 1;
265 		return CONSTRAINT_MEMCG;
266 	}
267 
268 	/* Default to all available memory */
269 	oc->totalpages = totalram_pages + total_swap_pages;
270 
271 	if (!IS_ENABLED(CONFIG_NUMA))
272 		return CONSTRAINT_NONE;
273 
274 	if (!oc->zonelist)
275 		return CONSTRAINT_NONE;
276 	/*
277 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
278 	 * to kill current.We have to random task kill in this case.
279 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
280 	 */
281 	if (oc->gfp_mask & __GFP_THISNODE)
282 		return CONSTRAINT_NONE;
283 
284 	/*
285 	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
286 	 * the page allocator means a mempolicy is in effect.  Cpuset policy
287 	 * is enforced in get_page_from_freelist().
288 	 */
289 	if (oc->nodemask &&
290 	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
291 		oc->totalpages = total_swap_pages;
292 		for_each_node_mask(nid, *oc->nodemask)
293 			oc->totalpages += node_spanned_pages(nid);
294 		return CONSTRAINT_MEMORY_POLICY;
295 	}
296 
297 	/* Check this allocation failure is caused by cpuset's wall function */
298 	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
299 			high_zoneidx, oc->nodemask)
300 		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
301 			cpuset_limited = true;
302 
303 	if (cpuset_limited) {
304 		oc->totalpages = total_swap_pages;
305 		for_each_node_mask(nid, cpuset_current_mems_allowed)
306 			oc->totalpages += node_spanned_pages(nid);
307 		return CONSTRAINT_CPUSET;
308 	}
309 	return CONSTRAINT_NONE;
310 }
311 
312 static int oom_evaluate_task(struct task_struct *task, void *arg)
313 {
314 	struct oom_control *oc = arg;
315 	unsigned long points;
316 
317 	if (oom_unkillable_task(task, NULL, oc->nodemask))
318 		goto next;
319 
320 	/*
321 	 * This task already has access to memory reserves and is being killed.
322 	 * Don't allow any other task to have access to the reserves unless
323 	 * the task has MMF_OOM_SKIP because chances that it would release
324 	 * any memory is quite low.
325 	 */
326 	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
327 		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
328 			goto next;
329 		goto abort;
330 	}
331 
332 	/*
333 	 * If task is allocating a lot of memory and has been marked to be
334 	 * killed first if it triggers an oom, then select it.
335 	 */
336 	if (oom_task_origin(task)) {
337 		points = ULONG_MAX;
338 		goto select;
339 	}
340 
341 	points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
342 	if (!points || points < oc->chosen_points)
343 		goto next;
344 
345 	/* Prefer thread group leaders for display purposes */
346 	if (points == oc->chosen_points && thread_group_leader(oc->chosen))
347 		goto next;
348 select:
349 	if (oc->chosen)
350 		put_task_struct(oc->chosen);
351 	get_task_struct(task);
352 	oc->chosen = task;
353 	oc->chosen_points = points;
354 next:
355 	return 0;
356 abort:
357 	if (oc->chosen)
358 		put_task_struct(oc->chosen);
359 	oc->chosen = (void *)-1UL;
360 	return 1;
361 }
362 
363 /*
364  * Simple selection loop. We choose the process with the highest number of
365  * 'points'. In case scan was aborted, oc->chosen is set to -1.
366  */
367 static void select_bad_process(struct oom_control *oc)
368 {
369 	if (is_memcg_oom(oc))
370 		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
371 	else {
372 		struct task_struct *p;
373 
374 		rcu_read_lock();
375 		for_each_process(p)
376 			if (oom_evaluate_task(p, oc))
377 				break;
378 		rcu_read_unlock();
379 	}
380 
381 	oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
382 }
383 
384 /**
385  * dump_tasks - dump current memory state of all system tasks
386  * @memcg: current's memory controller, if constrained
387  * @nodemask: nodemask passed to page allocator for mempolicy ooms
388  *
389  * Dumps the current memory state of all eligible tasks.  Tasks not in the same
390  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
391  * are not shown.
392  * State information includes task's pid, uid, tgid, vm size, rss,
393  * pgtables_bytes, swapents, oom_score_adj value, and name.
394  */
395 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
396 {
397 	struct task_struct *p;
398 	struct task_struct *task;
399 
400 	pr_info("[ pid ]   uid  tgid total_vm      rss pgtables_bytes swapents oom_score_adj name\n");
401 	rcu_read_lock();
402 	for_each_process(p) {
403 		if (oom_unkillable_task(p, memcg, nodemask))
404 			continue;
405 
406 		task = find_lock_task_mm(p);
407 		if (!task) {
408 			/*
409 			 * This is a kthread or all of p's threads have already
410 			 * detached their mm's.  There's no need to report
411 			 * them; they can't be oom killed anyway.
412 			 */
413 			continue;
414 		}
415 
416 		pr_info("[%5d] %5d %5d %8lu %8lu %8ld %8lu         %5hd %s\n",
417 			task->pid, from_kuid(&init_user_ns, task_uid(task)),
418 			task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
419 			mm_pgtables_bytes(task->mm),
420 			get_mm_counter(task->mm, MM_SWAPENTS),
421 			task->signal->oom_score_adj, task->comm);
422 		task_unlock(task);
423 	}
424 	rcu_read_unlock();
425 }
426 
427 static void dump_header(struct oom_control *oc, struct task_struct *p)
428 {
429 	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), nodemask=%*pbl, order=%d, oom_score_adj=%hd\n",
430 		current->comm, oc->gfp_mask, &oc->gfp_mask,
431 		nodemask_pr_args(oc->nodemask), oc->order,
432 			current->signal->oom_score_adj);
433 	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
434 		pr_warn("COMPACTION is disabled!!!\n");
435 
436 	cpuset_print_current_mems_allowed();
437 	dump_stack();
438 	if (is_memcg_oom(oc))
439 		mem_cgroup_print_oom_info(oc->memcg, p);
440 	else {
441 		show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
442 		if (is_dump_unreclaim_slabs())
443 			dump_unreclaimable_slab();
444 	}
445 	if (sysctl_oom_dump_tasks)
446 		dump_tasks(oc->memcg, oc->nodemask);
447 }
448 
449 /*
450  * Number of OOM victims in flight
451  */
452 static atomic_t oom_victims = ATOMIC_INIT(0);
453 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
454 
455 static bool oom_killer_disabled __read_mostly;
456 
457 #define K(x) ((x) << (PAGE_SHIFT-10))
458 
459 /*
460  * task->mm can be NULL if the task is the exited group leader.  So to
461  * determine whether the task is using a particular mm, we examine all the
462  * task's threads: if one of those is using this mm then this task was also
463  * using it.
464  */
465 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
466 {
467 	struct task_struct *t;
468 
469 	for_each_thread(p, t) {
470 		struct mm_struct *t_mm = READ_ONCE(t->mm);
471 		if (t_mm)
472 			return t_mm == mm;
473 	}
474 	return false;
475 }
476 
477 
478 #ifdef CONFIG_MMU
479 /*
480  * OOM Reaper kernel thread which tries to reap the memory used by the OOM
481  * victim (if that is possible) to help the OOM killer to move on.
482  */
483 static struct task_struct *oom_reaper_th;
484 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
485 static struct task_struct *oom_reaper_list;
486 static DEFINE_SPINLOCK(oom_reaper_lock);
487 
488 static bool __oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
489 {
490 	struct mmu_gather tlb;
491 	struct vm_area_struct *vma;
492 	bool ret = true;
493 
494 	/*
495 	 * We have to make sure to not race with the victim exit path
496 	 * and cause premature new oom victim selection:
497 	 * __oom_reap_task_mm		exit_mm
498 	 *   mmget_not_zero
499 	 *				  mmput
500 	 *				    atomic_dec_and_test
501 	 *				  exit_oom_victim
502 	 *				[...]
503 	 *				out_of_memory
504 	 *				  select_bad_process
505 	 *				    # no TIF_MEMDIE task selects new victim
506 	 *  unmap_page_range # frees some memory
507 	 */
508 	mutex_lock(&oom_lock);
509 
510 	if (!down_read_trylock(&mm->mmap_sem)) {
511 		ret = false;
512 		trace_skip_task_reaping(tsk->pid);
513 		goto unlock_oom;
514 	}
515 
516 	/*
517 	 * If the mm has notifiers then we would need to invalidate them around
518 	 * unmap_page_range and that is risky because notifiers can sleep and
519 	 * what they do is basically undeterministic.  So let's have a short
520 	 * sleep to give the oom victim some more time.
521 	 * TODO: we really want to get rid of this ugly hack and make sure that
522 	 * notifiers cannot block for unbounded amount of time and add
523 	 * mmu_notifier_invalidate_range_{start,end} around unmap_page_range
524 	 */
525 	if (mm_has_notifiers(mm)) {
526 		up_read(&mm->mmap_sem);
527 		schedule_timeout_idle(HZ);
528 		goto unlock_oom;
529 	}
530 
531 	/*
532 	 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
533 	 * work on the mm anymore. The check for MMF_OOM_SKIP must run
534 	 * under mmap_sem for reading because it serializes against the
535 	 * down_write();up_write() cycle in exit_mmap().
536 	 */
537 	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
538 		up_read(&mm->mmap_sem);
539 		trace_skip_task_reaping(tsk->pid);
540 		goto unlock_oom;
541 	}
542 
543 	trace_start_task_reaping(tsk->pid);
544 
545 	/*
546 	 * Tell all users of get_user/copy_from_user etc... that the content
547 	 * is no longer stable. No barriers really needed because unmapping
548 	 * should imply barriers already and the reader would hit a page fault
549 	 * if it stumbled over a reaped memory.
550 	 */
551 	set_bit(MMF_UNSTABLE, &mm->flags);
552 
553 	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
554 		if (!can_madv_dontneed_vma(vma))
555 			continue;
556 
557 		/*
558 		 * Only anonymous pages have a good chance to be dropped
559 		 * without additional steps which we cannot afford as we
560 		 * are OOM already.
561 		 *
562 		 * We do not even care about fs backed pages because all
563 		 * which are reclaimable have already been reclaimed and
564 		 * we do not want to block exit_mmap by keeping mm ref
565 		 * count elevated without a good reason.
566 		 */
567 		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
568 			tlb_gather_mmu(&tlb, mm, vma->vm_start, vma->vm_end);
569 			unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
570 					 NULL);
571 			tlb_finish_mmu(&tlb, vma->vm_start, vma->vm_end);
572 		}
573 	}
574 	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
575 			task_pid_nr(tsk), tsk->comm,
576 			K(get_mm_counter(mm, MM_ANONPAGES)),
577 			K(get_mm_counter(mm, MM_FILEPAGES)),
578 			K(get_mm_counter(mm, MM_SHMEMPAGES)));
579 	up_read(&mm->mmap_sem);
580 
581 	trace_finish_task_reaping(tsk->pid);
582 unlock_oom:
583 	mutex_unlock(&oom_lock);
584 	return ret;
585 }
586 
587 #define MAX_OOM_REAP_RETRIES 10
588 static void oom_reap_task(struct task_struct *tsk)
589 {
590 	int attempts = 0;
591 	struct mm_struct *mm = tsk->signal->oom_mm;
592 
593 	/* Retry the down_read_trylock(mmap_sem) a few times */
594 	while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task_mm(tsk, mm))
595 		schedule_timeout_idle(HZ/10);
596 
597 	if (attempts <= MAX_OOM_REAP_RETRIES)
598 		goto done;
599 
600 
601 	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
602 		task_pid_nr(tsk), tsk->comm);
603 	debug_show_all_locks();
604 
605 done:
606 	tsk->oom_reaper_list = NULL;
607 
608 	/*
609 	 * Hide this mm from OOM killer because it has been either reaped or
610 	 * somebody can't call up_write(mmap_sem).
611 	 */
612 	set_bit(MMF_OOM_SKIP, &mm->flags);
613 
614 	/* Drop a reference taken by wake_oom_reaper */
615 	put_task_struct(tsk);
616 }
617 
618 static int oom_reaper(void *unused)
619 {
620 	while (true) {
621 		struct task_struct *tsk = NULL;
622 
623 		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
624 		spin_lock(&oom_reaper_lock);
625 		if (oom_reaper_list != NULL) {
626 			tsk = oom_reaper_list;
627 			oom_reaper_list = tsk->oom_reaper_list;
628 		}
629 		spin_unlock(&oom_reaper_lock);
630 
631 		if (tsk)
632 			oom_reap_task(tsk);
633 	}
634 
635 	return 0;
636 }
637 
638 static void wake_oom_reaper(struct task_struct *tsk)
639 {
640 	/* tsk is already queued? */
641 	if (tsk == oom_reaper_list || tsk->oom_reaper_list)
642 		return;
643 
644 	get_task_struct(tsk);
645 
646 	spin_lock(&oom_reaper_lock);
647 	tsk->oom_reaper_list = oom_reaper_list;
648 	oom_reaper_list = tsk;
649 	spin_unlock(&oom_reaper_lock);
650 	trace_wake_reaper(tsk->pid);
651 	wake_up(&oom_reaper_wait);
652 }
653 
654 static int __init oom_init(void)
655 {
656 	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
657 	return 0;
658 }
659 subsys_initcall(oom_init)
660 #else
661 static inline void wake_oom_reaper(struct task_struct *tsk)
662 {
663 }
664 #endif /* CONFIG_MMU */
665 
666 /**
667  * mark_oom_victim - mark the given task as OOM victim
668  * @tsk: task to mark
669  *
670  * Has to be called with oom_lock held and never after
671  * oom has been disabled already.
672  *
673  * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
674  * under task_lock or operate on the current).
675  */
676 static void mark_oom_victim(struct task_struct *tsk)
677 {
678 	struct mm_struct *mm = tsk->mm;
679 
680 	WARN_ON(oom_killer_disabled);
681 	/* OOM killer might race with memcg OOM */
682 	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
683 		return;
684 
685 	/* oom_mm is bound to the signal struct life time. */
686 	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
687 		mmgrab(tsk->signal->oom_mm);
688 		set_bit(MMF_OOM_VICTIM, &mm->flags);
689 	}
690 
691 	/*
692 	 * Make sure that the task is woken up from uninterruptible sleep
693 	 * if it is frozen because OOM killer wouldn't be able to free
694 	 * any memory and livelock. freezing_slow_path will tell the freezer
695 	 * that TIF_MEMDIE tasks should be ignored.
696 	 */
697 	__thaw_task(tsk);
698 	atomic_inc(&oom_victims);
699 	trace_mark_victim(tsk->pid);
700 }
701 
702 /**
703  * exit_oom_victim - note the exit of an OOM victim
704  */
705 void exit_oom_victim(void)
706 {
707 	clear_thread_flag(TIF_MEMDIE);
708 
709 	if (!atomic_dec_return(&oom_victims))
710 		wake_up_all(&oom_victims_wait);
711 }
712 
713 /**
714  * oom_killer_enable - enable OOM killer
715  */
716 void oom_killer_enable(void)
717 {
718 	oom_killer_disabled = false;
719 	pr_info("OOM killer enabled.\n");
720 }
721 
722 /**
723  * oom_killer_disable - disable OOM killer
724  * @timeout: maximum timeout to wait for oom victims in jiffies
725  *
726  * Forces all page allocations to fail rather than trigger OOM killer.
727  * Will block and wait until all OOM victims are killed or the given
728  * timeout expires.
729  *
730  * The function cannot be called when there are runnable user tasks because
731  * the userspace would see unexpected allocation failures as a result. Any
732  * new usage of this function should be consulted with MM people.
733  *
734  * Returns true if successful and false if the OOM killer cannot be
735  * disabled.
736  */
737 bool oom_killer_disable(signed long timeout)
738 {
739 	signed long ret;
740 
741 	/*
742 	 * Make sure to not race with an ongoing OOM killer. Check that the
743 	 * current is not killed (possibly due to sharing the victim's memory).
744 	 */
745 	if (mutex_lock_killable(&oom_lock))
746 		return false;
747 	oom_killer_disabled = true;
748 	mutex_unlock(&oom_lock);
749 
750 	ret = wait_event_interruptible_timeout(oom_victims_wait,
751 			!atomic_read(&oom_victims), timeout);
752 	if (ret <= 0) {
753 		oom_killer_enable();
754 		return false;
755 	}
756 	pr_info("OOM killer disabled.\n");
757 
758 	return true;
759 }
760 
761 static inline bool __task_will_free_mem(struct task_struct *task)
762 {
763 	struct signal_struct *sig = task->signal;
764 
765 	/*
766 	 * A coredumping process may sleep for an extended period in exit_mm(),
767 	 * so the oom killer cannot assume that the process will promptly exit
768 	 * and release memory.
769 	 */
770 	if (sig->flags & SIGNAL_GROUP_COREDUMP)
771 		return false;
772 
773 	if (sig->flags & SIGNAL_GROUP_EXIT)
774 		return true;
775 
776 	if (thread_group_empty(task) && (task->flags & PF_EXITING))
777 		return true;
778 
779 	return false;
780 }
781 
782 /*
783  * Checks whether the given task is dying or exiting and likely to
784  * release its address space. This means that all threads and processes
785  * sharing the same mm have to be killed or exiting.
786  * Caller has to make sure that task->mm is stable (hold task_lock or
787  * it operates on the current).
788  */
789 static bool task_will_free_mem(struct task_struct *task)
790 {
791 	struct mm_struct *mm = task->mm;
792 	struct task_struct *p;
793 	bool ret = true;
794 
795 	/*
796 	 * Skip tasks without mm because it might have passed its exit_mm and
797 	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
798 	 * on that for now. We can consider find_lock_task_mm in future.
799 	 */
800 	if (!mm)
801 		return false;
802 
803 	if (!__task_will_free_mem(task))
804 		return false;
805 
806 	/*
807 	 * This task has already been drained by the oom reaper so there are
808 	 * only small chances it will free some more
809 	 */
810 	if (test_bit(MMF_OOM_SKIP, &mm->flags))
811 		return false;
812 
813 	if (atomic_read(&mm->mm_users) <= 1)
814 		return true;
815 
816 	/*
817 	 * Make sure that all tasks which share the mm with the given tasks
818 	 * are dying as well to make sure that a) nobody pins its mm and
819 	 * b) the task is also reapable by the oom reaper.
820 	 */
821 	rcu_read_lock();
822 	for_each_process(p) {
823 		if (!process_shares_mm(p, mm))
824 			continue;
825 		if (same_thread_group(task, p))
826 			continue;
827 		ret = __task_will_free_mem(p);
828 		if (!ret)
829 			break;
830 	}
831 	rcu_read_unlock();
832 
833 	return ret;
834 }
835 
836 static void oom_kill_process(struct oom_control *oc, const char *message)
837 {
838 	struct task_struct *p = oc->chosen;
839 	unsigned int points = oc->chosen_points;
840 	struct task_struct *victim = p;
841 	struct task_struct *child;
842 	struct task_struct *t;
843 	struct mm_struct *mm;
844 	unsigned int victim_points = 0;
845 	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
846 					      DEFAULT_RATELIMIT_BURST);
847 	bool can_oom_reap = true;
848 
849 	/*
850 	 * If the task is already exiting, don't alarm the sysadmin or kill
851 	 * its children or threads, just give it access to memory reserves
852 	 * so it can die quickly
853 	 */
854 	task_lock(p);
855 	if (task_will_free_mem(p)) {
856 		mark_oom_victim(p);
857 		wake_oom_reaper(p);
858 		task_unlock(p);
859 		put_task_struct(p);
860 		return;
861 	}
862 	task_unlock(p);
863 
864 	if (__ratelimit(&oom_rs))
865 		dump_header(oc, p);
866 
867 	pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
868 		message, task_pid_nr(p), p->comm, points);
869 
870 	/*
871 	 * If any of p's children has a different mm and is eligible for kill,
872 	 * the one with the highest oom_badness() score is sacrificed for its
873 	 * parent.  This attempts to lose the minimal amount of work done while
874 	 * still freeing memory.
875 	 */
876 	read_lock(&tasklist_lock);
877 	for_each_thread(p, t) {
878 		list_for_each_entry(child, &t->children, sibling) {
879 			unsigned int child_points;
880 
881 			if (process_shares_mm(child, p->mm))
882 				continue;
883 			/*
884 			 * oom_badness() returns 0 if the thread is unkillable
885 			 */
886 			child_points = oom_badness(child,
887 				oc->memcg, oc->nodemask, oc->totalpages);
888 			if (child_points > victim_points) {
889 				put_task_struct(victim);
890 				victim = child;
891 				victim_points = child_points;
892 				get_task_struct(victim);
893 			}
894 		}
895 	}
896 	read_unlock(&tasklist_lock);
897 
898 	p = find_lock_task_mm(victim);
899 	if (!p) {
900 		put_task_struct(victim);
901 		return;
902 	} else if (victim != p) {
903 		get_task_struct(p);
904 		put_task_struct(victim);
905 		victim = p;
906 	}
907 
908 	/* Get a reference to safely compare mm after task_unlock(victim) */
909 	mm = victim->mm;
910 	mmgrab(mm);
911 
912 	/* Raise event before sending signal: task reaper must see this */
913 	count_vm_event(OOM_KILL);
914 	count_memcg_event_mm(mm, OOM_KILL);
915 
916 	/*
917 	 * We should send SIGKILL before granting access to memory reserves
918 	 * in order to prevent the OOM victim from depleting the memory
919 	 * reserves from the user space under its control.
920 	 */
921 	do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
922 	mark_oom_victim(victim);
923 	pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
924 		task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
925 		K(get_mm_counter(victim->mm, MM_ANONPAGES)),
926 		K(get_mm_counter(victim->mm, MM_FILEPAGES)),
927 		K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
928 	task_unlock(victim);
929 
930 	/*
931 	 * Kill all user processes sharing victim->mm in other thread groups, if
932 	 * any.  They don't get access to memory reserves, though, to avoid
933 	 * depletion of all memory.  This prevents mm->mmap_sem livelock when an
934 	 * oom killed thread cannot exit because it requires the semaphore and
935 	 * its contended by another thread trying to allocate memory itself.
936 	 * That thread will now get access to memory reserves since it has a
937 	 * pending fatal signal.
938 	 */
939 	rcu_read_lock();
940 	for_each_process(p) {
941 		if (!process_shares_mm(p, mm))
942 			continue;
943 		if (same_thread_group(p, victim))
944 			continue;
945 		if (is_global_init(p)) {
946 			can_oom_reap = false;
947 			set_bit(MMF_OOM_SKIP, &mm->flags);
948 			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
949 					task_pid_nr(victim), victim->comm,
950 					task_pid_nr(p), p->comm);
951 			continue;
952 		}
953 		/*
954 		 * No use_mm() user needs to read from the userspace so we are
955 		 * ok to reap it.
956 		 */
957 		if (unlikely(p->flags & PF_KTHREAD))
958 			continue;
959 		do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
960 	}
961 	rcu_read_unlock();
962 
963 	if (can_oom_reap)
964 		wake_oom_reaper(victim);
965 
966 	mmdrop(mm);
967 	put_task_struct(victim);
968 }
969 #undef K
970 
971 /*
972  * Determines whether the kernel must panic because of the panic_on_oom sysctl.
973  */
974 static void check_panic_on_oom(struct oom_control *oc,
975 			       enum oom_constraint constraint)
976 {
977 	if (likely(!sysctl_panic_on_oom))
978 		return;
979 	if (sysctl_panic_on_oom != 2) {
980 		/*
981 		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
982 		 * does not panic for cpuset, mempolicy, or memcg allocation
983 		 * failures.
984 		 */
985 		if (constraint != CONSTRAINT_NONE)
986 			return;
987 	}
988 	/* Do not panic for oom kills triggered by sysrq */
989 	if (is_sysrq_oom(oc))
990 		return;
991 	dump_header(oc, NULL);
992 	panic("Out of memory: %s panic_on_oom is enabled\n",
993 		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
994 }
995 
996 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
997 
998 int register_oom_notifier(struct notifier_block *nb)
999 {
1000 	return blocking_notifier_chain_register(&oom_notify_list, nb);
1001 }
1002 EXPORT_SYMBOL_GPL(register_oom_notifier);
1003 
1004 int unregister_oom_notifier(struct notifier_block *nb)
1005 {
1006 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1007 }
1008 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1009 
1010 /**
1011  * out_of_memory - kill the "best" process when we run out of memory
1012  * @oc: pointer to struct oom_control
1013  *
1014  * If we run out of memory, we have the choice between either
1015  * killing a random task (bad), letting the system crash (worse)
1016  * OR try to be smart about which process to kill. Note that we
1017  * don't have to be perfect here, we just have to be good.
1018  */
1019 bool out_of_memory(struct oom_control *oc)
1020 {
1021 	unsigned long freed = 0;
1022 	enum oom_constraint constraint = CONSTRAINT_NONE;
1023 
1024 	if (oom_killer_disabled)
1025 		return false;
1026 
1027 	if (!is_memcg_oom(oc)) {
1028 		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1029 		if (freed > 0)
1030 			/* Got some memory back in the last second. */
1031 			return true;
1032 	}
1033 
1034 	/*
1035 	 * If current has a pending SIGKILL or is exiting, then automatically
1036 	 * select it.  The goal is to allow it to allocate so that it may
1037 	 * quickly exit and free its memory.
1038 	 */
1039 	if (task_will_free_mem(current)) {
1040 		mark_oom_victim(current);
1041 		wake_oom_reaper(current);
1042 		return true;
1043 	}
1044 
1045 	/*
1046 	 * The OOM killer does not compensate for IO-less reclaim.
1047 	 * pagefault_out_of_memory lost its gfp context so we have to
1048 	 * make sure exclude 0 mask - all other users should have at least
1049 	 * ___GFP_DIRECT_RECLAIM to get here.
1050 	 */
1051 	if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS))
1052 		return true;
1053 
1054 	/*
1055 	 * Check if there were limitations on the allocation (only relevant for
1056 	 * NUMA and memcg) that may require different handling.
1057 	 */
1058 	constraint = constrained_alloc(oc);
1059 	if (constraint != CONSTRAINT_MEMORY_POLICY)
1060 		oc->nodemask = NULL;
1061 	check_panic_on_oom(oc, constraint);
1062 
1063 	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1064 	    current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
1065 	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1066 		get_task_struct(current);
1067 		oc->chosen = current;
1068 		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1069 		return true;
1070 	}
1071 
1072 	select_bad_process(oc);
1073 	/* Found nothing?!?! Either we hang forever, or we panic. */
1074 	if (!oc->chosen && !is_sysrq_oom(oc) && !is_memcg_oom(oc)) {
1075 		dump_header(oc, NULL);
1076 		panic("Out of memory and no killable processes...\n");
1077 	}
1078 	if (oc->chosen && oc->chosen != (void *)-1UL) {
1079 		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1080 				 "Memory cgroup out of memory");
1081 		/*
1082 		 * Give the killed process a good chance to exit before trying
1083 		 * to allocate memory again.
1084 		 */
1085 		schedule_timeout_killable(1);
1086 	}
1087 	return !!oc->chosen;
1088 }
1089 
1090 /*
1091  * The pagefault handler calls here because it is out of memory, so kill a
1092  * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1093  * killing is already in progress so do nothing.
1094  */
1095 void pagefault_out_of_memory(void)
1096 {
1097 	struct oom_control oc = {
1098 		.zonelist = NULL,
1099 		.nodemask = NULL,
1100 		.memcg = NULL,
1101 		.gfp_mask = 0,
1102 		.order = 0,
1103 	};
1104 
1105 	if (mem_cgroup_oom_synchronize(true))
1106 		return;
1107 
1108 	if (!mutex_trylock(&oom_lock))
1109 		return;
1110 	out_of_memory(&oc);
1111 	mutex_unlock(&oom_lock);
1112 }
1113