1 /* 2 * linux/mm/oom_kill.c 3 * 4 * Copyright (C) 1998,2000 Rik van Riel 5 * Thanks go out to Claus Fischer for some serious inspiration and 6 * for goading me into coding this file... 7 * Copyright (C) 2010 Google, Inc. 8 * Rewritten by David Rientjes 9 * 10 * The routines in this file are used to kill a process when 11 * we're seriously out of memory. This gets called from __alloc_pages() 12 * in mm/page_alloc.c when we really run out of memory. 13 * 14 * Since we won't call these routines often (on a well-configured 15 * machine) this file will double as a 'coding guide' and a signpost 16 * for newbie kernel hackers. It features several pointers to major 17 * kernel subsystems and hints as to where to find out what things do. 18 */ 19 20 #include <linux/oom.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/gfp.h> 24 #include <linux/sched.h> 25 #include <linux/swap.h> 26 #include <linux/timex.h> 27 #include <linux/jiffies.h> 28 #include <linux/cpuset.h> 29 #include <linux/module.h> 30 #include <linux/notifier.h> 31 #include <linux/memcontrol.h> 32 #include <linux/mempolicy.h> 33 #include <linux/security.h> 34 35 int sysctl_panic_on_oom; 36 int sysctl_oom_kill_allocating_task; 37 int sysctl_oom_dump_tasks = 1; 38 static DEFINE_SPINLOCK(zone_scan_lock); 39 40 #ifdef CONFIG_NUMA 41 /** 42 * has_intersects_mems_allowed() - check task eligiblity for kill 43 * @tsk: task struct of which task to consider 44 * @mask: nodemask passed to page allocator for mempolicy ooms 45 * 46 * Task eligibility is determined by whether or not a candidate task, @tsk, 47 * shares the same mempolicy nodes as current if it is bound by such a policy 48 * and whether or not it has the same set of allowed cpuset nodes. 49 */ 50 static bool has_intersects_mems_allowed(struct task_struct *tsk, 51 const nodemask_t *mask) 52 { 53 struct task_struct *start = tsk; 54 55 do { 56 if (mask) { 57 /* 58 * If this is a mempolicy constrained oom, tsk's 59 * cpuset is irrelevant. Only return true if its 60 * mempolicy intersects current, otherwise it may be 61 * needlessly killed. 62 */ 63 if (mempolicy_nodemask_intersects(tsk, mask)) 64 return true; 65 } else { 66 /* 67 * This is not a mempolicy constrained oom, so only 68 * check the mems of tsk's cpuset. 69 */ 70 if (cpuset_mems_allowed_intersects(current, tsk)) 71 return true; 72 } 73 } while_each_thread(start, tsk); 74 75 return false; 76 } 77 #else 78 static bool has_intersects_mems_allowed(struct task_struct *tsk, 79 const nodemask_t *mask) 80 { 81 return true; 82 } 83 #endif /* CONFIG_NUMA */ 84 85 /* 86 * If this is a system OOM (not a memcg OOM) and the task selected to be 87 * killed is not already running at high (RT) priorities, speed up the 88 * recovery by boosting the dying task to the lowest FIFO priority. 89 * That helps with the recovery and avoids interfering with RT tasks. 90 */ 91 static void boost_dying_task_prio(struct task_struct *p, 92 struct mem_cgroup *mem) 93 { 94 struct sched_param param = { .sched_priority = 1 }; 95 96 if (mem) 97 return; 98 99 if (!rt_task(p)) 100 sched_setscheduler_nocheck(p, SCHED_FIFO, ¶m); 101 } 102 103 /* 104 * The process p may have detached its own ->mm while exiting or through 105 * use_mm(), but one or more of its subthreads may still have a valid 106 * pointer. Return p, or any of its subthreads with a valid ->mm, with 107 * task_lock() held. 108 */ 109 struct task_struct *find_lock_task_mm(struct task_struct *p) 110 { 111 struct task_struct *t = p; 112 113 do { 114 task_lock(t); 115 if (likely(t->mm)) 116 return t; 117 task_unlock(t); 118 } while_each_thread(p, t); 119 120 return NULL; 121 } 122 123 /* return true if the task is not adequate as candidate victim task. */ 124 static bool oom_unkillable_task(struct task_struct *p, 125 const struct mem_cgroup *mem, const nodemask_t *nodemask) 126 { 127 if (is_global_init(p)) 128 return true; 129 if (p->flags & PF_KTHREAD) 130 return true; 131 132 /* When mem_cgroup_out_of_memory() and p is not member of the group */ 133 if (mem && !task_in_mem_cgroup(p, mem)) 134 return true; 135 136 /* p may not have freeable memory in nodemask */ 137 if (!has_intersects_mems_allowed(p, nodemask)) 138 return true; 139 140 return false; 141 } 142 143 /** 144 * oom_badness - heuristic function to determine which candidate task to kill 145 * @p: task struct of which task we should calculate 146 * @totalpages: total present RAM allowed for page allocation 147 * 148 * The heuristic for determining which task to kill is made to be as simple and 149 * predictable as possible. The goal is to return the highest value for the 150 * task consuming the most memory to avoid subsequent oom failures. 151 */ 152 unsigned int oom_badness(struct task_struct *p, struct mem_cgroup *mem, 153 const nodemask_t *nodemask, unsigned long totalpages) 154 { 155 int points; 156 157 if (oom_unkillable_task(p, mem, nodemask)) 158 return 0; 159 160 p = find_lock_task_mm(p); 161 if (!p) 162 return 0; 163 164 /* 165 * Shortcut check for a thread sharing p->mm that is OOM_SCORE_ADJ_MIN 166 * so the entire heuristic doesn't need to be executed for something 167 * that cannot be killed. 168 */ 169 if (atomic_read(&p->mm->oom_disable_count)) { 170 task_unlock(p); 171 return 0; 172 } 173 174 /* 175 * When the PF_OOM_ORIGIN bit is set, it indicates the task should have 176 * priority for oom killing. 177 */ 178 if (p->flags & PF_OOM_ORIGIN) { 179 task_unlock(p); 180 return 1000; 181 } 182 183 /* 184 * The memory controller may have a limit of 0 bytes, so avoid a divide 185 * by zero, if necessary. 186 */ 187 if (!totalpages) 188 totalpages = 1; 189 190 /* 191 * The baseline for the badness score is the proportion of RAM that each 192 * task's rss and swap space use. 193 */ 194 points = (get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS)) * 1000 / 195 totalpages; 196 task_unlock(p); 197 198 /* 199 * Root processes get 3% bonus, just like the __vm_enough_memory() 200 * implementation used by LSMs. 201 */ 202 if (has_capability_noaudit(p, CAP_SYS_ADMIN)) 203 points -= 30; 204 205 /* 206 * /proc/pid/oom_score_adj ranges from -1000 to +1000 such that it may 207 * either completely disable oom killing or always prefer a certain 208 * task. 209 */ 210 points += p->signal->oom_score_adj; 211 212 /* 213 * Never return 0 for an eligible task that may be killed since it's 214 * possible that no single user task uses more than 0.1% of memory and 215 * no single admin tasks uses more than 3.0%. 216 */ 217 if (points <= 0) 218 return 1; 219 return (points < 1000) ? points : 1000; 220 } 221 222 /* 223 * Determine the type of allocation constraint. 224 */ 225 #ifdef CONFIG_NUMA 226 static enum oom_constraint constrained_alloc(struct zonelist *zonelist, 227 gfp_t gfp_mask, nodemask_t *nodemask, 228 unsigned long *totalpages) 229 { 230 struct zone *zone; 231 struct zoneref *z; 232 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 233 bool cpuset_limited = false; 234 int nid; 235 236 /* Default to all available memory */ 237 *totalpages = totalram_pages + total_swap_pages; 238 239 if (!zonelist) 240 return CONSTRAINT_NONE; 241 /* 242 * Reach here only when __GFP_NOFAIL is used. So, we should avoid 243 * to kill current.We have to random task kill in this case. 244 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. 245 */ 246 if (gfp_mask & __GFP_THISNODE) 247 return CONSTRAINT_NONE; 248 249 /* 250 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in 251 * the page allocator means a mempolicy is in effect. Cpuset policy 252 * is enforced in get_page_from_freelist(). 253 */ 254 if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask)) { 255 *totalpages = total_swap_pages; 256 for_each_node_mask(nid, *nodemask) 257 *totalpages += node_spanned_pages(nid); 258 return CONSTRAINT_MEMORY_POLICY; 259 } 260 261 /* Check this allocation failure is caused by cpuset's wall function */ 262 for_each_zone_zonelist_nodemask(zone, z, zonelist, 263 high_zoneidx, nodemask) 264 if (!cpuset_zone_allowed_softwall(zone, gfp_mask)) 265 cpuset_limited = true; 266 267 if (cpuset_limited) { 268 *totalpages = total_swap_pages; 269 for_each_node_mask(nid, cpuset_current_mems_allowed) 270 *totalpages += node_spanned_pages(nid); 271 return CONSTRAINT_CPUSET; 272 } 273 return CONSTRAINT_NONE; 274 } 275 #else 276 static enum oom_constraint constrained_alloc(struct zonelist *zonelist, 277 gfp_t gfp_mask, nodemask_t *nodemask, 278 unsigned long *totalpages) 279 { 280 *totalpages = totalram_pages + total_swap_pages; 281 return CONSTRAINT_NONE; 282 } 283 #endif 284 285 /* 286 * Simple selection loop. We chose the process with the highest 287 * number of 'points'. We expect the caller will lock the tasklist. 288 * 289 * (not docbooked, we don't want this one cluttering up the manual) 290 */ 291 static struct task_struct *select_bad_process(unsigned int *ppoints, 292 unsigned long totalpages, struct mem_cgroup *mem, 293 const nodemask_t *nodemask) 294 { 295 struct task_struct *p; 296 struct task_struct *chosen = NULL; 297 *ppoints = 0; 298 299 for_each_process(p) { 300 unsigned int points; 301 302 if (oom_unkillable_task(p, mem, nodemask)) 303 continue; 304 305 /* 306 * This task already has access to memory reserves and is 307 * being killed. Don't allow any other task access to the 308 * memory reserve. 309 * 310 * Note: this may have a chance of deadlock if it gets 311 * blocked waiting for another task which itself is waiting 312 * for memory. Is there a better alternative? 313 */ 314 if (test_tsk_thread_flag(p, TIF_MEMDIE)) 315 return ERR_PTR(-1UL); 316 317 /* 318 * This is in the process of releasing memory so wait for it 319 * to finish before killing some other task by mistake. 320 * 321 * However, if p is the current task, we allow the 'kill' to 322 * go ahead if it is exiting: this will simply set TIF_MEMDIE, 323 * which will allow it to gain access to memory reserves in 324 * the process of exiting and releasing its resources. 325 * Otherwise we could get an easy OOM deadlock. 326 */ 327 if (thread_group_empty(p) && (p->flags & PF_EXITING) && p->mm) { 328 if (p != current) 329 return ERR_PTR(-1UL); 330 331 chosen = p; 332 *ppoints = 1000; 333 } 334 335 points = oom_badness(p, mem, nodemask, totalpages); 336 if (points > *ppoints) { 337 chosen = p; 338 *ppoints = points; 339 } 340 } 341 342 return chosen; 343 } 344 345 /** 346 * dump_tasks - dump current memory state of all system tasks 347 * @mem: current's memory controller, if constrained 348 * @nodemask: nodemask passed to page allocator for mempolicy ooms 349 * 350 * Dumps the current memory state of all eligible tasks. Tasks not in the same 351 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes 352 * are not shown. 353 * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj 354 * value, oom_score_adj value, and name. 355 * 356 * Call with tasklist_lock read-locked. 357 */ 358 static void dump_tasks(const struct mem_cgroup *mem, const nodemask_t *nodemask) 359 { 360 struct task_struct *p; 361 struct task_struct *task; 362 363 pr_info("[ pid ] uid tgid total_vm rss cpu oom_adj oom_score_adj name\n"); 364 for_each_process(p) { 365 if (oom_unkillable_task(p, mem, nodemask)) 366 continue; 367 368 task = find_lock_task_mm(p); 369 if (!task) { 370 /* 371 * This is a kthread or all of p's threads have already 372 * detached their mm's. There's no need to report 373 * them; they can't be oom killed anyway. 374 */ 375 continue; 376 } 377 378 pr_info("[%5d] %5d %5d %8lu %8lu %3u %3d %5d %s\n", 379 task->pid, task_uid(task), task->tgid, 380 task->mm->total_vm, get_mm_rss(task->mm), 381 task_cpu(task), task->signal->oom_adj, 382 task->signal->oom_score_adj, task->comm); 383 task_unlock(task); 384 } 385 } 386 387 static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order, 388 struct mem_cgroup *mem, const nodemask_t *nodemask) 389 { 390 task_lock(current); 391 pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, " 392 "oom_adj=%d, oom_score_adj=%d\n", 393 current->comm, gfp_mask, order, current->signal->oom_adj, 394 current->signal->oom_score_adj); 395 cpuset_print_task_mems_allowed(current); 396 task_unlock(current); 397 dump_stack(); 398 mem_cgroup_print_oom_info(mem, p); 399 show_mem(); 400 if (sysctl_oom_dump_tasks) 401 dump_tasks(mem, nodemask); 402 } 403 404 #define K(x) ((x) << (PAGE_SHIFT-10)) 405 static int oom_kill_task(struct task_struct *p, struct mem_cgroup *mem) 406 { 407 struct task_struct *q; 408 struct mm_struct *mm; 409 410 p = find_lock_task_mm(p); 411 if (!p) 412 return 1; 413 414 /* mm cannot be safely dereferenced after task_unlock(p) */ 415 mm = p->mm; 416 417 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n", 418 task_pid_nr(p), p->comm, K(p->mm->total_vm), 419 K(get_mm_counter(p->mm, MM_ANONPAGES)), 420 K(get_mm_counter(p->mm, MM_FILEPAGES))); 421 task_unlock(p); 422 423 /* 424 * Kill all processes sharing p->mm in other thread groups, if any. 425 * They don't get access to memory reserves or a higher scheduler 426 * priority, though, to avoid depletion of all memory or task 427 * starvation. This prevents mm->mmap_sem livelock when an oom killed 428 * task cannot exit because it requires the semaphore and its contended 429 * by another thread trying to allocate memory itself. That thread will 430 * now get access to memory reserves since it has a pending fatal 431 * signal. 432 */ 433 for_each_process(q) 434 if (q->mm == mm && !same_thread_group(q, p)) { 435 task_lock(q); /* Protect ->comm from prctl() */ 436 pr_err("Kill process %d (%s) sharing same memory\n", 437 task_pid_nr(q), q->comm); 438 task_unlock(q); 439 force_sig(SIGKILL, q); 440 } 441 442 set_tsk_thread_flag(p, TIF_MEMDIE); 443 force_sig(SIGKILL, p); 444 445 /* 446 * We give our sacrificial lamb high priority and access to 447 * all the memory it needs. That way it should be able to 448 * exit() and clear out its resources quickly... 449 */ 450 boost_dying_task_prio(p, mem); 451 452 return 0; 453 } 454 #undef K 455 456 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, 457 unsigned int points, unsigned long totalpages, 458 struct mem_cgroup *mem, nodemask_t *nodemask, 459 const char *message) 460 { 461 struct task_struct *victim = p; 462 struct task_struct *child; 463 struct task_struct *t = p; 464 unsigned int victim_points = 0; 465 466 if (printk_ratelimit()) 467 dump_header(p, gfp_mask, order, mem, nodemask); 468 469 /* 470 * If the task is already exiting, don't alarm the sysadmin or kill 471 * its children or threads, just set TIF_MEMDIE so it can die quickly 472 */ 473 if (p->flags & PF_EXITING) { 474 set_tsk_thread_flag(p, TIF_MEMDIE); 475 boost_dying_task_prio(p, mem); 476 return 0; 477 } 478 479 task_lock(p); 480 pr_err("%s: Kill process %d (%s) score %d or sacrifice child\n", 481 message, task_pid_nr(p), p->comm, points); 482 task_unlock(p); 483 484 /* 485 * If any of p's children has a different mm and is eligible for kill, 486 * the one with the highest badness() score is sacrificed for its 487 * parent. This attempts to lose the minimal amount of work done while 488 * still freeing memory. 489 */ 490 do { 491 list_for_each_entry(child, &t->children, sibling) { 492 unsigned int child_points; 493 494 /* 495 * oom_badness() returns 0 if the thread is unkillable 496 */ 497 child_points = oom_badness(child, mem, nodemask, 498 totalpages); 499 if (child_points > victim_points) { 500 victim = child; 501 victim_points = child_points; 502 } 503 } 504 } while_each_thread(p, t); 505 506 return oom_kill_task(victim, mem); 507 } 508 509 /* 510 * Determines whether the kernel must panic because of the panic_on_oom sysctl. 511 */ 512 static void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask, 513 int order, const nodemask_t *nodemask) 514 { 515 if (likely(!sysctl_panic_on_oom)) 516 return; 517 if (sysctl_panic_on_oom != 2) { 518 /* 519 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel 520 * does not panic for cpuset, mempolicy, or memcg allocation 521 * failures. 522 */ 523 if (constraint != CONSTRAINT_NONE) 524 return; 525 } 526 read_lock(&tasklist_lock); 527 dump_header(NULL, gfp_mask, order, NULL, nodemask); 528 read_unlock(&tasklist_lock); 529 panic("Out of memory: %s panic_on_oom is enabled\n", 530 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); 531 } 532 533 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 534 void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask) 535 { 536 unsigned long limit; 537 unsigned int points = 0; 538 struct task_struct *p; 539 540 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, 0, NULL); 541 limit = mem_cgroup_get_limit(mem) >> PAGE_SHIFT; 542 read_lock(&tasklist_lock); 543 retry: 544 p = select_bad_process(&points, limit, mem, NULL); 545 if (!p || PTR_ERR(p) == -1UL) 546 goto out; 547 548 if (oom_kill_process(p, gfp_mask, 0, points, limit, mem, NULL, 549 "Memory cgroup out of memory")) 550 goto retry; 551 out: 552 read_unlock(&tasklist_lock); 553 } 554 #endif 555 556 static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 557 558 int register_oom_notifier(struct notifier_block *nb) 559 { 560 return blocking_notifier_chain_register(&oom_notify_list, nb); 561 } 562 EXPORT_SYMBOL_GPL(register_oom_notifier); 563 564 int unregister_oom_notifier(struct notifier_block *nb) 565 { 566 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 567 } 568 EXPORT_SYMBOL_GPL(unregister_oom_notifier); 569 570 /* 571 * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero 572 * if a parallel OOM killing is already taking place that includes a zone in 573 * the zonelist. Otherwise, locks all zones in the zonelist and returns 1. 574 */ 575 int try_set_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask) 576 { 577 struct zoneref *z; 578 struct zone *zone; 579 int ret = 1; 580 581 spin_lock(&zone_scan_lock); 582 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 583 if (zone_is_oom_locked(zone)) { 584 ret = 0; 585 goto out; 586 } 587 } 588 589 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 590 /* 591 * Lock each zone in the zonelist under zone_scan_lock so a 592 * parallel invocation of try_set_zonelist_oom() doesn't succeed 593 * when it shouldn't. 594 */ 595 zone_set_flag(zone, ZONE_OOM_LOCKED); 596 } 597 598 out: 599 spin_unlock(&zone_scan_lock); 600 return ret; 601 } 602 603 /* 604 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed 605 * allocation attempts with zonelists containing them may now recall the OOM 606 * killer, if necessary. 607 */ 608 void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask) 609 { 610 struct zoneref *z; 611 struct zone *zone; 612 613 spin_lock(&zone_scan_lock); 614 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 615 zone_clear_flag(zone, ZONE_OOM_LOCKED); 616 } 617 spin_unlock(&zone_scan_lock); 618 } 619 620 /* 621 * Try to acquire the oom killer lock for all system zones. Returns zero if a 622 * parallel oom killing is taking place, otherwise locks all zones and returns 623 * non-zero. 624 */ 625 static int try_set_system_oom(void) 626 { 627 struct zone *zone; 628 int ret = 1; 629 630 spin_lock(&zone_scan_lock); 631 for_each_populated_zone(zone) 632 if (zone_is_oom_locked(zone)) { 633 ret = 0; 634 goto out; 635 } 636 for_each_populated_zone(zone) 637 zone_set_flag(zone, ZONE_OOM_LOCKED); 638 out: 639 spin_unlock(&zone_scan_lock); 640 return ret; 641 } 642 643 /* 644 * Clears ZONE_OOM_LOCKED for all system zones so that failed allocation 645 * attempts or page faults may now recall the oom killer, if necessary. 646 */ 647 static void clear_system_oom(void) 648 { 649 struct zone *zone; 650 651 spin_lock(&zone_scan_lock); 652 for_each_populated_zone(zone) 653 zone_clear_flag(zone, ZONE_OOM_LOCKED); 654 spin_unlock(&zone_scan_lock); 655 } 656 657 /** 658 * out_of_memory - kill the "best" process when we run out of memory 659 * @zonelist: zonelist pointer 660 * @gfp_mask: memory allocation flags 661 * @order: amount of memory being requested as a power of 2 662 * @nodemask: nodemask passed to page allocator 663 * 664 * If we run out of memory, we have the choice between either 665 * killing a random task (bad), letting the system crash (worse) 666 * OR try to be smart about which process to kill. Note that we 667 * don't have to be perfect here, we just have to be good. 668 */ 669 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, 670 int order, nodemask_t *nodemask) 671 { 672 const nodemask_t *mpol_mask; 673 struct task_struct *p; 674 unsigned long totalpages; 675 unsigned long freed = 0; 676 unsigned int points; 677 enum oom_constraint constraint = CONSTRAINT_NONE; 678 int killed = 0; 679 680 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 681 if (freed > 0) 682 /* Got some memory back in the last second. */ 683 return; 684 685 /* 686 * If current has a pending SIGKILL, then automatically select it. The 687 * goal is to allow it to allocate so that it may quickly exit and free 688 * its memory. 689 */ 690 if (fatal_signal_pending(current)) { 691 set_thread_flag(TIF_MEMDIE); 692 boost_dying_task_prio(current, NULL); 693 return; 694 } 695 696 /* 697 * Check if there were limitations on the allocation (only relevant for 698 * NUMA) that may require different handling. 699 */ 700 constraint = constrained_alloc(zonelist, gfp_mask, nodemask, 701 &totalpages); 702 mpol_mask = (constraint == CONSTRAINT_MEMORY_POLICY) ? nodemask : NULL; 703 check_panic_on_oom(constraint, gfp_mask, order, mpol_mask); 704 705 read_lock(&tasklist_lock); 706 if (sysctl_oom_kill_allocating_task && 707 !oom_unkillable_task(current, NULL, nodemask) && 708 current->mm && !atomic_read(¤t->mm->oom_disable_count)) { 709 /* 710 * oom_kill_process() needs tasklist_lock held. If it returns 711 * non-zero, current could not be killed so we must fallback to 712 * the tasklist scan. 713 */ 714 if (!oom_kill_process(current, gfp_mask, order, 0, totalpages, 715 NULL, nodemask, 716 "Out of memory (oom_kill_allocating_task)")) 717 goto out; 718 } 719 720 retry: 721 p = select_bad_process(&points, totalpages, NULL, mpol_mask); 722 if (PTR_ERR(p) == -1UL) 723 goto out; 724 725 /* Found nothing?!?! Either we hang forever, or we panic. */ 726 if (!p) { 727 dump_header(NULL, gfp_mask, order, NULL, mpol_mask); 728 read_unlock(&tasklist_lock); 729 panic("Out of memory and no killable processes...\n"); 730 } 731 732 if (oom_kill_process(p, gfp_mask, order, points, totalpages, NULL, 733 nodemask, "Out of memory")) 734 goto retry; 735 killed = 1; 736 out: 737 read_unlock(&tasklist_lock); 738 739 /* 740 * Give "p" a good chance of killing itself before we 741 * retry to allocate memory unless "p" is current 742 */ 743 if (killed && !test_thread_flag(TIF_MEMDIE)) 744 schedule_timeout_uninterruptible(1); 745 } 746 747 /* 748 * The pagefault handler calls here because it is out of memory, so kill a 749 * memory-hogging task. If a populated zone has ZONE_OOM_LOCKED set, a parallel 750 * oom killing is already in progress so do nothing. If a task is found with 751 * TIF_MEMDIE set, it has been killed so do nothing and allow it to exit. 752 */ 753 void pagefault_out_of_memory(void) 754 { 755 if (try_set_system_oom()) { 756 out_of_memory(NULL, 0, 0, NULL); 757 clear_system_oom(); 758 } 759 if (!test_thread_flag(TIF_MEMDIE)) 760 schedule_timeout_uninterruptible(1); 761 } 762