1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/oom_kill.c 4 * 5 * Copyright (C) 1998,2000 Rik van Riel 6 * Thanks go out to Claus Fischer for some serious inspiration and 7 * for goading me into coding this file... 8 * Copyright (C) 2010 Google, Inc. 9 * Rewritten by David Rientjes 10 * 11 * The routines in this file are used to kill a process when 12 * we're seriously out of memory. This gets called from __alloc_pages() 13 * in mm/page_alloc.c when we really run out of memory. 14 * 15 * Since we won't call these routines often (on a well-configured 16 * machine) this file will double as a 'coding guide' and a signpost 17 * for newbie kernel hackers. It features several pointers to major 18 * kernel subsystems and hints as to where to find out what things do. 19 */ 20 21 #include <linux/oom.h> 22 #include <linux/mm.h> 23 #include <linux/err.h> 24 #include <linux/gfp.h> 25 #include <linux/sched.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/coredump.h> 28 #include <linux/sched/task.h> 29 #include <linux/sched/debug.h> 30 #include <linux/swap.h> 31 #include <linux/timex.h> 32 #include <linux/jiffies.h> 33 #include <linux/cpuset.h> 34 #include <linux/export.h> 35 #include <linux/notifier.h> 36 #include <linux/memcontrol.h> 37 #include <linux/mempolicy.h> 38 #include <linux/security.h> 39 #include <linux/ptrace.h> 40 #include <linux/freezer.h> 41 #include <linux/ftrace.h> 42 #include <linux/ratelimit.h> 43 #include <linux/kthread.h> 44 #include <linux/init.h> 45 #include <linux/mmu_notifier.h> 46 47 #include <asm/tlb.h> 48 #include "internal.h" 49 #include "slab.h" 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/oom.h> 53 54 int sysctl_panic_on_oom; 55 int sysctl_oom_kill_allocating_task; 56 int sysctl_oom_dump_tasks = 1; 57 58 /* 59 * Serializes oom killer invocations (out_of_memory()) from all contexts to 60 * prevent from over eager oom killing (e.g. when the oom killer is invoked 61 * from different domains). 62 * 63 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled 64 * and mark_oom_victim 65 */ 66 DEFINE_MUTEX(oom_lock); 67 /* Serializes oom_score_adj and oom_score_adj_min updates */ 68 DEFINE_MUTEX(oom_adj_mutex); 69 70 static inline bool is_memcg_oom(struct oom_control *oc) 71 { 72 return oc->memcg != NULL; 73 } 74 75 #ifdef CONFIG_NUMA 76 /** 77 * oom_cpuset_eligible() - check task eligiblity for kill 78 * @start: task struct of which task to consider 79 * @oc: pointer to struct oom_control 80 * 81 * Task eligibility is determined by whether or not a candidate task, @tsk, 82 * shares the same mempolicy nodes as current if it is bound by such a policy 83 * and whether or not it has the same set of allowed cpuset nodes. 84 * 85 * This function is assuming oom-killer context and 'current' has triggered 86 * the oom-killer. 87 */ 88 static bool oom_cpuset_eligible(struct task_struct *start, 89 struct oom_control *oc) 90 { 91 struct task_struct *tsk; 92 bool ret = false; 93 const nodemask_t *mask = oc->nodemask; 94 95 if (is_memcg_oom(oc)) 96 return true; 97 98 rcu_read_lock(); 99 for_each_thread(start, tsk) { 100 if (mask) { 101 /* 102 * If this is a mempolicy constrained oom, tsk's 103 * cpuset is irrelevant. Only return true if its 104 * mempolicy intersects current, otherwise it may be 105 * needlessly killed. 106 */ 107 ret = mempolicy_nodemask_intersects(tsk, mask); 108 } else { 109 /* 110 * This is not a mempolicy constrained oom, so only 111 * check the mems of tsk's cpuset. 112 */ 113 ret = cpuset_mems_allowed_intersects(current, tsk); 114 } 115 if (ret) 116 break; 117 } 118 rcu_read_unlock(); 119 120 return ret; 121 } 122 #else 123 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc) 124 { 125 return true; 126 } 127 #endif /* CONFIG_NUMA */ 128 129 /* 130 * The process p may have detached its own ->mm while exiting or through 131 * kthread_use_mm(), but one or more of its subthreads may still have a valid 132 * pointer. Return p, or any of its subthreads with a valid ->mm, with 133 * task_lock() held. 134 */ 135 struct task_struct *find_lock_task_mm(struct task_struct *p) 136 { 137 struct task_struct *t; 138 139 rcu_read_lock(); 140 141 for_each_thread(p, t) { 142 task_lock(t); 143 if (likely(t->mm)) 144 goto found; 145 task_unlock(t); 146 } 147 t = NULL; 148 found: 149 rcu_read_unlock(); 150 151 return t; 152 } 153 154 /* 155 * order == -1 means the oom kill is required by sysrq, otherwise only 156 * for display purposes. 157 */ 158 static inline bool is_sysrq_oom(struct oom_control *oc) 159 { 160 return oc->order == -1; 161 } 162 163 /* return true if the task is not adequate as candidate victim task. */ 164 static bool oom_unkillable_task(struct task_struct *p) 165 { 166 if (is_global_init(p)) 167 return true; 168 if (p->flags & PF_KTHREAD) 169 return true; 170 return false; 171 } 172 173 /** 174 * Check whether unreclaimable slab amount is greater than 175 * all user memory(LRU pages). 176 * dump_unreclaimable_slab() could help in the case that 177 * oom due to too much unreclaimable slab used by kernel. 178 */ 179 static bool should_dump_unreclaim_slab(void) 180 { 181 unsigned long nr_lru; 182 183 nr_lru = global_node_page_state(NR_ACTIVE_ANON) + 184 global_node_page_state(NR_INACTIVE_ANON) + 185 global_node_page_state(NR_ACTIVE_FILE) + 186 global_node_page_state(NR_INACTIVE_FILE) + 187 global_node_page_state(NR_ISOLATED_ANON) + 188 global_node_page_state(NR_ISOLATED_FILE) + 189 global_node_page_state(NR_UNEVICTABLE); 190 191 return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru); 192 } 193 194 /** 195 * oom_badness - heuristic function to determine which candidate task to kill 196 * @p: task struct of which task we should calculate 197 * @totalpages: total present RAM allowed for page allocation 198 * 199 * The heuristic for determining which task to kill is made to be as simple and 200 * predictable as possible. The goal is to return the highest value for the 201 * task consuming the most memory to avoid subsequent oom failures. 202 */ 203 long oom_badness(struct task_struct *p, unsigned long totalpages) 204 { 205 long points; 206 long adj; 207 208 if (oom_unkillable_task(p)) 209 return LONG_MIN; 210 211 p = find_lock_task_mm(p); 212 if (!p) 213 return LONG_MIN; 214 215 /* 216 * Do not even consider tasks which are explicitly marked oom 217 * unkillable or have been already oom reaped or the are in 218 * the middle of vfork 219 */ 220 adj = (long)p->signal->oom_score_adj; 221 if (adj == OOM_SCORE_ADJ_MIN || 222 test_bit(MMF_OOM_SKIP, &p->mm->flags) || 223 in_vfork(p)) { 224 task_unlock(p); 225 return LONG_MIN; 226 } 227 228 /* 229 * The baseline for the badness score is the proportion of RAM that each 230 * task's rss, pagetable and swap space use. 231 */ 232 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) + 233 mm_pgtables_bytes(p->mm) / PAGE_SIZE; 234 task_unlock(p); 235 236 /* Normalize to oom_score_adj units */ 237 adj *= totalpages / 1000; 238 points += adj; 239 240 return points; 241 } 242 243 static const char * const oom_constraint_text[] = { 244 [CONSTRAINT_NONE] = "CONSTRAINT_NONE", 245 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET", 246 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY", 247 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG", 248 }; 249 250 /* 251 * Determine the type of allocation constraint. 252 */ 253 static enum oom_constraint constrained_alloc(struct oom_control *oc) 254 { 255 struct zone *zone; 256 struct zoneref *z; 257 enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask); 258 bool cpuset_limited = false; 259 int nid; 260 261 if (is_memcg_oom(oc)) { 262 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1; 263 return CONSTRAINT_MEMCG; 264 } 265 266 /* Default to all available memory */ 267 oc->totalpages = totalram_pages() + total_swap_pages; 268 269 if (!IS_ENABLED(CONFIG_NUMA)) 270 return CONSTRAINT_NONE; 271 272 if (!oc->zonelist) 273 return CONSTRAINT_NONE; 274 /* 275 * Reach here only when __GFP_NOFAIL is used. So, we should avoid 276 * to kill current.We have to random task kill in this case. 277 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. 278 */ 279 if (oc->gfp_mask & __GFP_THISNODE) 280 return CONSTRAINT_NONE; 281 282 /* 283 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in 284 * the page allocator means a mempolicy is in effect. Cpuset policy 285 * is enforced in get_page_from_freelist(). 286 */ 287 if (oc->nodemask && 288 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) { 289 oc->totalpages = total_swap_pages; 290 for_each_node_mask(nid, *oc->nodemask) 291 oc->totalpages += node_present_pages(nid); 292 return CONSTRAINT_MEMORY_POLICY; 293 } 294 295 /* Check this allocation failure is caused by cpuset's wall function */ 296 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist, 297 highest_zoneidx, oc->nodemask) 298 if (!cpuset_zone_allowed(zone, oc->gfp_mask)) 299 cpuset_limited = true; 300 301 if (cpuset_limited) { 302 oc->totalpages = total_swap_pages; 303 for_each_node_mask(nid, cpuset_current_mems_allowed) 304 oc->totalpages += node_present_pages(nid); 305 return CONSTRAINT_CPUSET; 306 } 307 return CONSTRAINT_NONE; 308 } 309 310 static int oom_evaluate_task(struct task_struct *task, void *arg) 311 { 312 struct oom_control *oc = arg; 313 long points; 314 315 if (oom_unkillable_task(task)) 316 goto next; 317 318 /* p may not have freeable memory in nodemask */ 319 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc)) 320 goto next; 321 322 /* 323 * This task already has access to memory reserves and is being killed. 324 * Don't allow any other task to have access to the reserves unless 325 * the task has MMF_OOM_SKIP because chances that it would release 326 * any memory is quite low. 327 */ 328 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) { 329 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags)) 330 goto next; 331 goto abort; 332 } 333 334 /* 335 * If task is allocating a lot of memory and has been marked to be 336 * killed first if it triggers an oom, then select it. 337 */ 338 if (oom_task_origin(task)) { 339 points = LONG_MAX; 340 goto select; 341 } 342 343 points = oom_badness(task, oc->totalpages); 344 if (points == LONG_MIN || points < oc->chosen_points) 345 goto next; 346 347 select: 348 if (oc->chosen) 349 put_task_struct(oc->chosen); 350 get_task_struct(task); 351 oc->chosen = task; 352 oc->chosen_points = points; 353 next: 354 return 0; 355 abort: 356 if (oc->chosen) 357 put_task_struct(oc->chosen); 358 oc->chosen = (void *)-1UL; 359 return 1; 360 } 361 362 /* 363 * Simple selection loop. We choose the process with the highest number of 364 * 'points'. In case scan was aborted, oc->chosen is set to -1. 365 */ 366 static void select_bad_process(struct oom_control *oc) 367 { 368 oc->chosen_points = LONG_MIN; 369 370 if (is_memcg_oom(oc)) 371 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc); 372 else { 373 struct task_struct *p; 374 375 rcu_read_lock(); 376 for_each_process(p) 377 if (oom_evaluate_task(p, oc)) 378 break; 379 rcu_read_unlock(); 380 } 381 } 382 383 static int dump_task(struct task_struct *p, void *arg) 384 { 385 struct oom_control *oc = arg; 386 struct task_struct *task; 387 388 if (oom_unkillable_task(p)) 389 return 0; 390 391 /* p may not have freeable memory in nodemask */ 392 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc)) 393 return 0; 394 395 task = find_lock_task_mm(p); 396 if (!task) { 397 /* 398 * All of p's threads have already detached their mm's. There's 399 * no need to report them; they can't be oom killed anyway. 400 */ 401 return 0; 402 } 403 404 pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu %5hd %s\n", 405 task->pid, from_kuid(&init_user_ns, task_uid(task)), 406 task->tgid, task->mm->total_vm, get_mm_rss(task->mm), 407 mm_pgtables_bytes(task->mm), 408 get_mm_counter(task->mm, MM_SWAPENTS), 409 task->signal->oom_score_adj, task->comm); 410 task_unlock(task); 411 412 return 0; 413 } 414 415 /** 416 * dump_tasks - dump current memory state of all system tasks 417 * @oc: pointer to struct oom_control 418 * 419 * Dumps the current memory state of all eligible tasks. Tasks not in the same 420 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes 421 * are not shown. 422 * State information includes task's pid, uid, tgid, vm size, rss, 423 * pgtables_bytes, swapents, oom_score_adj value, and name. 424 */ 425 static void dump_tasks(struct oom_control *oc) 426 { 427 pr_info("Tasks state (memory values in pages):\n"); 428 pr_info("[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name\n"); 429 430 if (is_memcg_oom(oc)) 431 mem_cgroup_scan_tasks(oc->memcg, dump_task, oc); 432 else { 433 struct task_struct *p; 434 435 rcu_read_lock(); 436 for_each_process(p) 437 dump_task(p, oc); 438 rcu_read_unlock(); 439 } 440 } 441 442 static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim) 443 { 444 /* one line summary of the oom killer context. */ 445 pr_info("oom-kill:constraint=%s,nodemask=%*pbl", 446 oom_constraint_text[oc->constraint], 447 nodemask_pr_args(oc->nodemask)); 448 cpuset_print_current_mems_allowed(); 449 mem_cgroup_print_oom_context(oc->memcg, victim); 450 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid, 451 from_kuid(&init_user_ns, task_uid(victim))); 452 } 453 454 static void dump_header(struct oom_control *oc, struct task_struct *p) 455 { 456 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n", 457 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order, 458 current->signal->oom_score_adj); 459 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order) 460 pr_warn("COMPACTION is disabled!!!\n"); 461 462 dump_stack(); 463 if (is_memcg_oom(oc)) 464 mem_cgroup_print_oom_meminfo(oc->memcg); 465 else { 466 show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask); 467 if (should_dump_unreclaim_slab()) 468 dump_unreclaimable_slab(); 469 } 470 if (sysctl_oom_dump_tasks) 471 dump_tasks(oc); 472 if (p) 473 dump_oom_summary(oc, p); 474 } 475 476 /* 477 * Number of OOM victims in flight 478 */ 479 static atomic_t oom_victims = ATOMIC_INIT(0); 480 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait); 481 482 static bool oom_killer_disabled __read_mostly; 483 484 #define K(x) ((x) << (PAGE_SHIFT-10)) 485 486 /* 487 * task->mm can be NULL if the task is the exited group leader. So to 488 * determine whether the task is using a particular mm, we examine all the 489 * task's threads: if one of those is using this mm then this task was also 490 * using it. 491 */ 492 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm) 493 { 494 struct task_struct *t; 495 496 for_each_thread(p, t) { 497 struct mm_struct *t_mm = READ_ONCE(t->mm); 498 if (t_mm) 499 return t_mm == mm; 500 } 501 return false; 502 } 503 504 #ifdef CONFIG_MMU 505 /* 506 * OOM Reaper kernel thread which tries to reap the memory used by the OOM 507 * victim (if that is possible) to help the OOM killer to move on. 508 */ 509 static struct task_struct *oom_reaper_th; 510 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait); 511 static struct task_struct *oom_reaper_list; 512 static DEFINE_SPINLOCK(oom_reaper_lock); 513 514 bool __oom_reap_task_mm(struct mm_struct *mm) 515 { 516 struct vm_area_struct *vma; 517 bool ret = true; 518 519 /* 520 * Tell all users of get_user/copy_from_user etc... that the content 521 * is no longer stable. No barriers really needed because unmapping 522 * should imply barriers already and the reader would hit a page fault 523 * if it stumbled over a reaped memory. 524 */ 525 set_bit(MMF_UNSTABLE, &mm->flags); 526 527 for (vma = mm->mmap ; vma; vma = vma->vm_next) { 528 if (!can_madv_lru_vma(vma)) 529 continue; 530 531 /* 532 * Only anonymous pages have a good chance to be dropped 533 * without additional steps which we cannot afford as we 534 * are OOM already. 535 * 536 * We do not even care about fs backed pages because all 537 * which are reclaimable have already been reclaimed and 538 * we do not want to block exit_mmap by keeping mm ref 539 * count elevated without a good reason. 540 */ 541 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) { 542 struct mmu_notifier_range range; 543 struct mmu_gather tlb; 544 545 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, 546 vma, mm, vma->vm_start, 547 vma->vm_end); 548 tlb_gather_mmu(&tlb, mm); 549 if (mmu_notifier_invalidate_range_start_nonblock(&range)) { 550 tlb_finish_mmu(&tlb); 551 ret = false; 552 continue; 553 } 554 unmap_page_range(&tlb, vma, range.start, range.end, NULL); 555 mmu_notifier_invalidate_range_end(&range); 556 tlb_finish_mmu(&tlb); 557 } 558 } 559 560 return ret; 561 } 562 563 /* 564 * Reaps the address space of the give task. 565 * 566 * Returns true on success and false if none or part of the address space 567 * has been reclaimed and the caller should retry later. 568 */ 569 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm) 570 { 571 bool ret = true; 572 573 if (!mmap_read_trylock(mm)) { 574 trace_skip_task_reaping(tsk->pid); 575 return false; 576 } 577 578 /* 579 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't 580 * work on the mm anymore. The check for MMF_OOM_SKIP must run 581 * under mmap_lock for reading because it serializes against the 582 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap(). 583 */ 584 if (test_bit(MMF_OOM_SKIP, &mm->flags)) { 585 trace_skip_task_reaping(tsk->pid); 586 goto out_unlock; 587 } 588 589 trace_start_task_reaping(tsk->pid); 590 591 /* failed to reap part of the address space. Try again later */ 592 ret = __oom_reap_task_mm(mm); 593 if (!ret) 594 goto out_finish; 595 596 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n", 597 task_pid_nr(tsk), tsk->comm, 598 K(get_mm_counter(mm, MM_ANONPAGES)), 599 K(get_mm_counter(mm, MM_FILEPAGES)), 600 K(get_mm_counter(mm, MM_SHMEMPAGES))); 601 out_finish: 602 trace_finish_task_reaping(tsk->pid); 603 out_unlock: 604 mmap_read_unlock(mm); 605 606 return ret; 607 } 608 609 #define MAX_OOM_REAP_RETRIES 10 610 static void oom_reap_task(struct task_struct *tsk) 611 { 612 int attempts = 0; 613 struct mm_struct *mm = tsk->signal->oom_mm; 614 615 /* Retry the mmap_read_trylock(mm) a few times */ 616 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm)) 617 schedule_timeout_idle(HZ/10); 618 619 if (attempts <= MAX_OOM_REAP_RETRIES || 620 test_bit(MMF_OOM_SKIP, &mm->flags)) 621 goto done; 622 623 pr_info("oom_reaper: unable to reap pid:%d (%s)\n", 624 task_pid_nr(tsk), tsk->comm); 625 sched_show_task(tsk); 626 debug_show_all_locks(); 627 628 done: 629 tsk->oom_reaper_list = NULL; 630 631 /* 632 * Hide this mm from OOM killer because it has been either reaped or 633 * somebody can't call mmap_write_unlock(mm). 634 */ 635 set_bit(MMF_OOM_SKIP, &mm->flags); 636 637 /* Drop a reference taken by wake_oom_reaper */ 638 put_task_struct(tsk); 639 } 640 641 static int oom_reaper(void *unused) 642 { 643 while (true) { 644 struct task_struct *tsk = NULL; 645 646 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL); 647 spin_lock(&oom_reaper_lock); 648 if (oom_reaper_list != NULL) { 649 tsk = oom_reaper_list; 650 oom_reaper_list = tsk->oom_reaper_list; 651 } 652 spin_unlock(&oom_reaper_lock); 653 654 if (tsk) 655 oom_reap_task(tsk); 656 } 657 658 return 0; 659 } 660 661 static void wake_oom_reaper(struct task_struct *tsk) 662 { 663 /* mm is already queued? */ 664 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags)) 665 return; 666 667 get_task_struct(tsk); 668 669 spin_lock(&oom_reaper_lock); 670 tsk->oom_reaper_list = oom_reaper_list; 671 oom_reaper_list = tsk; 672 spin_unlock(&oom_reaper_lock); 673 trace_wake_reaper(tsk->pid); 674 wake_up(&oom_reaper_wait); 675 } 676 677 static int __init oom_init(void) 678 { 679 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper"); 680 return 0; 681 } 682 subsys_initcall(oom_init) 683 #else 684 static inline void wake_oom_reaper(struct task_struct *tsk) 685 { 686 } 687 #endif /* CONFIG_MMU */ 688 689 /** 690 * mark_oom_victim - mark the given task as OOM victim 691 * @tsk: task to mark 692 * 693 * Has to be called with oom_lock held and never after 694 * oom has been disabled already. 695 * 696 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either 697 * under task_lock or operate on the current). 698 */ 699 static void mark_oom_victim(struct task_struct *tsk) 700 { 701 struct mm_struct *mm = tsk->mm; 702 703 WARN_ON(oom_killer_disabled); 704 /* OOM killer might race with memcg OOM */ 705 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE)) 706 return; 707 708 /* oom_mm is bound to the signal struct life time. */ 709 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) { 710 mmgrab(tsk->signal->oom_mm); 711 set_bit(MMF_OOM_VICTIM, &mm->flags); 712 } 713 714 /* 715 * Make sure that the task is woken up from uninterruptible sleep 716 * if it is frozen because OOM killer wouldn't be able to free 717 * any memory and livelock. freezing_slow_path will tell the freezer 718 * that TIF_MEMDIE tasks should be ignored. 719 */ 720 __thaw_task(tsk); 721 atomic_inc(&oom_victims); 722 trace_mark_victim(tsk->pid); 723 } 724 725 /** 726 * exit_oom_victim - note the exit of an OOM victim 727 */ 728 void exit_oom_victim(void) 729 { 730 clear_thread_flag(TIF_MEMDIE); 731 732 if (!atomic_dec_return(&oom_victims)) 733 wake_up_all(&oom_victims_wait); 734 } 735 736 /** 737 * oom_killer_enable - enable OOM killer 738 */ 739 void oom_killer_enable(void) 740 { 741 oom_killer_disabled = false; 742 pr_info("OOM killer enabled.\n"); 743 } 744 745 /** 746 * oom_killer_disable - disable OOM killer 747 * @timeout: maximum timeout to wait for oom victims in jiffies 748 * 749 * Forces all page allocations to fail rather than trigger OOM killer. 750 * Will block and wait until all OOM victims are killed or the given 751 * timeout expires. 752 * 753 * The function cannot be called when there are runnable user tasks because 754 * the userspace would see unexpected allocation failures as a result. Any 755 * new usage of this function should be consulted with MM people. 756 * 757 * Returns true if successful and false if the OOM killer cannot be 758 * disabled. 759 */ 760 bool oom_killer_disable(signed long timeout) 761 { 762 signed long ret; 763 764 /* 765 * Make sure to not race with an ongoing OOM killer. Check that the 766 * current is not killed (possibly due to sharing the victim's memory). 767 */ 768 if (mutex_lock_killable(&oom_lock)) 769 return false; 770 oom_killer_disabled = true; 771 mutex_unlock(&oom_lock); 772 773 ret = wait_event_interruptible_timeout(oom_victims_wait, 774 !atomic_read(&oom_victims), timeout); 775 if (ret <= 0) { 776 oom_killer_enable(); 777 return false; 778 } 779 pr_info("OOM killer disabled.\n"); 780 781 return true; 782 } 783 784 static inline bool __task_will_free_mem(struct task_struct *task) 785 { 786 struct signal_struct *sig = task->signal; 787 788 /* 789 * A coredumping process may sleep for an extended period in exit_mm(), 790 * so the oom killer cannot assume that the process will promptly exit 791 * and release memory. 792 */ 793 if (sig->flags & SIGNAL_GROUP_COREDUMP) 794 return false; 795 796 if (sig->flags & SIGNAL_GROUP_EXIT) 797 return true; 798 799 if (thread_group_empty(task) && (task->flags & PF_EXITING)) 800 return true; 801 802 return false; 803 } 804 805 /* 806 * Checks whether the given task is dying or exiting and likely to 807 * release its address space. This means that all threads and processes 808 * sharing the same mm have to be killed or exiting. 809 * Caller has to make sure that task->mm is stable (hold task_lock or 810 * it operates on the current). 811 */ 812 static bool task_will_free_mem(struct task_struct *task) 813 { 814 struct mm_struct *mm = task->mm; 815 struct task_struct *p; 816 bool ret = true; 817 818 /* 819 * Skip tasks without mm because it might have passed its exit_mm and 820 * exit_oom_victim. oom_reaper could have rescued that but do not rely 821 * on that for now. We can consider find_lock_task_mm in future. 822 */ 823 if (!mm) 824 return false; 825 826 if (!__task_will_free_mem(task)) 827 return false; 828 829 /* 830 * This task has already been drained by the oom reaper so there are 831 * only small chances it will free some more 832 */ 833 if (test_bit(MMF_OOM_SKIP, &mm->flags)) 834 return false; 835 836 if (atomic_read(&mm->mm_users) <= 1) 837 return true; 838 839 /* 840 * Make sure that all tasks which share the mm with the given tasks 841 * are dying as well to make sure that a) nobody pins its mm and 842 * b) the task is also reapable by the oom reaper. 843 */ 844 rcu_read_lock(); 845 for_each_process(p) { 846 if (!process_shares_mm(p, mm)) 847 continue; 848 if (same_thread_group(task, p)) 849 continue; 850 ret = __task_will_free_mem(p); 851 if (!ret) 852 break; 853 } 854 rcu_read_unlock(); 855 856 return ret; 857 } 858 859 static void __oom_kill_process(struct task_struct *victim, const char *message) 860 { 861 struct task_struct *p; 862 struct mm_struct *mm; 863 bool can_oom_reap = true; 864 865 p = find_lock_task_mm(victim); 866 if (!p) { 867 pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n", 868 message, task_pid_nr(victim), victim->comm); 869 put_task_struct(victim); 870 return; 871 } else if (victim != p) { 872 get_task_struct(p); 873 put_task_struct(victim); 874 victim = p; 875 } 876 877 /* Get a reference to safely compare mm after task_unlock(victim) */ 878 mm = victim->mm; 879 mmgrab(mm); 880 881 /* Raise event before sending signal: task reaper must see this */ 882 count_vm_event(OOM_KILL); 883 memcg_memory_event_mm(mm, MEMCG_OOM_KILL); 884 885 /* 886 * We should send SIGKILL before granting access to memory reserves 887 * in order to prevent the OOM victim from depleting the memory 888 * reserves from the user space under its control. 889 */ 890 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID); 891 mark_oom_victim(victim); 892 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n", 893 message, task_pid_nr(victim), victim->comm, K(mm->total_vm), 894 K(get_mm_counter(mm, MM_ANONPAGES)), 895 K(get_mm_counter(mm, MM_FILEPAGES)), 896 K(get_mm_counter(mm, MM_SHMEMPAGES)), 897 from_kuid(&init_user_ns, task_uid(victim)), 898 mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj); 899 task_unlock(victim); 900 901 /* 902 * Kill all user processes sharing victim->mm in other thread groups, if 903 * any. They don't get access to memory reserves, though, to avoid 904 * depletion of all memory. This prevents mm->mmap_lock livelock when an 905 * oom killed thread cannot exit because it requires the semaphore and 906 * its contended by another thread trying to allocate memory itself. 907 * That thread will now get access to memory reserves since it has a 908 * pending fatal signal. 909 */ 910 rcu_read_lock(); 911 for_each_process(p) { 912 if (!process_shares_mm(p, mm)) 913 continue; 914 if (same_thread_group(p, victim)) 915 continue; 916 if (is_global_init(p)) { 917 can_oom_reap = false; 918 set_bit(MMF_OOM_SKIP, &mm->flags); 919 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n", 920 task_pid_nr(victim), victim->comm, 921 task_pid_nr(p), p->comm); 922 continue; 923 } 924 /* 925 * No kthead_use_mm() user needs to read from the userspace so 926 * we are ok to reap it. 927 */ 928 if (unlikely(p->flags & PF_KTHREAD)) 929 continue; 930 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID); 931 } 932 rcu_read_unlock(); 933 934 if (can_oom_reap) 935 wake_oom_reaper(victim); 936 937 mmdrop(mm); 938 put_task_struct(victim); 939 } 940 #undef K 941 942 /* 943 * Kill provided task unless it's secured by setting 944 * oom_score_adj to OOM_SCORE_ADJ_MIN. 945 */ 946 static int oom_kill_memcg_member(struct task_struct *task, void *message) 947 { 948 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN && 949 !is_global_init(task)) { 950 get_task_struct(task); 951 __oom_kill_process(task, message); 952 } 953 return 0; 954 } 955 956 static void oom_kill_process(struct oom_control *oc, const char *message) 957 { 958 struct task_struct *victim = oc->chosen; 959 struct mem_cgroup *oom_group; 960 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL, 961 DEFAULT_RATELIMIT_BURST); 962 963 /* 964 * If the task is already exiting, don't alarm the sysadmin or kill 965 * its children or threads, just give it access to memory reserves 966 * so it can die quickly 967 */ 968 task_lock(victim); 969 if (task_will_free_mem(victim)) { 970 mark_oom_victim(victim); 971 wake_oom_reaper(victim); 972 task_unlock(victim); 973 put_task_struct(victim); 974 return; 975 } 976 task_unlock(victim); 977 978 if (__ratelimit(&oom_rs)) 979 dump_header(oc, victim); 980 981 /* 982 * Do we need to kill the entire memory cgroup? 983 * Or even one of the ancestor memory cgroups? 984 * Check this out before killing the victim task. 985 */ 986 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg); 987 988 __oom_kill_process(victim, message); 989 990 /* 991 * If necessary, kill all tasks in the selected memory cgroup. 992 */ 993 if (oom_group) { 994 mem_cgroup_print_oom_group(oom_group); 995 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member, 996 (void*)message); 997 mem_cgroup_put(oom_group); 998 } 999 } 1000 1001 /* 1002 * Determines whether the kernel must panic because of the panic_on_oom sysctl. 1003 */ 1004 static void check_panic_on_oom(struct oom_control *oc) 1005 { 1006 if (likely(!sysctl_panic_on_oom)) 1007 return; 1008 if (sysctl_panic_on_oom != 2) { 1009 /* 1010 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel 1011 * does not panic for cpuset, mempolicy, or memcg allocation 1012 * failures. 1013 */ 1014 if (oc->constraint != CONSTRAINT_NONE) 1015 return; 1016 } 1017 /* Do not panic for oom kills triggered by sysrq */ 1018 if (is_sysrq_oom(oc)) 1019 return; 1020 dump_header(oc, NULL); 1021 panic("Out of memory: %s panic_on_oom is enabled\n", 1022 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); 1023 } 1024 1025 static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 1026 1027 int register_oom_notifier(struct notifier_block *nb) 1028 { 1029 return blocking_notifier_chain_register(&oom_notify_list, nb); 1030 } 1031 EXPORT_SYMBOL_GPL(register_oom_notifier); 1032 1033 int unregister_oom_notifier(struct notifier_block *nb) 1034 { 1035 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 1036 } 1037 EXPORT_SYMBOL_GPL(unregister_oom_notifier); 1038 1039 /** 1040 * out_of_memory - kill the "best" process when we run out of memory 1041 * @oc: pointer to struct oom_control 1042 * 1043 * If we run out of memory, we have the choice between either 1044 * killing a random task (bad), letting the system crash (worse) 1045 * OR try to be smart about which process to kill. Note that we 1046 * don't have to be perfect here, we just have to be good. 1047 */ 1048 bool out_of_memory(struct oom_control *oc) 1049 { 1050 unsigned long freed = 0; 1051 1052 if (oom_killer_disabled) 1053 return false; 1054 1055 if (!is_memcg_oom(oc)) { 1056 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 1057 if (freed > 0) 1058 /* Got some memory back in the last second. */ 1059 return true; 1060 } 1061 1062 /* 1063 * If current has a pending SIGKILL or is exiting, then automatically 1064 * select it. The goal is to allow it to allocate so that it may 1065 * quickly exit and free its memory. 1066 */ 1067 if (task_will_free_mem(current)) { 1068 mark_oom_victim(current); 1069 wake_oom_reaper(current); 1070 return true; 1071 } 1072 1073 /* 1074 * The OOM killer does not compensate for IO-less reclaim. 1075 * pagefault_out_of_memory lost its gfp context so we have to 1076 * make sure exclude 0 mask - all other users should have at least 1077 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to 1078 * invoke the OOM killer even if it is a GFP_NOFS allocation. 1079 */ 1080 if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc)) 1081 return true; 1082 1083 /* 1084 * Check if there were limitations on the allocation (only relevant for 1085 * NUMA and memcg) that may require different handling. 1086 */ 1087 oc->constraint = constrained_alloc(oc); 1088 if (oc->constraint != CONSTRAINT_MEMORY_POLICY) 1089 oc->nodemask = NULL; 1090 check_panic_on_oom(oc); 1091 1092 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task && 1093 current->mm && !oom_unkillable_task(current) && 1094 oom_cpuset_eligible(current, oc) && 1095 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) { 1096 get_task_struct(current); 1097 oc->chosen = current; 1098 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)"); 1099 return true; 1100 } 1101 1102 select_bad_process(oc); 1103 /* Found nothing?!?! */ 1104 if (!oc->chosen) { 1105 dump_header(oc, NULL); 1106 pr_warn("Out of memory and no killable processes...\n"); 1107 /* 1108 * If we got here due to an actual allocation at the 1109 * system level, we cannot survive this and will enter 1110 * an endless loop in the allocator. Bail out now. 1111 */ 1112 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc)) 1113 panic("System is deadlocked on memory\n"); 1114 } 1115 if (oc->chosen && oc->chosen != (void *)-1UL) 1116 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" : 1117 "Memory cgroup out of memory"); 1118 return !!oc->chosen; 1119 } 1120 1121 /* 1122 * The pagefault handler calls here because it is out of memory, so kill a 1123 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom 1124 * killing is already in progress so do nothing. 1125 */ 1126 void pagefault_out_of_memory(void) 1127 { 1128 struct oom_control oc = { 1129 .zonelist = NULL, 1130 .nodemask = NULL, 1131 .memcg = NULL, 1132 .gfp_mask = 0, 1133 .order = 0, 1134 }; 1135 1136 if (mem_cgroup_oom_synchronize(true)) 1137 return; 1138 1139 if (!mutex_trylock(&oom_lock)) 1140 return; 1141 out_of_memory(&oc); 1142 mutex_unlock(&oom_lock); 1143 } 1144