xref: /openbmc/linux/mm/oom_kill.c (revision d2ba09c1)
1 /*
2  *  linux/mm/oom_kill.c
3  *
4  *  Copyright (C)  1998,2000  Rik van Riel
5  *	Thanks go out to Claus Fischer for some serious inspiration and
6  *	for goading me into coding this file...
7  *  Copyright (C)  2010  Google, Inc.
8  *	Rewritten by David Rientjes
9  *
10  *  The routines in this file are used to kill a process when
11  *  we're seriously out of memory. This gets called from __alloc_pages()
12  *  in mm/page_alloc.c when we really run out of memory.
13  *
14  *  Since we won't call these routines often (on a well-configured
15  *  machine) this file will double as a 'coding guide' and a signpost
16  *  for newbie kernel hackers. It features several pointers to major
17  *  kernel subsystems and hints as to where to find out what things do.
18  */
19 
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/sched/mm.h>
26 #include <linux/sched/coredump.h>
27 #include <linux/sched/task.h>
28 #include <linux/swap.h>
29 #include <linux/timex.h>
30 #include <linux/jiffies.h>
31 #include <linux/cpuset.h>
32 #include <linux/export.h>
33 #include <linux/notifier.h>
34 #include <linux/memcontrol.h>
35 #include <linux/mempolicy.h>
36 #include <linux/security.h>
37 #include <linux/ptrace.h>
38 #include <linux/freezer.h>
39 #include <linux/ftrace.h>
40 #include <linux/ratelimit.h>
41 #include <linux/kthread.h>
42 #include <linux/init.h>
43 #include <linux/mmu_notifier.h>
44 
45 #include <asm/tlb.h>
46 #include "internal.h"
47 #include "slab.h"
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/oom.h>
51 
52 int sysctl_panic_on_oom;
53 int sysctl_oom_kill_allocating_task;
54 int sysctl_oom_dump_tasks = 1;
55 
56 DEFINE_MUTEX(oom_lock);
57 
58 #ifdef CONFIG_NUMA
59 /**
60  * has_intersects_mems_allowed() - check task eligiblity for kill
61  * @start: task struct of which task to consider
62  * @mask: nodemask passed to page allocator for mempolicy ooms
63  *
64  * Task eligibility is determined by whether or not a candidate task, @tsk,
65  * shares the same mempolicy nodes as current if it is bound by such a policy
66  * and whether or not it has the same set of allowed cpuset nodes.
67  */
68 static bool has_intersects_mems_allowed(struct task_struct *start,
69 					const nodemask_t *mask)
70 {
71 	struct task_struct *tsk;
72 	bool ret = false;
73 
74 	rcu_read_lock();
75 	for_each_thread(start, tsk) {
76 		if (mask) {
77 			/*
78 			 * If this is a mempolicy constrained oom, tsk's
79 			 * cpuset is irrelevant.  Only return true if its
80 			 * mempolicy intersects current, otherwise it may be
81 			 * needlessly killed.
82 			 */
83 			ret = mempolicy_nodemask_intersects(tsk, mask);
84 		} else {
85 			/*
86 			 * This is not a mempolicy constrained oom, so only
87 			 * check the mems of tsk's cpuset.
88 			 */
89 			ret = cpuset_mems_allowed_intersects(current, tsk);
90 		}
91 		if (ret)
92 			break;
93 	}
94 	rcu_read_unlock();
95 
96 	return ret;
97 }
98 #else
99 static bool has_intersects_mems_allowed(struct task_struct *tsk,
100 					const nodemask_t *mask)
101 {
102 	return true;
103 }
104 #endif /* CONFIG_NUMA */
105 
106 /*
107  * The process p may have detached its own ->mm while exiting or through
108  * use_mm(), but one or more of its subthreads may still have a valid
109  * pointer.  Return p, or any of its subthreads with a valid ->mm, with
110  * task_lock() held.
111  */
112 struct task_struct *find_lock_task_mm(struct task_struct *p)
113 {
114 	struct task_struct *t;
115 
116 	rcu_read_lock();
117 
118 	for_each_thread(p, t) {
119 		task_lock(t);
120 		if (likely(t->mm))
121 			goto found;
122 		task_unlock(t);
123 	}
124 	t = NULL;
125 found:
126 	rcu_read_unlock();
127 
128 	return t;
129 }
130 
131 /*
132  * order == -1 means the oom kill is required by sysrq, otherwise only
133  * for display purposes.
134  */
135 static inline bool is_sysrq_oom(struct oom_control *oc)
136 {
137 	return oc->order == -1;
138 }
139 
140 static inline bool is_memcg_oom(struct oom_control *oc)
141 {
142 	return oc->memcg != NULL;
143 }
144 
145 /* return true if the task is not adequate as candidate victim task. */
146 static bool oom_unkillable_task(struct task_struct *p,
147 		struct mem_cgroup *memcg, const nodemask_t *nodemask)
148 {
149 	if (is_global_init(p))
150 		return true;
151 	if (p->flags & PF_KTHREAD)
152 		return true;
153 
154 	/* When mem_cgroup_out_of_memory() and p is not member of the group */
155 	if (memcg && !task_in_mem_cgroup(p, memcg))
156 		return true;
157 
158 	/* p may not have freeable memory in nodemask */
159 	if (!has_intersects_mems_allowed(p, nodemask))
160 		return true;
161 
162 	return false;
163 }
164 
165 /*
166  * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
167  * than all user memory (LRU pages)
168  */
169 static bool is_dump_unreclaim_slabs(void)
170 {
171 	unsigned long nr_lru;
172 
173 	nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
174 		 global_node_page_state(NR_INACTIVE_ANON) +
175 		 global_node_page_state(NR_ACTIVE_FILE) +
176 		 global_node_page_state(NR_INACTIVE_FILE) +
177 		 global_node_page_state(NR_ISOLATED_ANON) +
178 		 global_node_page_state(NR_ISOLATED_FILE) +
179 		 global_node_page_state(NR_UNEVICTABLE);
180 
181 	return (global_node_page_state(NR_SLAB_UNRECLAIMABLE) > nr_lru);
182 }
183 
184 /**
185  * oom_badness - heuristic function to determine which candidate task to kill
186  * @p: task struct of which task we should calculate
187  * @totalpages: total present RAM allowed for page allocation
188  * @memcg: task's memory controller, if constrained
189  * @nodemask: nodemask passed to page allocator for mempolicy ooms
190  *
191  * The heuristic for determining which task to kill is made to be as simple and
192  * predictable as possible.  The goal is to return the highest value for the
193  * task consuming the most memory to avoid subsequent oom failures.
194  */
195 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
196 			  const nodemask_t *nodemask, unsigned long totalpages)
197 {
198 	long points;
199 	long adj;
200 
201 	if (oom_unkillable_task(p, memcg, nodemask))
202 		return 0;
203 
204 	p = find_lock_task_mm(p);
205 	if (!p)
206 		return 0;
207 
208 	/*
209 	 * Do not even consider tasks which are explicitly marked oom
210 	 * unkillable or have been already oom reaped or the are in
211 	 * the middle of vfork
212 	 */
213 	adj = (long)p->signal->oom_score_adj;
214 	if (adj == OOM_SCORE_ADJ_MIN ||
215 			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
216 			in_vfork(p)) {
217 		task_unlock(p);
218 		return 0;
219 	}
220 
221 	/*
222 	 * The baseline for the badness score is the proportion of RAM that each
223 	 * task's rss, pagetable and swap space use.
224 	 */
225 	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
226 		mm_pgtables_bytes(p->mm) / PAGE_SIZE;
227 	task_unlock(p);
228 
229 	/* Normalize to oom_score_adj units */
230 	adj *= totalpages / 1000;
231 	points += adj;
232 
233 	/*
234 	 * Never return 0 for an eligible task regardless of the root bonus and
235 	 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
236 	 */
237 	return points > 0 ? points : 1;
238 }
239 
240 enum oom_constraint {
241 	CONSTRAINT_NONE,
242 	CONSTRAINT_CPUSET,
243 	CONSTRAINT_MEMORY_POLICY,
244 	CONSTRAINT_MEMCG,
245 };
246 
247 /*
248  * Determine the type of allocation constraint.
249  */
250 static enum oom_constraint constrained_alloc(struct oom_control *oc)
251 {
252 	struct zone *zone;
253 	struct zoneref *z;
254 	enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
255 	bool cpuset_limited = false;
256 	int nid;
257 
258 	if (is_memcg_oom(oc)) {
259 		oc->totalpages = mem_cgroup_get_limit(oc->memcg) ?: 1;
260 		return CONSTRAINT_MEMCG;
261 	}
262 
263 	/* Default to all available memory */
264 	oc->totalpages = totalram_pages + total_swap_pages;
265 
266 	if (!IS_ENABLED(CONFIG_NUMA))
267 		return CONSTRAINT_NONE;
268 
269 	if (!oc->zonelist)
270 		return CONSTRAINT_NONE;
271 	/*
272 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
273 	 * to kill current.We have to random task kill in this case.
274 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
275 	 */
276 	if (oc->gfp_mask & __GFP_THISNODE)
277 		return CONSTRAINT_NONE;
278 
279 	/*
280 	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
281 	 * the page allocator means a mempolicy is in effect.  Cpuset policy
282 	 * is enforced in get_page_from_freelist().
283 	 */
284 	if (oc->nodemask &&
285 	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
286 		oc->totalpages = total_swap_pages;
287 		for_each_node_mask(nid, *oc->nodemask)
288 			oc->totalpages += node_spanned_pages(nid);
289 		return CONSTRAINT_MEMORY_POLICY;
290 	}
291 
292 	/* Check this allocation failure is caused by cpuset's wall function */
293 	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
294 			high_zoneidx, oc->nodemask)
295 		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
296 			cpuset_limited = true;
297 
298 	if (cpuset_limited) {
299 		oc->totalpages = total_swap_pages;
300 		for_each_node_mask(nid, cpuset_current_mems_allowed)
301 			oc->totalpages += node_spanned_pages(nid);
302 		return CONSTRAINT_CPUSET;
303 	}
304 	return CONSTRAINT_NONE;
305 }
306 
307 static int oom_evaluate_task(struct task_struct *task, void *arg)
308 {
309 	struct oom_control *oc = arg;
310 	unsigned long points;
311 
312 	if (oom_unkillable_task(task, NULL, oc->nodemask))
313 		goto next;
314 
315 	/*
316 	 * This task already has access to memory reserves and is being killed.
317 	 * Don't allow any other task to have access to the reserves unless
318 	 * the task has MMF_OOM_SKIP because chances that it would release
319 	 * any memory is quite low.
320 	 */
321 	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
322 		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
323 			goto next;
324 		goto abort;
325 	}
326 
327 	/*
328 	 * If task is allocating a lot of memory and has been marked to be
329 	 * killed first if it triggers an oom, then select it.
330 	 */
331 	if (oom_task_origin(task)) {
332 		points = ULONG_MAX;
333 		goto select;
334 	}
335 
336 	points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
337 	if (!points || points < oc->chosen_points)
338 		goto next;
339 
340 	/* Prefer thread group leaders for display purposes */
341 	if (points == oc->chosen_points && thread_group_leader(oc->chosen))
342 		goto next;
343 select:
344 	if (oc->chosen)
345 		put_task_struct(oc->chosen);
346 	get_task_struct(task);
347 	oc->chosen = task;
348 	oc->chosen_points = points;
349 next:
350 	return 0;
351 abort:
352 	if (oc->chosen)
353 		put_task_struct(oc->chosen);
354 	oc->chosen = (void *)-1UL;
355 	return 1;
356 }
357 
358 /*
359  * Simple selection loop. We choose the process with the highest number of
360  * 'points'. In case scan was aborted, oc->chosen is set to -1.
361  */
362 static void select_bad_process(struct oom_control *oc)
363 {
364 	if (is_memcg_oom(oc))
365 		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
366 	else {
367 		struct task_struct *p;
368 
369 		rcu_read_lock();
370 		for_each_process(p)
371 			if (oom_evaluate_task(p, oc))
372 				break;
373 		rcu_read_unlock();
374 	}
375 
376 	oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
377 }
378 
379 /**
380  * dump_tasks - dump current memory state of all system tasks
381  * @memcg: current's memory controller, if constrained
382  * @nodemask: nodemask passed to page allocator for mempolicy ooms
383  *
384  * Dumps the current memory state of all eligible tasks.  Tasks not in the same
385  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
386  * are not shown.
387  * State information includes task's pid, uid, tgid, vm size, rss,
388  * pgtables_bytes, swapents, oom_score_adj value, and name.
389  */
390 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
391 {
392 	struct task_struct *p;
393 	struct task_struct *task;
394 
395 	pr_info("[ pid ]   uid  tgid total_vm      rss pgtables_bytes swapents oom_score_adj name\n");
396 	rcu_read_lock();
397 	for_each_process(p) {
398 		if (oom_unkillable_task(p, memcg, nodemask))
399 			continue;
400 
401 		task = find_lock_task_mm(p);
402 		if (!task) {
403 			/*
404 			 * This is a kthread or all of p's threads have already
405 			 * detached their mm's.  There's no need to report
406 			 * them; they can't be oom killed anyway.
407 			 */
408 			continue;
409 		}
410 
411 		pr_info("[%5d] %5d %5d %8lu %8lu %8ld %8lu         %5hd %s\n",
412 			task->pid, from_kuid(&init_user_ns, task_uid(task)),
413 			task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
414 			mm_pgtables_bytes(task->mm),
415 			get_mm_counter(task->mm, MM_SWAPENTS),
416 			task->signal->oom_score_adj, task->comm);
417 		task_unlock(task);
418 	}
419 	rcu_read_unlock();
420 }
421 
422 static void dump_header(struct oom_control *oc, struct task_struct *p)
423 {
424 	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), nodemask=%*pbl, order=%d, oom_score_adj=%hd\n",
425 		current->comm, oc->gfp_mask, &oc->gfp_mask,
426 		nodemask_pr_args(oc->nodemask), oc->order,
427 			current->signal->oom_score_adj);
428 	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
429 		pr_warn("COMPACTION is disabled!!!\n");
430 
431 	cpuset_print_current_mems_allowed();
432 	dump_stack();
433 	if (is_memcg_oom(oc))
434 		mem_cgroup_print_oom_info(oc->memcg, p);
435 	else {
436 		show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
437 		if (is_dump_unreclaim_slabs())
438 			dump_unreclaimable_slab();
439 	}
440 	if (sysctl_oom_dump_tasks)
441 		dump_tasks(oc->memcg, oc->nodemask);
442 }
443 
444 /*
445  * Number of OOM victims in flight
446  */
447 static atomic_t oom_victims = ATOMIC_INIT(0);
448 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
449 
450 static bool oom_killer_disabled __read_mostly;
451 
452 #define K(x) ((x) << (PAGE_SHIFT-10))
453 
454 /*
455  * task->mm can be NULL if the task is the exited group leader.  So to
456  * determine whether the task is using a particular mm, we examine all the
457  * task's threads: if one of those is using this mm then this task was also
458  * using it.
459  */
460 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
461 {
462 	struct task_struct *t;
463 
464 	for_each_thread(p, t) {
465 		struct mm_struct *t_mm = READ_ONCE(t->mm);
466 		if (t_mm)
467 			return t_mm == mm;
468 	}
469 	return false;
470 }
471 
472 #ifdef CONFIG_MMU
473 /*
474  * OOM Reaper kernel thread which tries to reap the memory used by the OOM
475  * victim (if that is possible) to help the OOM killer to move on.
476  */
477 static struct task_struct *oom_reaper_th;
478 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
479 static struct task_struct *oom_reaper_list;
480 static DEFINE_SPINLOCK(oom_reaper_lock);
481 
482 void __oom_reap_task_mm(struct mm_struct *mm)
483 {
484 	struct vm_area_struct *vma;
485 
486 	/*
487 	 * Tell all users of get_user/copy_from_user etc... that the content
488 	 * is no longer stable. No barriers really needed because unmapping
489 	 * should imply barriers already and the reader would hit a page fault
490 	 * if it stumbled over a reaped memory.
491 	 */
492 	set_bit(MMF_UNSTABLE, &mm->flags);
493 
494 	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
495 		if (!can_madv_dontneed_vma(vma))
496 			continue;
497 
498 		/*
499 		 * Only anonymous pages have a good chance to be dropped
500 		 * without additional steps which we cannot afford as we
501 		 * are OOM already.
502 		 *
503 		 * We do not even care about fs backed pages because all
504 		 * which are reclaimable have already been reclaimed and
505 		 * we do not want to block exit_mmap by keeping mm ref
506 		 * count elevated without a good reason.
507 		 */
508 		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
509 			const unsigned long start = vma->vm_start;
510 			const unsigned long end = vma->vm_end;
511 			struct mmu_gather tlb;
512 
513 			tlb_gather_mmu(&tlb, mm, start, end);
514 			mmu_notifier_invalidate_range_start(mm, start, end);
515 			unmap_page_range(&tlb, vma, start, end, NULL);
516 			mmu_notifier_invalidate_range_end(mm, start, end);
517 			tlb_finish_mmu(&tlb, start, end);
518 		}
519 	}
520 }
521 
522 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
523 {
524 	bool ret = true;
525 
526 	/*
527 	 * We have to make sure to not race with the victim exit path
528 	 * and cause premature new oom victim selection:
529 	 * oom_reap_task_mm		exit_mm
530 	 *   mmget_not_zero
531 	 *				  mmput
532 	 *				    atomic_dec_and_test
533 	 *				  exit_oom_victim
534 	 *				[...]
535 	 *				out_of_memory
536 	 *				  select_bad_process
537 	 *				    # no TIF_MEMDIE task selects new victim
538 	 *  unmap_page_range # frees some memory
539 	 */
540 	mutex_lock(&oom_lock);
541 
542 	if (!down_read_trylock(&mm->mmap_sem)) {
543 		ret = false;
544 		trace_skip_task_reaping(tsk->pid);
545 		goto unlock_oom;
546 	}
547 
548 	/*
549 	 * If the mm has invalidate_{start,end}() notifiers that could block,
550 	 * sleep to give the oom victim some more time.
551 	 * TODO: we really want to get rid of this ugly hack and make sure that
552 	 * notifiers cannot block for unbounded amount of time
553 	 */
554 	if (mm_has_blockable_invalidate_notifiers(mm)) {
555 		up_read(&mm->mmap_sem);
556 		schedule_timeout_idle(HZ);
557 		goto unlock_oom;
558 	}
559 
560 	/*
561 	 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
562 	 * work on the mm anymore. The check for MMF_OOM_SKIP must run
563 	 * under mmap_sem for reading because it serializes against the
564 	 * down_write();up_write() cycle in exit_mmap().
565 	 */
566 	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
567 		up_read(&mm->mmap_sem);
568 		trace_skip_task_reaping(tsk->pid);
569 		goto unlock_oom;
570 	}
571 
572 	trace_start_task_reaping(tsk->pid);
573 
574 	__oom_reap_task_mm(mm);
575 
576 	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
577 			task_pid_nr(tsk), tsk->comm,
578 			K(get_mm_counter(mm, MM_ANONPAGES)),
579 			K(get_mm_counter(mm, MM_FILEPAGES)),
580 			K(get_mm_counter(mm, MM_SHMEMPAGES)));
581 	up_read(&mm->mmap_sem);
582 
583 	trace_finish_task_reaping(tsk->pid);
584 unlock_oom:
585 	mutex_unlock(&oom_lock);
586 	return ret;
587 }
588 
589 #define MAX_OOM_REAP_RETRIES 10
590 static void oom_reap_task(struct task_struct *tsk)
591 {
592 	int attempts = 0;
593 	struct mm_struct *mm = tsk->signal->oom_mm;
594 
595 	/* Retry the down_read_trylock(mmap_sem) a few times */
596 	while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
597 		schedule_timeout_idle(HZ/10);
598 
599 	if (attempts <= MAX_OOM_REAP_RETRIES ||
600 	    test_bit(MMF_OOM_SKIP, &mm->flags))
601 		goto done;
602 
603 	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
604 		task_pid_nr(tsk), tsk->comm);
605 	debug_show_all_locks();
606 
607 done:
608 	tsk->oom_reaper_list = NULL;
609 
610 	/*
611 	 * Hide this mm from OOM killer because it has been either reaped or
612 	 * somebody can't call up_write(mmap_sem).
613 	 */
614 	set_bit(MMF_OOM_SKIP, &mm->flags);
615 
616 	/* Drop a reference taken by wake_oom_reaper */
617 	put_task_struct(tsk);
618 }
619 
620 static int oom_reaper(void *unused)
621 {
622 	while (true) {
623 		struct task_struct *tsk = NULL;
624 
625 		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
626 		spin_lock(&oom_reaper_lock);
627 		if (oom_reaper_list != NULL) {
628 			tsk = oom_reaper_list;
629 			oom_reaper_list = tsk->oom_reaper_list;
630 		}
631 		spin_unlock(&oom_reaper_lock);
632 
633 		if (tsk)
634 			oom_reap_task(tsk);
635 	}
636 
637 	return 0;
638 }
639 
640 static void wake_oom_reaper(struct task_struct *tsk)
641 {
642 	/* tsk is already queued? */
643 	if (tsk == oom_reaper_list || tsk->oom_reaper_list)
644 		return;
645 
646 	get_task_struct(tsk);
647 
648 	spin_lock(&oom_reaper_lock);
649 	tsk->oom_reaper_list = oom_reaper_list;
650 	oom_reaper_list = tsk;
651 	spin_unlock(&oom_reaper_lock);
652 	trace_wake_reaper(tsk->pid);
653 	wake_up(&oom_reaper_wait);
654 }
655 
656 static int __init oom_init(void)
657 {
658 	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
659 	return 0;
660 }
661 subsys_initcall(oom_init)
662 #else
663 static inline void wake_oom_reaper(struct task_struct *tsk)
664 {
665 }
666 #endif /* CONFIG_MMU */
667 
668 /**
669  * mark_oom_victim - mark the given task as OOM victim
670  * @tsk: task to mark
671  *
672  * Has to be called with oom_lock held and never after
673  * oom has been disabled already.
674  *
675  * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
676  * under task_lock or operate on the current).
677  */
678 static void mark_oom_victim(struct task_struct *tsk)
679 {
680 	struct mm_struct *mm = tsk->mm;
681 
682 	WARN_ON(oom_killer_disabled);
683 	/* OOM killer might race with memcg OOM */
684 	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
685 		return;
686 
687 	/* oom_mm is bound to the signal struct life time. */
688 	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
689 		mmgrab(tsk->signal->oom_mm);
690 		set_bit(MMF_OOM_VICTIM, &mm->flags);
691 	}
692 
693 	/*
694 	 * Make sure that the task is woken up from uninterruptible sleep
695 	 * if it is frozen because OOM killer wouldn't be able to free
696 	 * any memory and livelock. freezing_slow_path will tell the freezer
697 	 * that TIF_MEMDIE tasks should be ignored.
698 	 */
699 	__thaw_task(tsk);
700 	atomic_inc(&oom_victims);
701 	trace_mark_victim(tsk->pid);
702 }
703 
704 /**
705  * exit_oom_victim - note the exit of an OOM victim
706  */
707 void exit_oom_victim(void)
708 {
709 	clear_thread_flag(TIF_MEMDIE);
710 
711 	if (!atomic_dec_return(&oom_victims))
712 		wake_up_all(&oom_victims_wait);
713 }
714 
715 /**
716  * oom_killer_enable - enable OOM killer
717  */
718 void oom_killer_enable(void)
719 {
720 	oom_killer_disabled = false;
721 	pr_info("OOM killer enabled.\n");
722 }
723 
724 /**
725  * oom_killer_disable - disable OOM killer
726  * @timeout: maximum timeout to wait for oom victims in jiffies
727  *
728  * Forces all page allocations to fail rather than trigger OOM killer.
729  * Will block and wait until all OOM victims are killed or the given
730  * timeout expires.
731  *
732  * The function cannot be called when there are runnable user tasks because
733  * the userspace would see unexpected allocation failures as a result. Any
734  * new usage of this function should be consulted with MM people.
735  *
736  * Returns true if successful and false if the OOM killer cannot be
737  * disabled.
738  */
739 bool oom_killer_disable(signed long timeout)
740 {
741 	signed long ret;
742 
743 	/*
744 	 * Make sure to not race with an ongoing OOM killer. Check that the
745 	 * current is not killed (possibly due to sharing the victim's memory).
746 	 */
747 	if (mutex_lock_killable(&oom_lock))
748 		return false;
749 	oom_killer_disabled = true;
750 	mutex_unlock(&oom_lock);
751 
752 	ret = wait_event_interruptible_timeout(oom_victims_wait,
753 			!atomic_read(&oom_victims), timeout);
754 	if (ret <= 0) {
755 		oom_killer_enable();
756 		return false;
757 	}
758 	pr_info("OOM killer disabled.\n");
759 
760 	return true;
761 }
762 
763 static inline bool __task_will_free_mem(struct task_struct *task)
764 {
765 	struct signal_struct *sig = task->signal;
766 
767 	/*
768 	 * A coredumping process may sleep for an extended period in exit_mm(),
769 	 * so the oom killer cannot assume that the process will promptly exit
770 	 * and release memory.
771 	 */
772 	if (sig->flags & SIGNAL_GROUP_COREDUMP)
773 		return false;
774 
775 	if (sig->flags & SIGNAL_GROUP_EXIT)
776 		return true;
777 
778 	if (thread_group_empty(task) && (task->flags & PF_EXITING))
779 		return true;
780 
781 	return false;
782 }
783 
784 /*
785  * Checks whether the given task is dying or exiting and likely to
786  * release its address space. This means that all threads and processes
787  * sharing the same mm have to be killed or exiting.
788  * Caller has to make sure that task->mm is stable (hold task_lock or
789  * it operates on the current).
790  */
791 static bool task_will_free_mem(struct task_struct *task)
792 {
793 	struct mm_struct *mm = task->mm;
794 	struct task_struct *p;
795 	bool ret = true;
796 
797 	/*
798 	 * Skip tasks without mm because it might have passed its exit_mm and
799 	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
800 	 * on that for now. We can consider find_lock_task_mm in future.
801 	 */
802 	if (!mm)
803 		return false;
804 
805 	if (!__task_will_free_mem(task))
806 		return false;
807 
808 	/*
809 	 * This task has already been drained by the oom reaper so there are
810 	 * only small chances it will free some more
811 	 */
812 	if (test_bit(MMF_OOM_SKIP, &mm->flags))
813 		return false;
814 
815 	if (atomic_read(&mm->mm_users) <= 1)
816 		return true;
817 
818 	/*
819 	 * Make sure that all tasks which share the mm with the given tasks
820 	 * are dying as well to make sure that a) nobody pins its mm and
821 	 * b) the task is also reapable by the oom reaper.
822 	 */
823 	rcu_read_lock();
824 	for_each_process(p) {
825 		if (!process_shares_mm(p, mm))
826 			continue;
827 		if (same_thread_group(task, p))
828 			continue;
829 		ret = __task_will_free_mem(p);
830 		if (!ret)
831 			break;
832 	}
833 	rcu_read_unlock();
834 
835 	return ret;
836 }
837 
838 static void oom_kill_process(struct oom_control *oc, const char *message)
839 {
840 	struct task_struct *p = oc->chosen;
841 	unsigned int points = oc->chosen_points;
842 	struct task_struct *victim = p;
843 	struct task_struct *child;
844 	struct task_struct *t;
845 	struct mm_struct *mm;
846 	unsigned int victim_points = 0;
847 	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
848 					      DEFAULT_RATELIMIT_BURST);
849 	bool can_oom_reap = true;
850 
851 	/*
852 	 * If the task is already exiting, don't alarm the sysadmin or kill
853 	 * its children or threads, just give it access to memory reserves
854 	 * so it can die quickly
855 	 */
856 	task_lock(p);
857 	if (task_will_free_mem(p)) {
858 		mark_oom_victim(p);
859 		wake_oom_reaper(p);
860 		task_unlock(p);
861 		put_task_struct(p);
862 		return;
863 	}
864 	task_unlock(p);
865 
866 	if (__ratelimit(&oom_rs))
867 		dump_header(oc, p);
868 
869 	pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
870 		message, task_pid_nr(p), p->comm, points);
871 
872 	/*
873 	 * If any of p's children has a different mm and is eligible for kill,
874 	 * the one with the highest oom_badness() score is sacrificed for its
875 	 * parent.  This attempts to lose the minimal amount of work done while
876 	 * still freeing memory.
877 	 */
878 	read_lock(&tasklist_lock);
879 	for_each_thread(p, t) {
880 		list_for_each_entry(child, &t->children, sibling) {
881 			unsigned int child_points;
882 
883 			if (process_shares_mm(child, p->mm))
884 				continue;
885 			/*
886 			 * oom_badness() returns 0 if the thread is unkillable
887 			 */
888 			child_points = oom_badness(child,
889 				oc->memcg, oc->nodemask, oc->totalpages);
890 			if (child_points > victim_points) {
891 				put_task_struct(victim);
892 				victim = child;
893 				victim_points = child_points;
894 				get_task_struct(victim);
895 			}
896 		}
897 	}
898 	read_unlock(&tasklist_lock);
899 
900 	p = find_lock_task_mm(victim);
901 	if (!p) {
902 		put_task_struct(victim);
903 		return;
904 	} else if (victim != p) {
905 		get_task_struct(p);
906 		put_task_struct(victim);
907 		victim = p;
908 	}
909 
910 	/* Get a reference to safely compare mm after task_unlock(victim) */
911 	mm = victim->mm;
912 	mmgrab(mm);
913 
914 	/* Raise event before sending signal: task reaper must see this */
915 	count_vm_event(OOM_KILL);
916 	count_memcg_event_mm(mm, OOM_KILL);
917 
918 	/*
919 	 * We should send SIGKILL before granting access to memory reserves
920 	 * in order to prevent the OOM victim from depleting the memory
921 	 * reserves from the user space under its control.
922 	 */
923 	do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
924 	mark_oom_victim(victim);
925 	pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
926 		task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
927 		K(get_mm_counter(victim->mm, MM_ANONPAGES)),
928 		K(get_mm_counter(victim->mm, MM_FILEPAGES)),
929 		K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
930 	task_unlock(victim);
931 
932 	/*
933 	 * Kill all user processes sharing victim->mm in other thread groups, if
934 	 * any.  They don't get access to memory reserves, though, to avoid
935 	 * depletion of all memory.  This prevents mm->mmap_sem livelock when an
936 	 * oom killed thread cannot exit because it requires the semaphore and
937 	 * its contended by another thread trying to allocate memory itself.
938 	 * That thread will now get access to memory reserves since it has a
939 	 * pending fatal signal.
940 	 */
941 	rcu_read_lock();
942 	for_each_process(p) {
943 		if (!process_shares_mm(p, mm))
944 			continue;
945 		if (same_thread_group(p, victim))
946 			continue;
947 		if (is_global_init(p)) {
948 			can_oom_reap = false;
949 			set_bit(MMF_OOM_SKIP, &mm->flags);
950 			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
951 					task_pid_nr(victim), victim->comm,
952 					task_pid_nr(p), p->comm);
953 			continue;
954 		}
955 		/*
956 		 * No use_mm() user needs to read from the userspace so we are
957 		 * ok to reap it.
958 		 */
959 		if (unlikely(p->flags & PF_KTHREAD))
960 			continue;
961 		do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
962 	}
963 	rcu_read_unlock();
964 
965 	if (can_oom_reap)
966 		wake_oom_reaper(victim);
967 
968 	mmdrop(mm);
969 	put_task_struct(victim);
970 }
971 #undef K
972 
973 /*
974  * Determines whether the kernel must panic because of the panic_on_oom sysctl.
975  */
976 static void check_panic_on_oom(struct oom_control *oc,
977 			       enum oom_constraint constraint)
978 {
979 	if (likely(!sysctl_panic_on_oom))
980 		return;
981 	if (sysctl_panic_on_oom != 2) {
982 		/*
983 		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
984 		 * does not panic for cpuset, mempolicy, or memcg allocation
985 		 * failures.
986 		 */
987 		if (constraint != CONSTRAINT_NONE)
988 			return;
989 	}
990 	/* Do not panic for oom kills triggered by sysrq */
991 	if (is_sysrq_oom(oc))
992 		return;
993 	dump_header(oc, NULL);
994 	panic("Out of memory: %s panic_on_oom is enabled\n",
995 		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
996 }
997 
998 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
999 
1000 int register_oom_notifier(struct notifier_block *nb)
1001 {
1002 	return blocking_notifier_chain_register(&oom_notify_list, nb);
1003 }
1004 EXPORT_SYMBOL_GPL(register_oom_notifier);
1005 
1006 int unregister_oom_notifier(struct notifier_block *nb)
1007 {
1008 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1009 }
1010 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1011 
1012 /**
1013  * out_of_memory - kill the "best" process when we run out of memory
1014  * @oc: pointer to struct oom_control
1015  *
1016  * If we run out of memory, we have the choice between either
1017  * killing a random task (bad), letting the system crash (worse)
1018  * OR try to be smart about which process to kill. Note that we
1019  * don't have to be perfect here, we just have to be good.
1020  */
1021 bool out_of_memory(struct oom_control *oc)
1022 {
1023 	unsigned long freed = 0;
1024 	enum oom_constraint constraint = CONSTRAINT_NONE;
1025 
1026 	if (oom_killer_disabled)
1027 		return false;
1028 
1029 	if (!is_memcg_oom(oc)) {
1030 		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1031 		if (freed > 0)
1032 			/* Got some memory back in the last second. */
1033 			return true;
1034 	}
1035 
1036 	/*
1037 	 * If current has a pending SIGKILL or is exiting, then automatically
1038 	 * select it.  The goal is to allow it to allocate so that it may
1039 	 * quickly exit and free its memory.
1040 	 */
1041 	if (task_will_free_mem(current)) {
1042 		mark_oom_victim(current);
1043 		wake_oom_reaper(current);
1044 		return true;
1045 	}
1046 
1047 	/*
1048 	 * The OOM killer does not compensate for IO-less reclaim.
1049 	 * pagefault_out_of_memory lost its gfp context so we have to
1050 	 * make sure exclude 0 mask - all other users should have at least
1051 	 * ___GFP_DIRECT_RECLAIM to get here.
1052 	 */
1053 	if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS))
1054 		return true;
1055 
1056 	/*
1057 	 * Check if there were limitations on the allocation (only relevant for
1058 	 * NUMA and memcg) that may require different handling.
1059 	 */
1060 	constraint = constrained_alloc(oc);
1061 	if (constraint != CONSTRAINT_MEMORY_POLICY)
1062 		oc->nodemask = NULL;
1063 	check_panic_on_oom(oc, constraint);
1064 
1065 	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1066 	    current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
1067 	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1068 		get_task_struct(current);
1069 		oc->chosen = current;
1070 		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1071 		return true;
1072 	}
1073 
1074 	select_bad_process(oc);
1075 	/* Found nothing?!?! Either we hang forever, or we panic. */
1076 	if (!oc->chosen && !is_sysrq_oom(oc) && !is_memcg_oom(oc)) {
1077 		dump_header(oc, NULL);
1078 		panic("Out of memory and no killable processes...\n");
1079 	}
1080 	if (oc->chosen && oc->chosen != (void *)-1UL) {
1081 		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1082 				 "Memory cgroup out of memory");
1083 		/*
1084 		 * Give the killed process a good chance to exit before trying
1085 		 * to allocate memory again.
1086 		 */
1087 		schedule_timeout_killable(1);
1088 	}
1089 	return !!oc->chosen;
1090 }
1091 
1092 /*
1093  * The pagefault handler calls here because it is out of memory, so kill a
1094  * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1095  * killing is already in progress so do nothing.
1096  */
1097 void pagefault_out_of_memory(void)
1098 {
1099 	struct oom_control oc = {
1100 		.zonelist = NULL,
1101 		.nodemask = NULL,
1102 		.memcg = NULL,
1103 		.gfp_mask = 0,
1104 		.order = 0,
1105 	};
1106 
1107 	if (mem_cgroup_oom_synchronize(true))
1108 		return;
1109 
1110 	if (!mutex_trylock(&oom_lock))
1111 		return;
1112 	out_of_memory(&oc);
1113 	mutex_unlock(&oom_lock);
1114 }
1115