1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/oom_kill.c 4 * 5 * Copyright (C) 1998,2000 Rik van Riel 6 * Thanks go out to Claus Fischer for some serious inspiration and 7 * for goading me into coding this file... 8 * Copyright (C) 2010 Google, Inc. 9 * Rewritten by David Rientjes 10 * 11 * The routines in this file are used to kill a process when 12 * we're seriously out of memory. This gets called from __alloc_pages() 13 * in mm/page_alloc.c when we really run out of memory. 14 * 15 * Since we won't call these routines often (on a well-configured 16 * machine) this file will double as a 'coding guide' and a signpost 17 * for newbie kernel hackers. It features several pointers to major 18 * kernel subsystems and hints as to where to find out what things do. 19 */ 20 21 #include <linux/oom.h> 22 #include <linux/mm.h> 23 #include <linux/err.h> 24 #include <linux/gfp.h> 25 #include <linux/sched.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/coredump.h> 28 #include <linux/sched/task.h> 29 #include <linux/swap.h> 30 #include <linux/timex.h> 31 #include <linux/jiffies.h> 32 #include <linux/cpuset.h> 33 #include <linux/export.h> 34 #include <linux/notifier.h> 35 #include <linux/memcontrol.h> 36 #include <linux/mempolicy.h> 37 #include <linux/security.h> 38 #include <linux/ptrace.h> 39 #include <linux/freezer.h> 40 #include <linux/ftrace.h> 41 #include <linux/ratelimit.h> 42 #include <linux/kthread.h> 43 #include <linux/init.h> 44 #include <linux/mmu_notifier.h> 45 46 #include <asm/tlb.h> 47 #include "internal.h" 48 #include "slab.h" 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/oom.h> 52 53 int sysctl_panic_on_oom; 54 int sysctl_oom_kill_allocating_task; 55 int sysctl_oom_dump_tasks = 1; 56 57 /* 58 * Serializes oom killer invocations (out_of_memory()) from all contexts to 59 * prevent from over eager oom killing (e.g. when the oom killer is invoked 60 * from different domains). 61 * 62 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled 63 * and mark_oom_victim 64 */ 65 DEFINE_MUTEX(oom_lock); 66 67 static inline bool is_memcg_oom(struct oom_control *oc) 68 { 69 return oc->memcg != NULL; 70 } 71 72 #ifdef CONFIG_NUMA 73 /** 74 * oom_cpuset_eligible() - check task eligiblity for kill 75 * @start: task struct of which task to consider 76 * @oc: pointer to struct oom_control 77 * 78 * Task eligibility is determined by whether or not a candidate task, @tsk, 79 * shares the same mempolicy nodes as current if it is bound by such a policy 80 * and whether or not it has the same set of allowed cpuset nodes. 81 * 82 * This function is assuming oom-killer context and 'current' has triggered 83 * the oom-killer. 84 */ 85 static bool oom_cpuset_eligible(struct task_struct *start, 86 struct oom_control *oc) 87 { 88 struct task_struct *tsk; 89 bool ret = false; 90 const nodemask_t *mask = oc->nodemask; 91 92 if (is_memcg_oom(oc)) 93 return true; 94 95 rcu_read_lock(); 96 for_each_thread(start, tsk) { 97 if (mask) { 98 /* 99 * If this is a mempolicy constrained oom, tsk's 100 * cpuset is irrelevant. Only return true if its 101 * mempolicy intersects current, otherwise it may be 102 * needlessly killed. 103 */ 104 ret = mempolicy_nodemask_intersects(tsk, mask); 105 } else { 106 /* 107 * This is not a mempolicy constrained oom, so only 108 * check the mems of tsk's cpuset. 109 */ 110 ret = cpuset_mems_allowed_intersects(current, tsk); 111 } 112 if (ret) 113 break; 114 } 115 rcu_read_unlock(); 116 117 return ret; 118 } 119 #else 120 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc) 121 { 122 return true; 123 } 124 #endif /* CONFIG_NUMA */ 125 126 /* 127 * The process p may have detached its own ->mm while exiting or through 128 * use_mm(), but one or more of its subthreads may still have a valid 129 * pointer. Return p, or any of its subthreads with a valid ->mm, with 130 * task_lock() held. 131 */ 132 struct task_struct *find_lock_task_mm(struct task_struct *p) 133 { 134 struct task_struct *t; 135 136 rcu_read_lock(); 137 138 for_each_thread(p, t) { 139 task_lock(t); 140 if (likely(t->mm)) 141 goto found; 142 task_unlock(t); 143 } 144 t = NULL; 145 found: 146 rcu_read_unlock(); 147 148 return t; 149 } 150 151 /* 152 * order == -1 means the oom kill is required by sysrq, otherwise only 153 * for display purposes. 154 */ 155 static inline bool is_sysrq_oom(struct oom_control *oc) 156 { 157 return oc->order == -1; 158 } 159 160 /* return true if the task is not adequate as candidate victim task. */ 161 static bool oom_unkillable_task(struct task_struct *p) 162 { 163 if (is_global_init(p)) 164 return true; 165 if (p->flags & PF_KTHREAD) 166 return true; 167 return false; 168 } 169 170 /* 171 * Print out unreclaimble slabs info when unreclaimable slabs amount is greater 172 * than all user memory (LRU pages) 173 */ 174 static bool is_dump_unreclaim_slabs(void) 175 { 176 unsigned long nr_lru; 177 178 nr_lru = global_node_page_state(NR_ACTIVE_ANON) + 179 global_node_page_state(NR_INACTIVE_ANON) + 180 global_node_page_state(NR_ACTIVE_FILE) + 181 global_node_page_state(NR_INACTIVE_FILE) + 182 global_node_page_state(NR_ISOLATED_ANON) + 183 global_node_page_state(NR_ISOLATED_FILE) + 184 global_node_page_state(NR_UNEVICTABLE); 185 186 return (global_node_page_state(NR_SLAB_UNRECLAIMABLE) > nr_lru); 187 } 188 189 /** 190 * oom_badness - heuristic function to determine which candidate task to kill 191 * @p: task struct of which task we should calculate 192 * @totalpages: total present RAM allowed for page allocation 193 * 194 * The heuristic for determining which task to kill is made to be as simple and 195 * predictable as possible. The goal is to return the highest value for the 196 * task consuming the most memory to avoid subsequent oom failures. 197 */ 198 unsigned long oom_badness(struct task_struct *p, unsigned long totalpages) 199 { 200 long points; 201 long adj; 202 203 if (oom_unkillable_task(p)) 204 return 0; 205 206 p = find_lock_task_mm(p); 207 if (!p) 208 return 0; 209 210 /* 211 * Do not even consider tasks which are explicitly marked oom 212 * unkillable or have been already oom reaped or the are in 213 * the middle of vfork 214 */ 215 adj = (long)p->signal->oom_score_adj; 216 if (adj == OOM_SCORE_ADJ_MIN || 217 test_bit(MMF_OOM_SKIP, &p->mm->flags) || 218 in_vfork(p)) { 219 task_unlock(p); 220 return 0; 221 } 222 223 /* 224 * The baseline for the badness score is the proportion of RAM that each 225 * task's rss, pagetable and swap space use. 226 */ 227 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) + 228 mm_pgtables_bytes(p->mm) / PAGE_SIZE; 229 task_unlock(p); 230 231 /* Normalize to oom_score_adj units */ 232 adj *= totalpages / 1000; 233 points += adj; 234 235 /* 236 * Never return 0 for an eligible task regardless of the root bonus and 237 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here). 238 */ 239 return points > 0 ? points : 1; 240 } 241 242 static const char * const oom_constraint_text[] = { 243 [CONSTRAINT_NONE] = "CONSTRAINT_NONE", 244 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET", 245 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY", 246 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG", 247 }; 248 249 /* 250 * Determine the type of allocation constraint. 251 */ 252 static enum oom_constraint constrained_alloc(struct oom_control *oc) 253 { 254 struct zone *zone; 255 struct zoneref *z; 256 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask); 257 bool cpuset_limited = false; 258 int nid; 259 260 if (is_memcg_oom(oc)) { 261 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1; 262 return CONSTRAINT_MEMCG; 263 } 264 265 /* Default to all available memory */ 266 oc->totalpages = totalram_pages() + total_swap_pages; 267 268 if (!IS_ENABLED(CONFIG_NUMA)) 269 return CONSTRAINT_NONE; 270 271 if (!oc->zonelist) 272 return CONSTRAINT_NONE; 273 /* 274 * Reach here only when __GFP_NOFAIL is used. So, we should avoid 275 * to kill current.We have to random task kill in this case. 276 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. 277 */ 278 if (oc->gfp_mask & __GFP_THISNODE) 279 return CONSTRAINT_NONE; 280 281 /* 282 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in 283 * the page allocator means a mempolicy is in effect. Cpuset policy 284 * is enforced in get_page_from_freelist(). 285 */ 286 if (oc->nodemask && 287 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) { 288 oc->totalpages = total_swap_pages; 289 for_each_node_mask(nid, *oc->nodemask) 290 oc->totalpages += node_present_pages(nid); 291 return CONSTRAINT_MEMORY_POLICY; 292 } 293 294 /* Check this allocation failure is caused by cpuset's wall function */ 295 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist, 296 high_zoneidx, oc->nodemask) 297 if (!cpuset_zone_allowed(zone, oc->gfp_mask)) 298 cpuset_limited = true; 299 300 if (cpuset_limited) { 301 oc->totalpages = total_swap_pages; 302 for_each_node_mask(nid, cpuset_current_mems_allowed) 303 oc->totalpages += node_present_pages(nid); 304 return CONSTRAINT_CPUSET; 305 } 306 return CONSTRAINT_NONE; 307 } 308 309 static int oom_evaluate_task(struct task_struct *task, void *arg) 310 { 311 struct oom_control *oc = arg; 312 unsigned long points; 313 314 if (oom_unkillable_task(task)) 315 goto next; 316 317 /* p may not have freeable memory in nodemask */ 318 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc)) 319 goto next; 320 321 /* 322 * This task already has access to memory reserves and is being killed. 323 * Don't allow any other task to have access to the reserves unless 324 * the task has MMF_OOM_SKIP because chances that it would release 325 * any memory is quite low. 326 */ 327 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) { 328 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags)) 329 goto next; 330 goto abort; 331 } 332 333 /* 334 * If task is allocating a lot of memory and has been marked to be 335 * killed first if it triggers an oom, then select it. 336 */ 337 if (oom_task_origin(task)) { 338 points = ULONG_MAX; 339 goto select; 340 } 341 342 points = oom_badness(task, oc->totalpages); 343 if (!points || points < oc->chosen_points) 344 goto next; 345 346 select: 347 if (oc->chosen) 348 put_task_struct(oc->chosen); 349 get_task_struct(task); 350 oc->chosen = task; 351 oc->chosen_points = points; 352 next: 353 return 0; 354 abort: 355 if (oc->chosen) 356 put_task_struct(oc->chosen); 357 oc->chosen = (void *)-1UL; 358 return 1; 359 } 360 361 /* 362 * Simple selection loop. We choose the process with the highest number of 363 * 'points'. In case scan was aborted, oc->chosen is set to -1. 364 */ 365 static void select_bad_process(struct oom_control *oc) 366 { 367 if (is_memcg_oom(oc)) 368 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc); 369 else { 370 struct task_struct *p; 371 372 rcu_read_lock(); 373 for_each_process(p) 374 if (oom_evaluate_task(p, oc)) 375 break; 376 rcu_read_unlock(); 377 } 378 } 379 380 static int dump_task(struct task_struct *p, void *arg) 381 { 382 struct oom_control *oc = arg; 383 struct task_struct *task; 384 385 if (oom_unkillable_task(p)) 386 return 0; 387 388 /* p may not have freeable memory in nodemask */ 389 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc)) 390 return 0; 391 392 task = find_lock_task_mm(p); 393 if (!task) { 394 /* 395 * This is a kthread or all of p's threads have already 396 * detached their mm's. There's no need to report 397 * them; they can't be oom killed anyway. 398 */ 399 return 0; 400 } 401 402 pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu %5hd %s\n", 403 task->pid, from_kuid(&init_user_ns, task_uid(task)), 404 task->tgid, task->mm->total_vm, get_mm_rss(task->mm), 405 mm_pgtables_bytes(task->mm), 406 get_mm_counter(task->mm, MM_SWAPENTS), 407 task->signal->oom_score_adj, task->comm); 408 task_unlock(task); 409 410 return 0; 411 } 412 413 /** 414 * dump_tasks - dump current memory state of all system tasks 415 * @oc: pointer to struct oom_control 416 * 417 * Dumps the current memory state of all eligible tasks. Tasks not in the same 418 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes 419 * are not shown. 420 * State information includes task's pid, uid, tgid, vm size, rss, 421 * pgtables_bytes, swapents, oom_score_adj value, and name. 422 */ 423 static void dump_tasks(struct oom_control *oc) 424 { 425 pr_info("Tasks state (memory values in pages):\n"); 426 pr_info("[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name\n"); 427 428 if (is_memcg_oom(oc)) 429 mem_cgroup_scan_tasks(oc->memcg, dump_task, oc); 430 else { 431 struct task_struct *p; 432 433 rcu_read_lock(); 434 for_each_process(p) 435 dump_task(p, oc); 436 rcu_read_unlock(); 437 } 438 } 439 440 static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim) 441 { 442 /* one line summary of the oom killer context. */ 443 pr_info("oom-kill:constraint=%s,nodemask=%*pbl", 444 oom_constraint_text[oc->constraint], 445 nodemask_pr_args(oc->nodemask)); 446 cpuset_print_current_mems_allowed(); 447 mem_cgroup_print_oom_context(oc->memcg, victim); 448 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid, 449 from_kuid(&init_user_ns, task_uid(victim))); 450 } 451 452 static void dump_header(struct oom_control *oc, struct task_struct *p) 453 { 454 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n", 455 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order, 456 current->signal->oom_score_adj); 457 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order) 458 pr_warn("COMPACTION is disabled!!!\n"); 459 460 dump_stack(); 461 if (is_memcg_oom(oc)) 462 mem_cgroup_print_oom_meminfo(oc->memcg); 463 else { 464 show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask); 465 if (is_dump_unreclaim_slabs()) 466 dump_unreclaimable_slab(); 467 } 468 if (sysctl_oom_dump_tasks) 469 dump_tasks(oc); 470 if (p) 471 dump_oom_summary(oc, p); 472 } 473 474 /* 475 * Number of OOM victims in flight 476 */ 477 static atomic_t oom_victims = ATOMIC_INIT(0); 478 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait); 479 480 static bool oom_killer_disabled __read_mostly; 481 482 #define K(x) ((x) << (PAGE_SHIFT-10)) 483 484 /* 485 * task->mm can be NULL if the task is the exited group leader. So to 486 * determine whether the task is using a particular mm, we examine all the 487 * task's threads: if one of those is using this mm then this task was also 488 * using it. 489 */ 490 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm) 491 { 492 struct task_struct *t; 493 494 for_each_thread(p, t) { 495 struct mm_struct *t_mm = READ_ONCE(t->mm); 496 if (t_mm) 497 return t_mm == mm; 498 } 499 return false; 500 } 501 502 #ifdef CONFIG_MMU 503 /* 504 * OOM Reaper kernel thread which tries to reap the memory used by the OOM 505 * victim (if that is possible) to help the OOM killer to move on. 506 */ 507 static struct task_struct *oom_reaper_th; 508 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait); 509 static struct task_struct *oom_reaper_list; 510 static DEFINE_SPINLOCK(oom_reaper_lock); 511 512 bool __oom_reap_task_mm(struct mm_struct *mm) 513 { 514 struct vm_area_struct *vma; 515 bool ret = true; 516 517 /* 518 * Tell all users of get_user/copy_from_user etc... that the content 519 * is no longer stable. No barriers really needed because unmapping 520 * should imply barriers already and the reader would hit a page fault 521 * if it stumbled over a reaped memory. 522 */ 523 set_bit(MMF_UNSTABLE, &mm->flags); 524 525 for (vma = mm->mmap ; vma; vma = vma->vm_next) { 526 if (!can_madv_lru_vma(vma)) 527 continue; 528 529 /* 530 * Only anonymous pages have a good chance to be dropped 531 * without additional steps which we cannot afford as we 532 * are OOM already. 533 * 534 * We do not even care about fs backed pages because all 535 * which are reclaimable have already been reclaimed and 536 * we do not want to block exit_mmap by keeping mm ref 537 * count elevated without a good reason. 538 */ 539 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) { 540 struct mmu_notifier_range range; 541 struct mmu_gather tlb; 542 543 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, 544 vma, mm, vma->vm_start, 545 vma->vm_end); 546 tlb_gather_mmu(&tlb, mm, range.start, range.end); 547 if (mmu_notifier_invalidate_range_start_nonblock(&range)) { 548 tlb_finish_mmu(&tlb, range.start, range.end); 549 ret = false; 550 continue; 551 } 552 unmap_page_range(&tlb, vma, range.start, range.end, NULL); 553 mmu_notifier_invalidate_range_end(&range); 554 tlb_finish_mmu(&tlb, range.start, range.end); 555 } 556 } 557 558 return ret; 559 } 560 561 /* 562 * Reaps the address space of the give task. 563 * 564 * Returns true on success and false if none or part of the address space 565 * has been reclaimed and the caller should retry later. 566 */ 567 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm) 568 { 569 bool ret = true; 570 571 if (!down_read_trylock(&mm->mmap_sem)) { 572 trace_skip_task_reaping(tsk->pid); 573 return false; 574 } 575 576 /* 577 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't 578 * work on the mm anymore. The check for MMF_OOM_SKIP must run 579 * under mmap_sem for reading because it serializes against the 580 * down_write();up_write() cycle in exit_mmap(). 581 */ 582 if (test_bit(MMF_OOM_SKIP, &mm->flags)) { 583 trace_skip_task_reaping(tsk->pid); 584 goto out_unlock; 585 } 586 587 trace_start_task_reaping(tsk->pid); 588 589 /* failed to reap part of the address space. Try again later */ 590 ret = __oom_reap_task_mm(mm); 591 if (!ret) 592 goto out_finish; 593 594 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n", 595 task_pid_nr(tsk), tsk->comm, 596 K(get_mm_counter(mm, MM_ANONPAGES)), 597 K(get_mm_counter(mm, MM_FILEPAGES)), 598 K(get_mm_counter(mm, MM_SHMEMPAGES))); 599 out_finish: 600 trace_finish_task_reaping(tsk->pid); 601 out_unlock: 602 up_read(&mm->mmap_sem); 603 604 return ret; 605 } 606 607 #define MAX_OOM_REAP_RETRIES 10 608 static void oom_reap_task(struct task_struct *tsk) 609 { 610 int attempts = 0; 611 struct mm_struct *mm = tsk->signal->oom_mm; 612 613 /* Retry the down_read_trylock(mmap_sem) a few times */ 614 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm)) 615 schedule_timeout_idle(HZ/10); 616 617 if (attempts <= MAX_OOM_REAP_RETRIES || 618 test_bit(MMF_OOM_SKIP, &mm->flags)) 619 goto done; 620 621 pr_info("oom_reaper: unable to reap pid:%d (%s)\n", 622 task_pid_nr(tsk), tsk->comm); 623 debug_show_all_locks(); 624 625 done: 626 tsk->oom_reaper_list = NULL; 627 628 /* 629 * Hide this mm from OOM killer because it has been either reaped or 630 * somebody can't call up_write(mmap_sem). 631 */ 632 set_bit(MMF_OOM_SKIP, &mm->flags); 633 634 /* Drop a reference taken by wake_oom_reaper */ 635 put_task_struct(tsk); 636 } 637 638 static int oom_reaper(void *unused) 639 { 640 while (true) { 641 struct task_struct *tsk = NULL; 642 643 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL); 644 spin_lock(&oom_reaper_lock); 645 if (oom_reaper_list != NULL) { 646 tsk = oom_reaper_list; 647 oom_reaper_list = tsk->oom_reaper_list; 648 } 649 spin_unlock(&oom_reaper_lock); 650 651 if (tsk) 652 oom_reap_task(tsk); 653 } 654 655 return 0; 656 } 657 658 static void wake_oom_reaper(struct task_struct *tsk) 659 { 660 /* mm is already queued? */ 661 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags)) 662 return; 663 664 get_task_struct(tsk); 665 666 spin_lock(&oom_reaper_lock); 667 tsk->oom_reaper_list = oom_reaper_list; 668 oom_reaper_list = tsk; 669 spin_unlock(&oom_reaper_lock); 670 trace_wake_reaper(tsk->pid); 671 wake_up(&oom_reaper_wait); 672 } 673 674 static int __init oom_init(void) 675 { 676 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper"); 677 return 0; 678 } 679 subsys_initcall(oom_init) 680 #else 681 static inline void wake_oom_reaper(struct task_struct *tsk) 682 { 683 } 684 #endif /* CONFIG_MMU */ 685 686 /** 687 * mark_oom_victim - mark the given task as OOM victim 688 * @tsk: task to mark 689 * 690 * Has to be called with oom_lock held and never after 691 * oom has been disabled already. 692 * 693 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either 694 * under task_lock or operate on the current). 695 */ 696 static void mark_oom_victim(struct task_struct *tsk) 697 { 698 struct mm_struct *mm = tsk->mm; 699 700 WARN_ON(oom_killer_disabled); 701 /* OOM killer might race with memcg OOM */ 702 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE)) 703 return; 704 705 /* oom_mm is bound to the signal struct life time. */ 706 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) { 707 mmgrab(tsk->signal->oom_mm); 708 set_bit(MMF_OOM_VICTIM, &mm->flags); 709 } 710 711 /* 712 * Make sure that the task is woken up from uninterruptible sleep 713 * if it is frozen because OOM killer wouldn't be able to free 714 * any memory and livelock. freezing_slow_path will tell the freezer 715 * that TIF_MEMDIE tasks should be ignored. 716 */ 717 __thaw_task(tsk); 718 atomic_inc(&oom_victims); 719 trace_mark_victim(tsk->pid); 720 } 721 722 /** 723 * exit_oom_victim - note the exit of an OOM victim 724 */ 725 void exit_oom_victim(void) 726 { 727 clear_thread_flag(TIF_MEMDIE); 728 729 if (!atomic_dec_return(&oom_victims)) 730 wake_up_all(&oom_victims_wait); 731 } 732 733 /** 734 * oom_killer_enable - enable OOM killer 735 */ 736 void oom_killer_enable(void) 737 { 738 oom_killer_disabled = false; 739 pr_info("OOM killer enabled.\n"); 740 } 741 742 /** 743 * oom_killer_disable - disable OOM killer 744 * @timeout: maximum timeout to wait for oom victims in jiffies 745 * 746 * Forces all page allocations to fail rather than trigger OOM killer. 747 * Will block and wait until all OOM victims are killed or the given 748 * timeout expires. 749 * 750 * The function cannot be called when there are runnable user tasks because 751 * the userspace would see unexpected allocation failures as a result. Any 752 * new usage of this function should be consulted with MM people. 753 * 754 * Returns true if successful and false if the OOM killer cannot be 755 * disabled. 756 */ 757 bool oom_killer_disable(signed long timeout) 758 { 759 signed long ret; 760 761 /* 762 * Make sure to not race with an ongoing OOM killer. Check that the 763 * current is not killed (possibly due to sharing the victim's memory). 764 */ 765 if (mutex_lock_killable(&oom_lock)) 766 return false; 767 oom_killer_disabled = true; 768 mutex_unlock(&oom_lock); 769 770 ret = wait_event_interruptible_timeout(oom_victims_wait, 771 !atomic_read(&oom_victims), timeout); 772 if (ret <= 0) { 773 oom_killer_enable(); 774 return false; 775 } 776 pr_info("OOM killer disabled.\n"); 777 778 return true; 779 } 780 781 static inline bool __task_will_free_mem(struct task_struct *task) 782 { 783 struct signal_struct *sig = task->signal; 784 785 /* 786 * A coredumping process may sleep for an extended period in exit_mm(), 787 * so the oom killer cannot assume that the process will promptly exit 788 * and release memory. 789 */ 790 if (sig->flags & SIGNAL_GROUP_COREDUMP) 791 return false; 792 793 if (sig->flags & SIGNAL_GROUP_EXIT) 794 return true; 795 796 if (thread_group_empty(task) && (task->flags & PF_EXITING)) 797 return true; 798 799 return false; 800 } 801 802 /* 803 * Checks whether the given task is dying or exiting and likely to 804 * release its address space. This means that all threads and processes 805 * sharing the same mm have to be killed or exiting. 806 * Caller has to make sure that task->mm is stable (hold task_lock or 807 * it operates on the current). 808 */ 809 static bool task_will_free_mem(struct task_struct *task) 810 { 811 struct mm_struct *mm = task->mm; 812 struct task_struct *p; 813 bool ret = true; 814 815 /* 816 * Skip tasks without mm because it might have passed its exit_mm and 817 * exit_oom_victim. oom_reaper could have rescued that but do not rely 818 * on that for now. We can consider find_lock_task_mm in future. 819 */ 820 if (!mm) 821 return false; 822 823 if (!__task_will_free_mem(task)) 824 return false; 825 826 /* 827 * This task has already been drained by the oom reaper so there are 828 * only small chances it will free some more 829 */ 830 if (test_bit(MMF_OOM_SKIP, &mm->flags)) 831 return false; 832 833 if (atomic_read(&mm->mm_users) <= 1) 834 return true; 835 836 /* 837 * Make sure that all tasks which share the mm with the given tasks 838 * are dying as well to make sure that a) nobody pins its mm and 839 * b) the task is also reapable by the oom reaper. 840 */ 841 rcu_read_lock(); 842 for_each_process(p) { 843 if (!process_shares_mm(p, mm)) 844 continue; 845 if (same_thread_group(task, p)) 846 continue; 847 ret = __task_will_free_mem(p); 848 if (!ret) 849 break; 850 } 851 rcu_read_unlock(); 852 853 return ret; 854 } 855 856 static void __oom_kill_process(struct task_struct *victim, const char *message) 857 { 858 struct task_struct *p; 859 struct mm_struct *mm; 860 bool can_oom_reap = true; 861 862 p = find_lock_task_mm(victim); 863 if (!p) { 864 put_task_struct(victim); 865 return; 866 } else if (victim != p) { 867 get_task_struct(p); 868 put_task_struct(victim); 869 victim = p; 870 } 871 872 /* Get a reference to safely compare mm after task_unlock(victim) */ 873 mm = victim->mm; 874 mmgrab(mm); 875 876 /* Raise event before sending signal: task reaper must see this */ 877 count_vm_event(OOM_KILL); 878 memcg_memory_event_mm(mm, MEMCG_OOM_KILL); 879 880 /* 881 * We should send SIGKILL before granting access to memory reserves 882 * in order to prevent the OOM victim from depleting the memory 883 * reserves from the user space under its control. 884 */ 885 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID); 886 mark_oom_victim(victim); 887 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n", 888 message, task_pid_nr(victim), victim->comm, K(mm->total_vm), 889 K(get_mm_counter(mm, MM_ANONPAGES)), 890 K(get_mm_counter(mm, MM_FILEPAGES)), 891 K(get_mm_counter(mm, MM_SHMEMPAGES)), 892 from_kuid(&init_user_ns, task_uid(victim)), 893 mm_pgtables_bytes(mm), victim->signal->oom_score_adj); 894 task_unlock(victim); 895 896 /* 897 * Kill all user processes sharing victim->mm in other thread groups, if 898 * any. They don't get access to memory reserves, though, to avoid 899 * depletion of all memory. This prevents mm->mmap_sem livelock when an 900 * oom killed thread cannot exit because it requires the semaphore and 901 * its contended by another thread trying to allocate memory itself. 902 * That thread will now get access to memory reserves since it has a 903 * pending fatal signal. 904 */ 905 rcu_read_lock(); 906 for_each_process(p) { 907 if (!process_shares_mm(p, mm)) 908 continue; 909 if (same_thread_group(p, victim)) 910 continue; 911 if (is_global_init(p)) { 912 can_oom_reap = false; 913 set_bit(MMF_OOM_SKIP, &mm->flags); 914 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n", 915 task_pid_nr(victim), victim->comm, 916 task_pid_nr(p), p->comm); 917 continue; 918 } 919 /* 920 * No use_mm() user needs to read from the userspace so we are 921 * ok to reap it. 922 */ 923 if (unlikely(p->flags & PF_KTHREAD)) 924 continue; 925 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID); 926 } 927 rcu_read_unlock(); 928 929 if (can_oom_reap) 930 wake_oom_reaper(victim); 931 932 mmdrop(mm); 933 put_task_struct(victim); 934 } 935 #undef K 936 937 /* 938 * Kill provided task unless it's secured by setting 939 * oom_score_adj to OOM_SCORE_ADJ_MIN. 940 */ 941 static int oom_kill_memcg_member(struct task_struct *task, void *message) 942 { 943 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN && 944 !is_global_init(task)) { 945 get_task_struct(task); 946 __oom_kill_process(task, message); 947 } 948 return 0; 949 } 950 951 static void oom_kill_process(struct oom_control *oc, const char *message) 952 { 953 struct task_struct *victim = oc->chosen; 954 struct mem_cgroup *oom_group; 955 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL, 956 DEFAULT_RATELIMIT_BURST); 957 958 /* 959 * If the task is already exiting, don't alarm the sysadmin or kill 960 * its children or threads, just give it access to memory reserves 961 * so it can die quickly 962 */ 963 task_lock(victim); 964 if (task_will_free_mem(victim)) { 965 mark_oom_victim(victim); 966 wake_oom_reaper(victim); 967 task_unlock(victim); 968 put_task_struct(victim); 969 return; 970 } 971 task_unlock(victim); 972 973 if (__ratelimit(&oom_rs)) 974 dump_header(oc, victim); 975 976 /* 977 * Do we need to kill the entire memory cgroup? 978 * Or even one of the ancestor memory cgroups? 979 * Check this out before killing the victim task. 980 */ 981 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg); 982 983 __oom_kill_process(victim, message); 984 985 /* 986 * If necessary, kill all tasks in the selected memory cgroup. 987 */ 988 if (oom_group) { 989 mem_cgroup_print_oom_group(oom_group); 990 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member, 991 (void*)message); 992 mem_cgroup_put(oom_group); 993 } 994 } 995 996 /* 997 * Determines whether the kernel must panic because of the panic_on_oom sysctl. 998 */ 999 static void check_panic_on_oom(struct oom_control *oc) 1000 { 1001 if (likely(!sysctl_panic_on_oom)) 1002 return; 1003 if (sysctl_panic_on_oom != 2) { 1004 /* 1005 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel 1006 * does not panic for cpuset, mempolicy, or memcg allocation 1007 * failures. 1008 */ 1009 if (oc->constraint != CONSTRAINT_NONE) 1010 return; 1011 } 1012 /* Do not panic for oom kills triggered by sysrq */ 1013 if (is_sysrq_oom(oc)) 1014 return; 1015 dump_header(oc, NULL); 1016 panic("Out of memory: %s panic_on_oom is enabled\n", 1017 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); 1018 } 1019 1020 static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 1021 1022 int register_oom_notifier(struct notifier_block *nb) 1023 { 1024 return blocking_notifier_chain_register(&oom_notify_list, nb); 1025 } 1026 EXPORT_SYMBOL_GPL(register_oom_notifier); 1027 1028 int unregister_oom_notifier(struct notifier_block *nb) 1029 { 1030 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 1031 } 1032 EXPORT_SYMBOL_GPL(unregister_oom_notifier); 1033 1034 /** 1035 * out_of_memory - kill the "best" process when we run out of memory 1036 * @oc: pointer to struct oom_control 1037 * 1038 * If we run out of memory, we have the choice between either 1039 * killing a random task (bad), letting the system crash (worse) 1040 * OR try to be smart about which process to kill. Note that we 1041 * don't have to be perfect here, we just have to be good. 1042 */ 1043 bool out_of_memory(struct oom_control *oc) 1044 { 1045 unsigned long freed = 0; 1046 1047 if (oom_killer_disabled) 1048 return false; 1049 1050 if (!is_memcg_oom(oc)) { 1051 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 1052 if (freed > 0) 1053 /* Got some memory back in the last second. */ 1054 return true; 1055 } 1056 1057 /* 1058 * If current has a pending SIGKILL or is exiting, then automatically 1059 * select it. The goal is to allow it to allocate so that it may 1060 * quickly exit and free its memory. 1061 */ 1062 if (task_will_free_mem(current)) { 1063 mark_oom_victim(current); 1064 wake_oom_reaper(current); 1065 return true; 1066 } 1067 1068 /* 1069 * The OOM killer does not compensate for IO-less reclaim. 1070 * pagefault_out_of_memory lost its gfp context so we have to 1071 * make sure exclude 0 mask - all other users should have at least 1072 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to 1073 * invoke the OOM killer even if it is a GFP_NOFS allocation. 1074 */ 1075 if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc)) 1076 return true; 1077 1078 /* 1079 * Check if there were limitations on the allocation (only relevant for 1080 * NUMA and memcg) that may require different handling. 1081 */ 1082 oc->constraint = constrained_alloc(oc); 1083 if (oc->constraint != CONSTRAINT_MEMORY_POLICY) 1084 oc->nodemask = NULL; 1085 check_panic_on_oom(oc); 1086 1087 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task && 1088 current->mm && !oom_unkillable_task(current) && 1089 oom_cpuset_eligible(current, oc) && 1090 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) { 1091 get_task_struct(current); 1092 oc->chosen = current; 1093 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)"); 1094 return true; 1095 } 1096 1097 select_bad_process(oc); 1098 /* Found nothing?!?! */ 1099 if (!oc->chosen) { 1100 dump_header(oc, NULL); 1101 pr_warn("Out of memory and no killable processes...\n"); 1102 /* 1103 * If we got here due to an actual allocation at the 1104 * system level, we cannot survive this and will enter 1105 * an endless loop in the allocator. Bail out now. 1106 */ 1107 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc)) 1108 panic("System is deadlocked on memory\n"); 1109 } 1110 if (oc->chosen && oc->chosen != (void *)-1UL) 1111 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" : 1112 "Memory cgroup out of memory"); 1113 return !!oc->chosen; 1114 } 1115 1116 /* 1117 * The pagefault handler calls here because it is out of memory, so kill a 1118 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom 1119 * killing is already in progress so do nothing. 1120 */ 1121 void pagefault_out_of_memory(void) 1122 { 1123 struct oom_control oc = { 1124 .zonelist = NULL, 1125 .nodemask = NULL, 1126 .memcg = NULL, 1127 .gfp_mask = 0, 1128 .order = 0, 1129 }; 1130 1131 if (mem_cgroup_oom_synchronize(true)) 1132 return; 1133 1134 if (!mutex_trylock(&oom_lock)) 1135 return; 1136 out_of_memory(&oc); 1137 mutex_unlock(&oom_lock); 1138 } 1139