xref: /openbmc/linux/mm/oom_kill.c (revision bf070bb0)
1 /*
2  *  linux/mm/oom_kill.c
3  *
4  *  Copyright (C)  1998,2000  Rik van Riel
5  *	Thanks go out to Claus Fischer for some serious inspiration and
6  *	for goading me into coding this file...
7  *  Copyright (C)  2010  Google, Inc.
8  *	Rewritten by David Rientjes
9  *
10  *  The routines in this file are used to kill a process when
11  *  we're seriously out of memory. This gets called from __alloc_pages()
12  *  in mm/page_alloc.c when we really run out of memory.
13  *
14  *  Since we won't call these routines often (on a well-configured
15  *  machine) this file will double as a 'coding guide' and a signpost
16  *  for newbie kernel hackers. It features several pointers to major
17  *  kernel subsystems and hints as to where to find out what things do.
18  */
19 
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/sched/mm.h>
26 #include <linux/sched/coredump.h>
27 #include <linux/sched/task.h>
28 #include <linux/swap.h>
29 #include <linux/timex.h>
30 #include <linux/jiffies.h>
31 #include <linux/cpuset.h>
32 #include <linux/export.h>
33 #include <linux/notifier.h>
34 #include <linux/memcontrol.h>
35 #include <linux/mempolicy.h>
36 #include <linux/security.h>
37 #include <linux/ptrace.h>
38 #include <linux/freezer.h>
39 #include <linux/ftrace.h>
40 #include <linux/ratelimit.h>
41 #include <linux/kthread.h>
42 #include <linux/init.h>
43 #include <linux/mmu_notifier.h>
44 
45 #include <asm/tlb.h>
46 #include "internal.h"
47 #include "slab.h"
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/oom.h>
51 
52 int sysctl_panic_on_oom;
53 int sysctl_oom_kill_allocating_task;
54 int sysctl_oom_dump_tasks = 1;
55 
56 DEFINE_MUTEX(oom_lock);
57 
58 #ifdef CONFIG_NUMA
59 /**
60  * has_intersects_mems_allowed() - check task eligiblity for kill
61  * @start: task struct of which task to consider
62  * @mask: nodemask passed to page allocator for mempolicy ooms
63  *
64  * Task eligibility is determined by whether or not a candidate task, @tsk,
65  * shares the same mempolicy nodes as current if it is bound by such a policy
66  * and whether or not it has the same set of allowed cpuset nodes.
67  */
68 static bool has_intersects_mems_allowed(struct task_struct *start,
69 					const nodemask_t *mask)
70 {
71 	struct task_struct *tsk;
72 	bool ret = false;
73 
74 	rcu_read_lock();
75 	for_each_thread(start, tsk) {
76 		if (mask) {
77 			/*
78 			 * If this is a mempolicy constrained oom, tsk's
79 			 * cpuset is irrelevant.  Only return true if its
80 			 * mempolicy intersects current, otherwise it may be
81 			 * needlessly killed.
82 			 */
83 			ret = mempolicy_nodemask_intersects(tsk, mask);
84 		} else {
85 			/*
86 			 * This is not a mempolicy constrained oom, so only
87 			 * check the mems of tsk's cpuset.
88 			 */
89 			ret = cpuset_mems_allowed_intersects(current, tsk);
90 		}
91 		if (ret)
92 			break;
93 	}
94 	rcu_read_unlock();
95 
96 	return ret;
97 }
98 #else
99 static bool has_intersects_mems_allowed(struct task_struct *tsk,
100 					const nodemask_t *mask)
101 {
102 	return true;
103 }
104 #endif /* CONFIG_NUMA */
105 
106 /*
107  * The process p may have detached its own ->mm while exiting or through
108  * use_mm(), but one or more of its subthreads may still have a valid
109  * pointer.  Return p, or any of its subthreads with a valid ->mm, with
110  * task_lock() held.
111  */
112 struct task_struct *find_lock_task_mm(struct task_struct *p)
113 {
114 	struct task_struct *t;
115 
116 	rcu_read_lock();
117 
118 	for_each_thread(p, t) {
119 		task_lock(t);
120 		if (likely(t->mm))
121 			goto found;
122 		task_unlock(t);
123 	}
124 	t = NULL;
125 found:
126 	rcu_read_unlock();
127 
128 	return t;
129 }
130 
131 /*
132  * order == -1 means the oom kill is required by sysrq, otherwise only
133  * for display purposes.
134  */
135 static inline bool is_sysrq_oom(struct oom_control *oc)
136 {
137 	return oc->order == -1;
138 }
139 
140 static inline bool is_memcg_oom(struct oom_control *oc)
141 {
142 	return oc->memcg != NULL;
143 }
144 
145 /* return true if the task is not adequate as candidate victim task. */
146 static bool oom_unkillable_task(struct task_struct *p,
147 		struct mem_cgroup *memcg, const nodemask_t *nodemask)
148 {
149 	if (is_global_init(p))
150 		return true;
151 	if (p->flags & PF_KTHREAD)
152 		return true;
153 
154 	/* When mem_cgroup_out_of_memory() and p is not member of the group */
155 	if (memcg && !task_in_mem_cgroup(p, memcg))
156 		return true;
157 
158 	/* p may not have freeable memory in nodemask */
159 	if (!has_intersects_mems_allowed(p, nodemask))
160 		return true;
161 
162 	return false;
163 }
164 
165 /*
166  * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
167  * than all user memory (LRU pages)
168  */
169 static bool is_dump_unreclaim_slabs(void)
170 {
171 	unsigned long nr_lru;
172 
173 	nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
174 		 global_node_page_state(NR_INACTIVE_ANON) +
175 		 global_node_page_state(NR_ACTIVE_FILE) +
176 		 global_node_page_state(NR_INACTIVE_FILE) +
177 		 global_node_page_state(NR_ISOLATED_ANON) +
178 		 global_node_page_state(NR_ISOLATED_FILE) +
179 		 global_node_page_state(NR_UNEVICTABLE);
180 
181 	return (global_node_page_state(NR_SLAB_UNRECLAIMABLE) > nr_lru);
182 }
183 
184 /**
185  * oom_badness - heuristic function to determine which candidate task to kill
186  * @p: task struct of which task we should calculate
187  * @totalpages: total present RAM allowed for page allocation
188  *
189  * The heuristic for determining which task to kill is made to be as simple and
190  * predictable as possible.  The goal is to return the highest value for the
191  * task consuming the most memory to avoid subsequent oom failures.
192  */
193 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
194 			  const nodemask_t *nodemask, unsigned long totalpages)
195 {
196 	long points;
197 	long adj;
198 
199 	if (oom_unkillable_task(p, memcg, nodemask))
200 		return 0;
201 
202 	p = find_lock_task_mm(p);
203 	if (!p)
204 		return 0;
205 
206 	/*
207 	 * Do not even consider tasks which are explicitly marked oom
208 	 * unkillable or have been already oom reaped or the are in
209 	 * the middle of vfork
210 	 */
211 	adj = (long)p->signal->oom_score_adj;
212 	if (adj == OOM_SCORE_ADJ_MIN ||
213 			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
214 			in_vfork(p)) {
215 		task_unlock(p);
216 		return 0;
217 	}
218 
219 	/*
220 	 * The baseline for the badness score is the proportion of RAM that each
221 	 * task's rss, pagetable and swap space use.
222 	 */
223 	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
224 		mm_pgtables_bytes(p->mm) / PAGE_SIZE;
225 	task_unlock(p);
226 
227 	/*
228 	 * Root processes get 3% bonus, just like the __vm_enough_memory()
229 	 * implementation used by LSMs.
230 	 */
231 	if (has_capability_noaudit(p, CAP_SYS_ADMIN))
232 		points -= (points * 3) / 100;
233 
234 	/* Normalize to oom_score_adj units */
235 	adj *= totalpages / 1000;
236 	points += adj;
237 
238 	/*
239 	 * Never return 0 for an eligible task regardless of the root bonus and
240 	 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
241 	 */
242 	return points > 0 ? points : 1;
243 }
244 
245 enum oom_constraint {
246 	CONSTRAINT_NONE,
247 	CONSTRAINT_CPUSET,
248 	CONSTRAINT_MEMORY_POLICY,
249 	CONSTRAINT_MEMCG,
250 };
251 
252 /*
253  * Determine the type of allocation constraint.
254  */
255 static enum oom_constraint constrained_alloc(struct oom_control *oc)
256 {
257 	struct zone *zone;
258 	struct zoneref *z;
259 	enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
260 	bool cpuset_limited = false;
261 	int nid;
262 
263 	if (is_memcg_oom(oc)) {
264 		oc->totalpages = mem_cgroup_get_limit(oc->memcg) ?: 1;
265 		return CONSTRAINT_MEMCG;
266 	}
267 
268 	/* Default to all available memory */
269 	oc->totalpages = totalram_pages + total_swap_pages;
270 
271 	if (!IS_ENABLED(CONFIG_NUMA))
272 		return CONSTRAINT_NONE;
273 
274 	if (!oc->zonelist)
275 		return CONSTRAINT_NONE;
276 	/*
277 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
278 	 * to kill current.We have to random task kill in this case.
279 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
280 	 */
281 	if (oc->gfp_mask & __GFP_THISNODE)
282 		return CONSTRAINT_NONE;
283 
284 	/*
285 	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
286 	 * the page allocator means a mempolicy is in effect.  Cpuset policy
287 	 * is enforced in get_page_from_freelist().
288 	 */
289 	if (oc->nodemask &&
290 	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
291 		oc->totalpages = total_swap_pages;
292 		for_each_node_mask(nid, *oc->nodemask)
293 			oc->totalpages += node_spanned_pages(nid);
294 		return CONSTRAINT_MEMORY_POLICY;
295 	}
296 
297 	/* Check this allocation failure is caused by cpuset's wall function */
298 	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
299 			high_zoneidx, oc->nodemask)
300 		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
301 			cpuset_limited = true;
302 
303 	if (cpuset_limited) {
304 		oc->totalpages = total_swap_pages;
305 		for_each_node_mask(nid, cpuset_current_mems_allowed)
306 			oc->totalpages += node_spanned_pages(nid);
307 		return CONSTRAINT_CPUSET;
308 	}
309 	return CONSTRAINT_NONE;
310 }
311 
312 static int oom_evaluate_task(struct task_struct *task, void *arg)
313 {
314 	struct oom_control *oc = arg;
315 	unsigned long points;
316 
317 	if (oom_unkillable_task(task, NULL, oc->nodemask))
318 		goto next;
319 
320 	/*
321 	 * This task already has access to memory reserves and is being killed.
322 	 * Don't allow any other task to have access to the reserves unless
323 	 * the task has MMF_OOM_SKIP because chances that it would release
324 	 * any memory is quite low.
325 	 */
326 	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
327 		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
328 			goto next;
329 		goto abort;
330 	}
331 
332 	/*
333 	 * If task is allocating a lot of memory and has been marked to be
334 	 * killed first if it triggers an oom, then select it.
335 	 */
336 	if (oom_task_origin(task)) {
337 		points = ULONG_MAX;
338 		goto select;
339 	}
340 
341 	points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
342 	if (!points || points < oc->chosen_points)
343 		goto next;
344 
345 	/* Prefer thread group leaders for display purposes */
346 	if (points == oc->chosen_points && thread_group_leader(oc->chosen))
347 		goto next;
348 select:
349 	if (oc->chosen)
350 		put_task_struct(oc->chosen);
351 	get_task_struct(task);
352 	oc->chosen = task;
353 	oc->chosen_points = points;
354 next:
355 	return 0;
356 abort:
357 	if (oc->chosen)
358 		put_task_struct(oc->chosen);
359 	oc->chosen = (void *)-1UL;
360 	return 1;
361 }
362 
363 /*
364  * Simple selection loop. We choose the process with the highest number of
365  * 'points'. In case scan was aborted, oc->chosen is set to -1.
366  */
367 static void select_bad_process(struct oom_control *oc)
368 {
369 	if (is_memcg_oom(oc))
370 		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
371 	else {
372 		struct task_struct *p;
373 
374 		rcu_read_lock();
375 		for_each_process(p)
376 			if (oom_evaluate_task(p, oc))
377 				break;
378 		rcu_read_unlock();
379 	}
380 
381 	oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
382 }
383 
384 /**
385  * dump_tasks - dump current memory state of all system tasks
386  * @memcg: current's memory controller, if constrained
387  * @nodemask: nodemask passed to page allocator for mempolicy ooms
388  *
389  * Dumps the current memory state of all eligible tasks.  Tasks not in the same
390  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
391  * are not shown.
392  * State information includes task's pid, uid, tgid, vm size, rss,
393  * pgtables_bytes, swapents, oom_score_adj value, and name.
394  */
395 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
396 {
397 	struct task_struct *p;
398 	struct task_struct *task;
399 
400 	pr_info("[ pid ]   uid  tgid total_vm      rss pgtables_bytes swapents oom_score_adj name\n");
401 	rcu_read_lock();
402 	for_each_process(p) {
403 		if (oom_unkillable_task(p, memcg, nodemask))
404 			continue;
405 
406 		task = find_lock_task_mm(p);
407 		if (!task) {
408 			/*
409 			 * This is a kthread or all of p's threads have already
410 			 * detached their mm's.  There's no need to report
411 			 * them; they can't be oom killed anyway.
412 			 */
413 			continue;
414 		}
415 
416 		pr_info("[%5d] %5d %5d %8lu %8lu %8ld %8lu         %5hd %s\n",
417 			task->pid, from_kuid(&init_user_ns, task_uid(task)),
418 			task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
419 			mm_pgtables_bytes(task->mm),
420 			get_mm_counter(task->mm, MM_SWAPENTS),
421 			task->signal->oom_score_adj, task->comm);
422 		task_unlock(task);
423 	}
424 	rcu_read_unlock();
425 }
426 
427 static void dump_header(struct oom_control *oc, struct task_struct *p)
428 {
429 	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), nodemask=%*pbl, order=%d, oom_score_adj=%hd\n",
430 		current->comm, oc->gfp_mask, &oc->gfp_mask,
431 		nodemask_pr_args(oc->nodemask), oc->order,
432 			current->signal->oom_score_adj);
433 	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
434 		pr_warn("COMPACTION is disabled!!!\n");
435 
436 	cpuset_print_current_mems_allowed();
437 	dump_stack();
438 	if (is_memcg_oom(oc))
439 		mem_cgroup_print_oom_info(oc->memcg, p);
440 	else {
441 		show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
442 		if (is_dump_unreclaim_slabs())
443 			dump_unreclaimable_slab();
444 	}
445 	if (sysctl_oom_dump_tasks)
446 		dump_tasks(oc->memcg, oc->nodemask);
447 }
448 
449 /*
450  * Number of OOM victims in flight
451  */
452 static atomic_t oom_victims = ATOMIC_INIT(0);
453 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
454 
455 static bool oom_killer_disabled __read_mostly;
456 
457 #define K(x) ((x) << (PAGE_SHIFT-10))
458 
459 /*
460  * task->mm can be NULL if the task is the exited group leader.  So to
461  * determine whether the task is using a particular mm, we examine all the
462  * task's threads: if one of those is using this mm then this task was also
463  * using it.
464  */
465 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
466 {
467 	struct task_struct *t;
468 
469 	for_each_thread(p, t) {
470 		struct mm_struct *t_mm = READ_ONCE(t->mm);
471 		if (t_mm)
472 			return t_mm == mm;
473 	}
474 	return false;
475 }
476 
477 
478 #ifdef CONFIG_MMU
479 /*
480  * OOM Reaper kernel thread which tries to reap the memory used by the OOM
481  * victim (if that is possible) to help the OOM killer to move on.
482  */
483 static struct task_struct *oom_reaper_th;
484 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
485 static struct task_struct *oom_reaper_list;
486 static DEFINE_SPINLOCK(oom_reaper_lock);
487 
488 static bool __oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
489 {
490 	struct mmu_gather tlb;
491 	struct vm_area_struct *vma;
492 	bool ret = true;
493 
494 	/*
495 	 * We have to make sure to not race with the victim exit path
496 	 * and cause premature new oom victim selection:
497 	 * __oom_reap_task_mm		exit_mm
498 	 *   mmget_not_zero
499 	 *				  mmput
500 	 *				    atomic_dec_and_test
501 	 *				  exit_oom_victim
502 	 *				[...]
503 	 *				out_of_memory
504 	 *				  select_bad_process
505 	 *				    # no TIF_MEMDIE task selects new victim
506 	 *  unmap_page_range # frees some memory
507 	 */
508 	mutex_lock(&oom_lock);
509 
510 	if (!down_read_trylock(&mm->mmap_sem)) {
511 		ret = false;
512 		trace_skip_task_reaping(tsk->pid);
513 		goto unlock_oom;
514 	}
515 
516 	/*
517 	 * If the mm has notifiers then we would need to invalidate them around
518 	 * unmap_page_range and that is risky because notifiers can sleep and
519 	 * what they do is basically undeterministic.  So let's have a short
520 	 * sleep to give the oom victim some more time.
521 	 * TODO: we really want to get rid of this ugly hack and make sure that
522 	 * notifiers cannot block for unbounded amount of time and add
523 	 * mmu_notifier_invalidate_range_{start,end} around unmap_page_range
524 	 */
525 	if (mm_has_notifiers(mm)) {
526 		up_read(&mm->mmap_sem);
527 		schedule_timeout_idle(HZ);
528 		goto unlock_oom;
529 	}
530 
531 	/*
532 	 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
533 	 * work on the mm anymore. The check for MMF_OOM_SKIP must run
534 	 * under mmap_sem for reading because it serializes against the
535 	 * down_write();up_write() cycle in exit_mmap().
536 	 */
537 	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
538 		up_read(&mm->mmap_sem);
539 		trace_skip_task_reaping(tsk->pid);
540 		goto unlock_oom;
541 	}
542 
543 	trace_start_task_reaping(tsk->pid);
544 
545 	/*
546 	 * Tell all users of get_user/copy_from_user etc... that the content
547 	 * is no longer stable. No barriers really needed because unmapping
548 	 * should imply barriers already and the reader would hit a page fault
549 	 * if it stumbled over a reaped memory.
550 	 */
551 	set_bit(MMF_UNSTABLE, &mm->flags);
552 
553 	tlb_gather_mmu(&tlb, mm, 0, -1);
554 	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
555 		if (!can_madv_dontneed_vma(vma))
556 			continue;
557 
558 		/*
559 		 * Only anonymous pages have a good chance to be dropped
560 		 * without additional steps which we cannot afford as we
561 		 * are OOM already.
562 		 *
563 		 * We do not even care about fs backed pages because all
564 		 * which are reclaimable have already been reclaimed and
565 		 * we do not want to block exit_mmap by keeping mm ref
566 		 * count elevated without a good reason.
567 		 */
568 		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED))
569 			unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
570 					 NULL);
571 	}
572 	tlb_finish_mmu(&tlb, 0, -1);
573 	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
574 			task_pid_nr(tsk), tsk->comm,
575 			K(get_mm_counter(mm, MM_ANONPAGES)),
576 			K(get_mm_counter(mm, MM_FILEPAGES)),
577 			K(get_mm_counter(mm, MM_SHMEMPAGES)));
578 	up_read(&mm->mmap_sem);
579 
580 	trace_finish_task_reaping(tsk->pid);
581 unlock_oom:
582 	mutex_unlock(&oom_lock);
583 	return ret;
584 }
585 
586 #define MAX_OOM_REAP_RETRIES 10
587 static void oom_reap_task(struct task_struct *tsk)
588 {
589 	int attempts = 0;
590 	struct mm_struct *mm = tsk->signal->oom_mm;
591 
592 	/* Retry the down_read_trylock(mmap_sem) a few times */
593 	while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task_mm(tsk, mm))
594 		schedule_timeout_idle(HZ/10);
595 
596 	if (attempts <= MAX_OOM_REAP_RETRIES)
597 		goto done;
598 
599 
600 	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
601 		task_pid_nr(tsk), tsk->comm);
602 	debug_show_all_locks();
603 
604 done:
605 	tsk->oom_reaper_list = NULL;
606 
607 	/*
608 	 * Hide this mm from OOM killer because it has been either reaped or
609 	 * somebody can't call up_write(mmap_sem).
610 	 */
611 	set_bit(MMF_OOM_SKIP, &mm->flags);
612 
613 	/* Drop a reference taken by wake_oom_reaper */
614 	put_task_struct(tsk);
615 }
616 
617 static int oom_reaper(void *unused)
618 {
619 	while (true) {
620 		struct task_struct *tsk = NULL;
621 
622 		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
623 		spin_lock(&oom_reaper_lock);
624 		if (oom_reaper_list != NULL) {
625 			tsk = oom_reaper_list;
626 			oom_reaper_list = tsk->oom_reaper_list;
627 		}
628 		spin_unlock(&oom_reaper_lock);
629 
630 		if (tsk)
631 			oom_reap_task(tsk);
632 	}
633 
634 	return 0;
635 }
636 
637 static void wake_oom_reaper(struct task_struct *tsk)
638 {
639 	/* tsk is already queued? */
640 	if (tsk == oom_reaper_list || tsk->oom_reaper_list)
641 		return;
642 
643 	get_task_struct(tsk);
644 
645 	spin_lock(&oom_reaper_lock);
646 	tsk->oom_reaper_list = oom_reaper_list;
647 	oom_reaper_list = tsk;
648 	spin_unlock(&oom_reaper_lock);
649 	trace_wake_reaper(tsk->pid);
650 	wake_up(&oom_reaper_wait);
651 }
652 
653 static int __init oom_init(void)
654 {
655 	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
656 	return 0;
657 }
658 subsys_initcall(oom_init)
659 #else
660 static inline void wake_oom_reaper(struct task_struct *tsk)
661 {
662 }
663 #endif /* CONFIG_MMU */
664 
665 /**
666  * mark_oom_victim - mark the given task as OOM victim
667  * @tsk: task to mark
668  *
669  * Has to be called with oom_lock held and never after
670  * oom has been disabled already.
671  *
672  * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
673  * under task_lock or operate on the current).
674  */
675 static void mark_oom_victim(struct task_struct *tsk)
676 {
677 	struct mm_struct *mm = tsk->mm;
678 
679 	WARN_ON(oom_killer_disabled);
680 	/* OOM killer might race with memcg OOM */
681 	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
682 		return;
683 
684 	/* oom_mm is bound to the signal struct life time. */
685 	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
686 		mmgrab(tsk->signal->oom_mm);
687 
688 	/*
689 	 * Make sure that the task is woken up from uninterruptible sleep
690 	 * if it is frozen because OOM killer wouldn't be able to free
691 	 * any memory and livelock. freezing_slow_path will tell the freezer
692 	 * that TIF_MEMDIE tasks should be ignored.
693 	 */
694 	__thaw_task(tsk);
695 	atomic_inc(&oom_victims);
696 	trace_mark_victim(tsk->pid);
697 }
698 
699 /**
700  * exit_oom_victim - note the exit of an OOM victim
701  */
702 void exit_oom_victim(void)
703 {
704 	clear_thread_flag(TIF_MEMDIE);
705 
706 	if (!atomic_dec_return(&oom_victims))
707 		wake_up_all(&oom_victims_wait);
708 }
709 
710 /**
711  * oom_killer_enable - enable OOM killer
712  */
713 void oom_killer_enable(void)
714 {
715 	oom_killer_disabled = false;
716 	pr_info("OOM killer enabled.\n");
717 }
718 
719 /**
720  * oom_killer_disable - disable OOM killer
721  * @timeout: maximum timeout to wait for oom victims in jiffies
722  *
723  * Forces all page allocations to fail rather than trigger OOM killer.
724  * Will block and wait until all OOM victims are killed or the given
725  * timeout expires.
726  *
727  * The function cannot be called when there are runnable user tasks because
728  * the userspace would see unexpected allocation failures as a result. Any
729  * new usage of this function should be consulted with MM people.
730  *
731  * Returns true if successful and false if the OOM killer cannot be
732  * disabled.
733  */
734 bool oom_killer_disable(signed long timeout)
735 {
736 	signed long ret;
737 
738 	/*
739 	 * Make sure to not race with an ongoing OOM killer. Check that the
740 	 * current is not killed (possibly due to sharing the victim's memory).
741 	 */
742 	if (mutex_lock_killable(&oom_lock))
743 		return false;
744 	oom_killer_disabled = true;
745 	mutex_unlock(&oom_lock);
746 
747 	ret = wait_event_interruptible_timeout(oom_victims_wait,
748 			!atomic_read(&oom_victims), timeout);
749 	if (ret <= 0) {
750 		oom_killer_enable();
751 		return false;
752 	}
753 	pr_info("OOM killer disabled.\n");
754 
755 	return true;
756 }
757 
758 static inline bool __task_will_free_mem(struct task_struct *task)
759 {
760 	struct signal_struct *sig = task->signal;
761 
762 	/*
763 	 * A coredumping process may sleep for an extended period in exit_mm(),
764 	 * so the oom killer cannot assume that the process will promptly exit
765 	 * and release memory.
766 	 */
767 	if (sig->flags & SIGNAL_GROUP_COREDUMP)
768 		return false;
769 
770 	if (sig->flags & SIGNAL_GROUP_EXIT)
771 		return true;
772 
773 	if (thread_group_empty(task) && (task->flags & PF_EXITING))
774 		return true;
775 
776 	return false;
777 }
778 
779 /*
780  * Checks whether the given task is dying or exiting and likely to
781  * release its address space. This means that all threads and processes
782  * sharing the same mm have to be killed or exiting.
783  * Caller has to make sure that task->mm is stable (hold task_lock or
784  * it operates on the current).
785  */
786 static bool task_will_free_mem(struct task_struct *task)
787 {
788 	struct mm_struct *mm = task->mm;
789 	struct task_struct *p;
790 	bool ret = true;
791 
792 	/*
793 	 * Skip tasks without mm because it might have passed its exit_mm and
794 	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
795 	 * on that for now. We can consider find_lock_task_mm in future.
796 	 */
797 	if (!mm)
798 		return false;
799 
800 	if (!__task_will_free_mem(task))
801 		return false;
802 
803 	/*
804 	 * This task has already been drained by the oom reaper so there are
805 	 * only small chances it will free some more
806 	 */
807 	if (test_bit(MMF_OOM_SKIP, &mm->flags))
808 		return false;
809 
810 	if (atomic_read(&mm->mm_users) <= 1)
811 		return true;
812 
813 	/*
814 	 * Make sure that all tasks which share the mm with the given tasks
815 	 * are dying as well to make sure that a) nobody pins its mm and
816 	 * b) the task is also reapable by the oom reaper.
817 	 */
818 	rcu_read_lock();
819 	for_each_process(p) {
820 		if (!process_shares_mm(p, mm))
821 			continue;
822 		if (same_thread_group(task, p))
823 			continue;
824 		ret = __task_will_free_mem(p);
825 		if (!ret)
826 			break;
827 	}
828 	rcu_read_unlock();
829 
830 	return ret;
831 }
832 
833 static void oom_kill_process(struct oom_control *oc, const char *message)
834 {
835 	struct task_struct *p = oc->chosen;
836 	unsigned int points = oc->chosen_points;
837 	struct task_struct *victim = p;
838 	struct task_struct *child;
839 	struct task_struct *t;
840 	struct mm_struct *mm;
841 	unsigned int victim_points = 0;
842 	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
843 					      DEFAULT_RATELIMIT_BURST);
844 	bool can_oom_reap = true;
845 
846 	/*
847 	 * If the task is already exiting, don't alarm the sysadmin or kill
848 	 * its children or threads, just give it access to memory reserves
849 	 * so it can die quickly
850 	 */
851 	task_lock(p);
852 	if (task_will_free_mem(p)) {
853 		mark_oom_victim(p);
854 		wake_oom_reaper(p);
855 		task_unlock(p);
856 		put_task_struct(p);
857 		return;
858 	}
859 	task_unlock(p);
860 
861 	if (__ratelimit(&oom_rs))
862 		dump_header(oc, p);
863 
864 	pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
865 		message, task_pid_nr(p), p->comm, points);
866 
867 	/*
868 	 * If any of p's children has a different mm and is eligible for kill,
869 	 * the one with the highest oom_badness() score is sacrificed for its
870 	 * parent.  This attempts to lose the minimal amount of work done while
871 	 * still freeing memory.
872 	 */
873 	read_lock(&tasklist_lock);
874 	for_each_thread(p, t) {
875 		list_for_each_entry(child, &t->children, sibling) {
876 			unsigned int child_points;
877 
878 			if (process_shares_mm(child, p->mm))
879 				continue;
880 			/*
881 			 * oom_badness() returns 0 if the thread is unkillable
882 			 */
883 			child_points = oom_badness(child,
884 				oc->memcg, oc->nodemask, oc->totalpages);
885 			if (child_points > victim_points) {
886 				put_task_struct(victim);
887 				victim = child;
888 				victim_points = child_points;
889 				get_task_struct(victim);
890 			}
891 		}
892 	}
893 	read_unlock(&tasklist_lock);
894 
895 	p = find_lock_task_mm(victim);
896 	if (!p) {
897 		put_task_struct(victim);
898 		return;
899 	} else if (victim != p) {
900 		get_task_struct(p);
901 		put_task_struct(victim);
902 		victim = p;
903 	}
904 
905 	/* Get a reference to safely compare mm after task_unlock(victim) */
906 	mm = victim->mm;
907 	mmgrab(mm);
908 
909 	/* Raise event before sending signal: task reaper must see this */
910 	count_vm_event(OOM_KILL);
911 	count_memcg_event_mm(mm, OOM_KILL);
912 
913 	/*
914 	 * We should send SIGKILL before granting access to memory reserves
915 	 * in order to prevent the OOM victim from depleting the memory
916 	 * reserves from the user space under its control.
917 	 */
918 	do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
919 	mark_oom_victim(victim);
920 	pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
921 		task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
922 		K(get_mm_counter(victim->mm, MM_ANONPAGES)),
923 		K(get_mm_counter(victim->mm, MM_FILEPAGES)),
924 		K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
925 	task_unlock(victim);
926 
927 	/*
928 	 * Kill all user processes sharing victim->mm in other thread groups, if
929 	 * any.  They don't get access to memory reserves, though, to avoid
930 	 * depletion of all memory.  This prevents mm->mmap_sem livelock when an
931 	 * oom killed thread cannot exit because it requires the semaphore and
932 	 * its contended by another thread trying to allocate memory itself.
933 	 * That thread will now get access to memory reserves since it has a
934 	 * pending fatal signal.
935 	 */
936 	rcu_read_lock();
937 	for_each_process(p) {
938 		if (!process_shares_mm(p, mm))
939 			continue;
940 		if (same_thread_group(p, victim))
941 			continue;
942 		if (is_global_init(p)) {
943 			can_oom_reap = false;
944 			set_bit(MMF_OOM_SKIP, &mm->flags);
945 			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
946 					task_pid_nr(victim), victim->comm,
947 					task_pid_nr(p), p->comm);
948 			continue;
949 		}
950 		/*
951 		 * No use_mm() user needs to read from the userspace so we are
952 		 * ok to reap it.
953 		 */
954 		if (unlikely(p->flags & PF_KTHREAD))
955 			continue;
956 		do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
957 	}
958 	rcu_read_unlock();
959 
960 	if (can_oom_reap)
961 		wake_oom_reaper(victim);
962 
963 	mmdrop(mm);
964 	put_task_struct(victim);
965 }
966 #undef K
967 
968 /*
969  * Determines whether the kernel must panic because of the panic_on_oom sysctl.
970  */
971 static void check_panic_on_oom(struct oom_control *oc,
972 			       enum oom_constraint constraint)
973 {
974 	if (likely(!sysctl_panic_on_oom))
975 		return;
976 	if (sysctl_panic_on_oom != 2) {
977 		/*
978 		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
979 		 * does not panic for cpuset, mempolicy, or memcg allocation
980 		 * failures.
981 		 */
982 		if (constraint != CONSTRAINT_NONE)
983 			return;
984 	}
985 	/* Do not panic for oom kills triggered by sysrq */
986 	if (is_sysrq_oom(oc))
987 		return;
988 	dump_header(oc, NULL);
989 	panic("Out of memory: %s panic_on_oom is enabled\n",
990 		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
991 }
992 
993 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
994 
995 int register_oom_notifier(struct notifier_block *nb)
996 {
997 	return blocking_notifier_chain_register(&oom_notify_list, nb);
998 }
999 EXPORT_SYMBOL_GPL(register_oom_notifier);
1000 
1001 int unregister_oom_notifier(struct notifier_block *nb)
1002 {
1003 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1004 }
1005 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1006 
1007 /**
1008  * out_of_memory - kill the "best" process when we run out of memory
1009  * @oc: pointer to struct oom_control
1010  *
1011  * If we run out of memory, we have the choice between either
1012  * killing a random task (bad), letting the system crash (worse)
1013  * OR try to be smart about which process to kill. Note that we
1014  * don't have to be perfect here, we just have to be good.
1015  */
1016 bool out_of_memory(struct oom_control *oc)
1017 {
1018 	unsigned long freed = 0;
1019 	enum oom_constraint constraint = CONSTRAINT_NONE;
1020 
1021 	if (oom_killer_disabled)
1022 		return false;
1023 
1024 	if (!is_memcg_oom(oc)) {
1025 		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1026 		if (freed > 0)
1027 			/* Got some memory back in the last second. */
1028 			return true;
1029 	}
1030 
1031 	/*
1032 	 * If current has a pending SIGKILL or is exiting, then automatically
1033 	 * select it.  The goal is to allow it to allocate so that it may
1034 	 * quickly exit and free its memory.
1035 	 */
1036 	if (task_will_free_mem(current)) {
1037 		mark_oom_victim(current);
1038 		wake_oom_reaper(current);
1039 		return true;
1040 	}
1041 
1042 	/*
1043 	 * The OOM killer does not compensate for IO-less reclaim.
1044 	 * pagefault_out_of_memory lost its gfp context so we have to
1045 	 * make sure exclude 0 mask - all other users should have at least
1046 	 * ___GFP_DIRECT_RECLAIM to get here.
1047 	 */
1048 	if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS))
1049 		return true;
1050 
1051 	/*
1052 	 * Check if there were limitations on the allocation (only relevant for
1053 	 * NUMA and memcg) that may require different handling.
1054 	 */
1055 	constraint = constrained_alloc(oc);
1056 	if (constraint != CONSTRAINT_MEMORY_POLICY)
1057 		oc->nodemask = NULL;
1058 	check_panic_on_oom(oc, constraint);
1059 
1060 	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1061 	    current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
1062 	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1063 		get_task_struct(current);
1064 		oc->chosen = current;
1065 		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1066 		return true;
1067 	}
1068 
1069 	select_bad_process(oc);
1070 	/* Found nothing?!?! Either we hang forever, or we panic. */
1071 	if (!oc->chosen && !is_sysrq_oom(oc) && !is_memcg_oom(oc)) {
1072 		dump_header(oc, NULL);
1073 		panic("Out of memory and no killable processes...\n");
1074 	}
1075 	if (oc->chosen && oc->chosen != (void *)-1UL) {
1076 		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1077 				 "Memory cgroup out of memory");
1078 		/*
1079 		 * Give the killed process a good chance to exit before trying
1080 		 * to allocate memory again.
1081 		 */
1082 		schedule_timeout_killable(1);
1083 	}
1084 	return !!oc->chosen;
1085 }
1086 
1087 /*
1088  * The pagefault handler calls here because it is out of memory, so kill a
1089  * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1090  * killing is already in progress so do nothing.
1091  */
1092 void pagefault_out_of_memory(void)
1093 {
1094 	struct oom_control oc = {
1095 		.zonelist = NULL,
1096 		.nodemask = NULL,
1097 		.memcg = NULL,
1098 		.gfp_mask = 0,
1099 		.order = 0,
1100 	};
1101 
1102 	if (mem_cgroup_oom_synchronize(true))
1103 		return;
1104 
1105 	if (!mutex_trylock(&oom_lock))
1106 		return;
1107 	out_of_memory(&oc);
1108 	mutex_unlock(&oom_lock);
1109 }
1110