xref: /openbmc/linux/mm/oom_kill.c (revision bc5aa3a0)
1 /*
2  *  linux/mm/oom_kill.c
3  *
4  *  Copyright (C)  1998,2000  Rik van Riel
5  *	Thanks go out to Claus Fischer for some serious inspiration and
6  *	for goading me into coding this file...
7  *  Copyright (C)  2010  Google, Inc.
8  *	Rewritten by David Rientjes
9  *
10  *  The routines in this file are used to kill a process when
11  *  we're seriously out of memory. This gets called from __alloc_pages()
12  *  in mm/page_alloc.c when we really run out of memory.
13  *
14  *  Since we won't call these routines often (on a well-configured
15  *  machine) this file will double as a 'coding guide' and a signpost
16  *  for newbie kernel hackers. It features several pointers to major
17  *  kernel subsystems and hints as to where to find out what things do.
18  */
19 
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/swap.h>
26 #include <linux/timex.h>
27 #include <linux/jiffies.h>
28 #include <linux/cpuset.h>
29 #include <linux/export.h>
30 #include <linux/notifier.h>
31 #include <linux/memcontrol.h>
32 #include <linux/mempolicy.h>
33 #include <linux/security.h>
34 #include <linux/ptrace.h>
35 #include <linux/freezer.h>
36 #include <linux/ftrace.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kthread.h>
39 #include <linux/init.h>
40 
41 #include <asm/tlb.h>
42 #include "internal.h"
43 
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/oom.h>
46 
47 int sysctl_panic_on_oom;
48 int sysctl_oom_kill_allocating_task;
49 int sysctl_oom_dump_tasks = 1;
50 
51 DEFINE_MUTEX(oom_lock);
52 
53 #ifdef CONFIG_NUMA
54 /**
55  * has_intersects_mems_allowed() - check task eligiblity for kill
56  * @start: task struct of which task to consider
57  * @mask: nodemask passed to page allocator for mempolicy ooms
58  *
59  * Task eligibility is determined by whether or not a candidate task, @tsk,
60  * shares the same mempolicy nodes as current if it is bound by such a policy
61  * and whether or not it has the same set of allowed cpuset nodes.
62  */
63 static bool has_intersects_mems_allowed(struct task_struct *start,
64 					const nodemask_t *mask)
65 {
66 	struct task_struct *tsk;
67 	bool ret = false;
68 
69 	rcu_read_lock();
70 	for_each_thread(start, tsk) {
71 		if (mask) {
72 			/*
73 			 * If this is a mempolicy constrained oom, tsk's
74 			 * cpuset is irrelevant.  Only return true if its
75 			 * mempolicy intersects current, otherwise it may be
76 			 * needlessly killed.
77 			 */
78 			ret = mempolicy_nodemask_intersects(tsk, mask);
79 		} else {
80 			/*
81 			 * This is not a mempolicy constrained oom, so only
82 			 * check the mems of tsk's cpuset.
83 			 */
84 			ret = cpuset_mems_allowed_intersects(current, tsk);
85 		}
86 		if (ret)
87 			break;
88 	}
89 	rcu_read_unlock();
90 
91 	return ret;
92 }
93 #else
94 static bool has_intersects_mems_allowed(struct task_struct *tsk,
95 					const nodemask_t *mask)
96 {
97 	return true;
98 }
99 #endif /* CONFIG_NUMA */
100 
101 /*
102  * The process p may have detached its own ->mm while exiting or through
103  * use_mm(), but one or more of its subthreads may still have a valid
104  * pointer.  Return p, or any of its subthreads with a valid ->mm, with
105  * task_lock() held.
106  */
107 struct task_struct *find_lock_task_mm(struct task_struct *p)
108 {
109 	struct task_struct *t;
110 
111 	rcu_read_lock();
112 
113 	for_each_thread(p, t) {
114 		task_lock(t);
115 		if (likely(t->mm))
116 			goto found;
117 		task_unlock(t);
118 	}
119 	t = NULL;
120 found:
121 	rcu_read_unlock();
122 
123 	return t;
124 }
125 
126 /*
127  * order == -1 means the oom kill is required by sysrq, otherwise only
128  * for display purposes.
129  */
130 static inline bool is_sysrq_oom(struct oom_control *oc)
131 {
132 	return oc->order == -1;
133 }
134 
135 /* return true if the task is not adequate as candidate victim task. */
136 static bool oom_unkillable_task(struct task_struct *p,
137 		struct mem_cgroup *memcg, const nodemask_t *nodemask)
138 {
139 	if (is_global_init(p))
140 		return true;
141 	if (p->flags & PF_KTHREAD)
142 		return true;
143 
144 	/* When mem_cgroup_out_of_memory() and p is not member of the group */
145 	if (memcg && !task_in_mem_cgroup(p, memcg))
146 		return true;
147 
148 	/* p may not have freeable memory in nodemask */
149 	if (!has_intersects_mems_allowed(p, nodemask))
150 		return true;
151 
152 	return false;
153 }
154 
155 /**
156  * oom_badness - heuristic function to determine which candidate task to kill
157  * @p: task struct of which task we should calculate
158  * @totalpages: total present RAM allowed for page allocation
159  *
160  * The heuristic for determining which task to kill is made to be as simple and
161  * predictable as possible.  The goal is to return the highest value for the
162  * task consuming the most memory to avoid subsequent oom failures.
163  */
164 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
165 			  const nodemask_t *nodemask, unsigned long totalpages)
166 {
167 	long points;
168 	long adj;
169 
170 	if (oom_unkillable_task(p, memcg, nodemask))
171 		return 0;
172 
173 	p = find_lock_task_mm(p);
174 	if (!p)
175 		return 0;
176 
177 	/*
178 	 * Do not even consider tasks which are explicitly marked oom
179 	 * unkillable or have been already oom reaped or the are in
180 	 * the middle of vfork
181 	 */
182 	adj = (long)p->signal->oom_score_adj;
183 	if (adj == OOM_SCORE_ADJ_MIN ||
184 			test_bit(MMF_OOM_REAPED, &p->mm->flags) ||
185 			in_vfork(p)) {
186 		task_unlock(p);
187 		return 0;
188 	}
189 
190 	/*
191 	 * The baseline for the badness score is the proportion of RAM that each
192 	 * task's rss, pagetable and swap space use.
193 	 */
194 	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
195 		atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
196 	task_unlock(p);
197 
198 	/*
199 	 * Root processes get 3% bonus, just like the __vm_enough_memory()
200 	 * implementation used by LSMs.
201 	 */
202 	if (has_capability_noaudit(p, CAP_SYS_ADMIN))
203 		points -= (points * 3) / 100;
204 
205 	/* Normalize to oom_score_adj units */
206 	adj *= totalpages / 1000;
207 	points += adj;
208 
209 	/*
210 	 * Never return 0 for an eligible task regardless of the root bonus and
211 	 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
212 	 */
213 	return points > 0 ? points : 1;
214 }
215 
216 /*
217  * Determine the type of allocation constraint.
218  */
219 #ifdef CONFIG_NUMA
220 static enum oom_constraint constrained_alloc(struct oom_control *oc,
221 					     unsigned long *totalpages)
222 {
223 	struct zone *zone;
224 	struct zoneref *z;
225 	enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
226 	bool cpuset_limited = false;
227 	int nid;
228 
229 	/* Default to all available memory */
230 	*totalpages = totalram_pages + total_swap_pages;
231 
232 	if (!oc->zonelist)
233 		return CONSTRAINT_NONE;
234 	/*
235 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
236 	 * to kill current.We have to random task kill in this case.
237 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
238 	 */
239 	if (oc->gfp_mask & __GFP_THISNODE)
240 		return CONSTRAINT_NONE;
241 
242 	/*
243 	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
244 	 * the page allocator means a mempolicy is in effect.  Cpuset policy
245 	 * is enforced in get_page_from_freelist().
246 	 */
247 	if (oc->nodemask &&
248 	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
249 		*totalpages = total_swap_pages;
250 		for_each_node_mask(nid, *oc->nodemask)
251 			*totalpages += node_spanned_pages(nid);
252 		return CONSTRAINT_MEMORY_POLICY;
253 	}
254 
255 	/* Check this allocation failure is caused by cpuset's wall function */
256 	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
257 			high_zoneidx, oc->nodemask)
258 		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
259 			cpuset_limited = true;
260 
261 	if (cpuset_limited) {
262 		*totalpages = total_swap_pages;
263 		for_each_node_mask(nid, cpuset_current_mems_allowed)
264 			*totalpages += node_spanned_pages(nid);
265 		return CONSTRAINT_CPUSET;
266 	}
267 	return CONSTRAINT_NONE;
268 }
269 #else
270 static enum oom_constraint constrained_alloc(struct oom_control *oc,
271 					     unsigned long *totalpages)
272 {
273 	*totalpages = totalram_pages + total_swap_pages;
274 	return CONSTRAINT_NONE;
275 }
276 #endif
277 
278 enum oom_scan_t oom_scan_process_thread(struct oom_control *oc,
279 					struct task_struct *task)
280 {
281 	if (oom_unkillable_task(task, NULL, oc->nodemask))
282 		return OOM_SCAN_CONTINUE;
283 
284 	/*
285 	 * This task already has access to memory reserves and is being killed.
286 	 * Don't allow any other task to have access to the reserves unless
287 	 * the task has MMF_OOM_REAPED because chances that it would release
288 	 * any memory is quite low.
289 	 */
290 	if (!is_sysrq_oom(oc) && atomic_read(&task->signal->oom_victims)) {
291 		struct task_struct *p = find_lock_task_mm(task);
292 		enum oom_scan_t ret = OOM_SCAN_ABORT;
293 
294 		if (p) {
295 			if (test_bit(MMF_OOM_REAPED, &p->mm->flags))
296 				ret = OOM_SCAN_CONTINUE;
297 			task_unlock(p);
298 		}
299 
300 		return ret;
301 	}
302 
303 	/*
304 	 * If task is allocating a lot of memory and has been marked to be
305 	 * killed first if it triggers an oom, then select it.
306 	 */
307 	if (oom_task_origin(task))
308 		return OOM_SCAN_SELECT;
309 
310 	return OOM_SCAN_OK;
311 }
312 
313 /*
314  * Simple selection loop. We chose the process with the highest
315  * number of 'points'.  Returns -1 on scan abort.
316  */
317 static struct task_struct *select_bad_process(struct oom_control *oc,
318 		unsigned int *ppoints, unsigned long totalpages)
319 {
320 	struct task_struct *p;
321 	struct task_struct *chosen = NULL;
322 	unsigned long chosen_points = 0;
323 
324 	rcu_read_lock();
325 	for_each_process(p) {
326 		unsigned int points;
327 
328 		switch (oom_scan_process_thread(oc, p)) {
329 		case OOM_SCAN_SELECT:
330 			chosen = p;
331 			chosen_points = ULONG_MAX;
332 			/* fall through */
333 		case OOM_SCAN_CONTINUE:
334 			continue;
335 		case OOM_SCAN_ABORT:
336 			rcu_read_unlock();
337 			return (struct task_struct *)(-1UL);
338 		case OOM_SCAN_OK:
339 			break;
340 		};
341 		points = oom_badness(p, NULL, oc->nodemask, totalpages);
342 		if (!points || points < chosen_points)
343 			continue;
344 
345 		chosen = p;
346 		chosen_points = points;
347 	}
348 	if (chosen)
349 		get_task_struct(chosen);
350 	rcu_read_unlock();
351 
352 	*ppoints = chosen_points * 1000 / totalpages;
353 	return chosen;
354 }
355 
356 /**
357  * dump_tasks - dump current memory state of all system tasks
358  * @memcg: current's memory controller, if constrained
359  * @nodemask: nodemask passed to page allocator for mempolicy ooms
360  *
361  * Dumps the current memory state of all eligible tasks.  Tasks not in the same
362  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
363  * are not shown.
364  * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
365  * swapents, oom_score_adj value, and name.
366  */
367 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
368 {
369 	struct task_struct *p;
370 	struct task_struct *task;
371 
372 	pr_info("[ pid ]   uid  tgid total_vm      rss nr_ptes nr_pmds swapents oom_score_adj name\n");
373 	rcu_read_lock();
374 	for_each_process(p) {
375 		if (oom_unkillable_task(p, memcg, nodemask))
376 			continue;
377 
378 		task = find_lock_task_mm(p);
379 		if (!task) {
380 			/*
381 			 * This is a kthread or all of p's threads have already
382 			 * detached their mm's.  There's no need to report
383 			 * them; they can't be oom killed anyway.
384 			 */
385 			continue;
386 		}
387 
388 		pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu         %5hd %s\n",
389 			task->pid, from_kuid(&init_user_ns, task_uid(task)),
390 			task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
391 			atomic_long_read(&task->mm->nr_ptes),
392 			mm_nr_pmds(task->mm),
393 			get_mm_counter(task->mm, MM_SWAPENTS),
394 			task->signal->oom_score_adj, task->comm);
395 		task_unlock(task);
396 	}
397 	rcu_read_unlock();
398 }
399 
400 static void dump_header(struct oom_control *oc, struct task_struct *p)
401 {
402 	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
403 		current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
404 		current->signal->oom_score_adj);
405 
406 	cpuset_print_current_mems_allowed();
407 	dump_stack();
408 	if (oc->memcg)
409 		mem_cgroup_print_oom_info(oc->memcg, p);
410 	else
411 		show_mem(SHOW_MEM_FILTER_NODES);
412 	if (sysctl_oom_dump_tasks)
413 		dump_tasks(oc->memcg, oc->nodemask);
414 }
415 
416 /*
417  * Number of OOM victims in flight
418  */
419 static atomic_t oom_victims = ATOMIC_INIT(0);
420 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
421 
422 bool oom_killer_disabled __read_mostly;
423 
424 #define K(x) ((x) << (PAGE_SHIFT-10))
425 
426 /*
427  * task->mm can be NULL if the task is the exited group leader.  So to
428  * determine whether the task is using a particular mm, we examine all the
429  * task's threads: if one of those is using this mm then this task was also
430  * using it.
431  */
432 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
433 {
434 	struct task_struct *t;
435 
436 	for_each_thread(p, t) {
437 		struct mm_struct *t_mm = READ_ONCE(t->mm);
438 		if (t_mm)
439 			return t_mm == mm;
440 	}
441 	return false;
442 }
443 
444 
445 #ifdef CONFIG_MMU
446 /*
447  * OOM Reaper kernel thread which tries to reap the memory used by the OOM
448  * victim (if that is possible) to help the OOM killer to move on.
449  */
450 static struct task_struct *oom_reaper_th;
451 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
452 static struct task_struct *oom_reaper_list;
453 static DEFINE_SPINLOCK(oom_reaper_lock);
454 
455 static bool __oom_reap_task(struct task_struct *tsk)
456 {
457 	struct mmu_gather tlb;
458 	struct vm_area_struct *vma;
459 	struct mm_struct *mm = NULL;
460 	struct task_struct *p;
461 	struct zap_details details = {.check_swap_entries = true,
462 				      .ignore_dirty = true};
463 	bool ret = true;
464 
465 	/*
466 	 * We have to make sure to not race with the victim exit path
467 	 * and cause premature new oom victim selection:
468 	 * __oom_reap_task		exit_mm
469 	 *   mmget_not_zero
470 	 *				  mmput
471 	 *				    atomic_dec_and_test
472 	 *				  exit_oom_victim
473 	 *				[...]
474 	 *				out_of_memory
475 	 *				  select_bad_process
476 	 *				    # no TIF_MEMDIE task selects new victim
477 	 *  unmap_page_range # frees some memory
478 	 */
479 	mutex_lock(&oom_lock);
480 
481 	/*
482 	 * Make sure we find the associated mm_struct even when the particular
483 	 * thread has already terminated and cleared its mm.
484 	 * We might have race with exit path so consider our work done if there
485 	 * is no mm.
486 	 */
487 	p = find_lock_task_mm(tsk);
488 	if (!p)
489 		goto unlock_oom;
490 	mm = p->mm;
491 	atomic_inc(&mm->mm_count);
492 	task_unlock(p);
493 
494 	if (!down_read_trylock(&mm->mmap_sem)) {
495 		ret = false;
496 		goto mm_drop;
497 	}
498 
499 	/*
500 	 * increase mm_users only after we know we will reap something so
501 	 * that the mmput_async is called only when we have reaped something
502 	 * and delayed __mmput doesn't matter that much
503 	 */
504 	if (!mmget_not_zero(mm)) {
505 		up_read(&mm->mmap_sem);
506 		goto mm_drop;
507 	}
508 
509 	tlb_gather_mmu(&tlb, mm, 0, -1);
510 	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
511 		if (is_vm_hugetlb_page(vma))
512 			continue;
513 
514 		/*
515 		 * mlocked VMAs require explicit munlocking before unmap.
516 		 * Let's keep it simple here and skip such VMAs.
517 		 */
518 		if (vma->vm_flags & VM_LOCKED)
519 			continue;
520 
521 		/*
522 		 * Only anonymous pages have a good chance to be dropped
523 		 * without additional steps which we cannot afford as we
524 		 * are OOM already.
525 		 *
526 		 * We do not even care about fs backed pages because all
527 		 * which are reclaimable have already been reclaimed and
528 		 * we do not want to block exit_mmap by keeping mm ref
529 		 * count elevated without a good reason.
530 		 */
531 		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED))
532 			unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
533 					 &details);
534 	}
535 	tlb_finish_mmu(&tlb, 0, -1);
536 	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
537 			task_pid_nr(tsk), tsk->comm,
538 			K(get_mm_counter(mm, MM_ANONPAGES)),
539 			K(get_mm_counter(mm, MM_FILEPAGES)),
540 			K(get_mm_counter(mm, MM_SHMEMPAGES)));
541 	up_read(&mm->mmap_sem);
542 
543 	/*
544 	 * This task can be safely ignored because we cannot do much more
545 	 * to release its memory.
546 	 */
547 	set_bit(MMF_OOM_REAPED, &mm->flags);
548 	/*
549 	 * Drop our reference but make sure the mmput slow path is called from a
550 	 * different context because we shouldn't risk we get stuck there and
551 	 * put the oom_reaper out of the way.
552 	 */
553 	mmput_async(mm);
554 mm_drop:
555 	mmdrop(mm);
556 unlock_oom:
557 	mutex_unlock(&oom_lock);
558 	return ret;
559 }
560 
561 #define MAX_OOM_REAP_RETRIES 10
562 static void oom_reap_task(struct task_struct *tsk)
563 {
564 	int attempts = 0;
565 
566 	/* Retry the down_read_trylock(mmap_sem) a few times */
567 	while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task(tsk))
568 		schedule_timeout_idle(HZ/10);
569 
570 	if (attempts > MAX_OOM_REAP_RETRIES) {
571 		struct task_struct *p;
572 
573 		pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
574 				task_pid_nr(tsk), tsk->comm);
575 
576 		/*
577 		 * If we've already tried to reap this task in the past and
578 		 * failed it probably doesn't make much sense to try yet again
579 		 * so hide the mm from the oom killer so that it can move on
580 		 * to another task with a different mm struct.
581 		 */
582 		p = find_lock_task_mm(tsk);
583 		if (p) {
584 			if (test_and_set_bit(MMF_OOM_NOT_REAPABLE, &p->mm->flags)) {
585 				pr_info("oom_reaper: giving up pid:%d (%s)\n",
586 						task_pid_nr(tsk), tsk->comm);
587 				set_bit(MMF_OOM_REAPED, &p->mm->flags);
588 			}
589 			task_unlock(p);
590 		}
591 
592 		debug_show_all_locks();
593 	}
594 
595 	/*
596 	 * Clear TIF_MEMDIE because the task shouldn't be sitting on a
597 	 * reasonably reclaimable memory anymore or it is not a good candidate
598 	 * for the oom victim right now because it cannot release its memory
599 	 * itself nor by the oom reaper.
600 	 */
601 	tsk->oom_reaper_list = NULL;
602 	exit_oom_victim(tsk);
603 
604 	/* Drop a reference taken by wake_oom_reaper */
605 	put_task_struct(tsk);
606 }
607 
608 static int oom_reaper(void *unused)
609 {
610 	set_freezable();
611 
612 	while (true) {
613 		struct task_struct *tsk = NULL;
614 
615 		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
616 		spin_lock(&oom_reaper_lock);
617 		if (oom_reaper_list != NULL) {
618 			tsk = oom_reaper_list;
619 			oom_reaper_list = tsk->oom_reaper_list;
620 		}
621 		spin_unlock(&oom_reaper_lock);
622 
623 		if (tsk)
624 			oom_reap_task(tsk);
625 	}
626 
627 	return 0;
628 }
629 
630 void wake_oom_reaper(struct task_struct *tsk)
631 {
632 	if (!oom_reaper_th)
633 		return;
634 
635 	/* tsk is already queued? */
636 	if (tsk == oom_reaper_list || tsk->oom_reaper_list)
637 		return;
638 
639 	get_task_struct(tsk);
640 
641 	spin_lock(&oom_reaper_lock);
642 	tsk->oom_reaper_list = oom_reaper_list;
643 	oom_reaper_list = tsk;
644 	spin_unlock(&oom_reaper_lock);
645 	wake_up(&oom_reaper_wait);
646 }
647 
648 static int __init oom_init(void)
649 {
650 	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
651 	if (IS_ERR(oom_reaper_th)) {
652 		pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
653 				PTR_ERR(oom_reaper_th));
654 		oom_reaper_th = NULL;
655 	}
656 	return 0;
657 }
658 subsys_initcall(oom_init)
659 #endif
660 
661 /**
662  * mark_oom_victim - mark the given task as OOM victim
663  * @tsk: task to mark
664  *
665  * Has to be called with oom_lock held and never after
666  * oom has been disabled already.
667  */
668 void mark_oom_victim(struct task_struct *tsk)
669 {
670 	WARN_ON(oom_killer_disabled);
671 	/* OOM killer might race with memcg OOM */
672 	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
673 		return;
674 	atomic_inc(&tsk->signal->oom_victims);
675 	/*
676 	 * Make sure that the task is woken up from uninterruptible sleep
677 	 * if it is frozen because OOM killer wouldn't be able to free
678 	 * any memory and livelock. freezing_slow_path will tell the freezer
679 	 * that TIF_MEMDIE tasks should be ignored.
680 	 */
681 	__thaw_task(tsk);
682 	atomic_inc(&oom_victims);
683 }
684 
685 /**
686  * exit_oom_victim - note the exit of an OOM victim
687  */
688 void exit_oom_victim(struct task_struct *tsk)
689 {
690 	if (!test_and_clear_tsk_thread_flag(tsk, TIF_MEMDIE))
691 		return;
692 	atomic_dec(&tsk->signal->oom_victims);
693 
694 	if (!atomic_dec_return(&oom_victims))
695 		wake_up_all(&oom_victims_wait);
696 }
697 
698 /**
699  * oom_killer_disable - disable OOM killer
700  *
701  * Forces all page allocations to fail rather than trigger OOM killer.
702  * Will block and wait until all OOM victims are killed.
703  *
704  * The function cannot be called when there are runnable user tasks because
705  * the userspace would see unexpected allocation failures as a result. Any
706  * new usage of this function should be consulted with MM people.
707  *
708  * Returns true if successful and false if the OOM killer cannot be
709  * disabled.
710  */
711 bool oom_killer_disable(void)
712 {
713 	/*
714 	 * Make sure to not race with an ongoing OOM killer. Check that the
715 	 * current is not killed (possibly due to sharing the victim's memory).
716 	 */
717 	if (mutex_lock_killable(&oom_lock))
718 		return false;
719 	oom_killer_disabled = true;
720 	mutex_unlock(&oom_lock);
721 
722 	wait_event(oom_victims_wait, !atomic_read(&oom_victims));
723 
724 	return true;
725 }
726 
727 /**
728  * oom_killer_enable - enable OOM killer
729  */
730 void oom_killer_enable(void)
731 {
732 	oom_killer_disabled = false;
733 }
734 
735 static inline bool __task_will_free_mem(struct task_struct *task)
736 {
737 	struct signal_struct *sig = task->signal;
738 
739 	/*
740 	 * A coredumping process may sleep for an extended period in exit_mm(),
741 	 * so the oom killer cannot assume that the process will promptly exit
742 	 * and release memory.
743 	 */
744 	if (sig->flags & SIGNAL_GROUP_COREDUMP)
745 		return false;
746 
747 	if (sig->flags & SIGNAL_GROUP_EXIT)
748 		return true;
749 
750 	if (thread_group_empty(task) && (task->flags & PF_EXITING))
751 		return true;
752 
753 	return false;
754 }
755 
756 /*
757  * Checks whether the given task is dying or exiting and likely to
758  * release its address space. This means that all threads and processes
759  * sharing the same mm have to be killed or exiting.
760  * Caller has to make sure that task->mm is stable (hold task_lock or
761  * it operates on the current).
762  */
763 bool task_will_free_mem(struct task_struct *task)
764 {
765 	struct mm_struct *mm = task->mm;
766 	struct task_struct *p;
767 	bool ret = true;
768 
769 	/*
770 	 * Skip tasks without mm because it might have passed its exit_mm and
771 	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
772 	 * on that for now. We can consider find_lock_task_mm in future.
773 	 */
774 	if (!mm)
775 		return false;
776 
777 	if (!__task_will_free_mem(task))
778 		return false;
779 
780 	/*
781 	 * This task has already been drained by the oom reaper so there are
782 	 * only small chances it will free some more
783 	 */
784 	if (test_bit(MMF_OOM_REAPED, &mm->flags))
785 		return false;
786 
787 	if (atomic_read(&mm->mm_users) <= 1)
788 		return true;
789 
790 	/*
791 	 * This is really pessimistic but we do not have any reliable way
792 	 * to check that external processes share with our mm
793 	 */
794 	rcu_read_lock();
795 	for_each_process(p) {
796 		if (!process_shares_mm(p, mm))
797 			continue;
798 		if (same_thread_group(task, p))
799 			continue;
800 		ret = __task_will_free_mem(p);
801 		if (!ret)
802 			break;
803 	}
804 	rcu_read_unlock();
805 
806 	return ret;
807 }
808 
809 /*
810  * Must be called while holding a reference to p, which will be released upon
811  * returning.
812  */
813 void oom_kill_process(struct oom_control *oc, struct task_struct *p,
814 		      unsigned int points, unsigned long totalpages,
815 		      const char *message)
816 {
817 	struct task_struct *victim = p;
818 	struct task_struct *child;
819 	struct task_struct *t;
820 	struct mm_struct *mm;
821 	unsigned int victim_points = 0;
822 	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
823 					      DEFAULT_RATELIMIT_BURST);
824 	bool can_oom_reap = true;
825 
826 	/*
827 	 * If the task is already exiting, don't alarm the sysadmin or kill
828 	 * its children or threads, just set TIF_MEMDIE so it can die quickly
829 	 */
830 	task_lock(p);
831 	if (task_will_free_mem(p)) {
832 		mark_oom_victim(p);
833 		wake_oom_reaper(p);
834 		task_unlock(p);
835 		put_task_struct(p);
836 		return;
837 	}
838 	task_unlock(p);
839 
840 	if (__ratelimit(&oom_rs))
841 		dump_header(oc, p);
842 
843 	pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
844 		message, task_pid_nr(p), p->comm, points);
845 
846 	/*
847 	 * If any of p's children has a different mm and is eligible for kill,
848 	 * the one with the highest oom_badness() score is sacrificed for its
849 	 * parent.  This attempts to lose the minimal amount of work done while
850 	 * still freeing memory.
851 	 */
852 	read_lock(&tasklist_lock);
853 	for_each_thread(p, t) {
854 		list_for_each_entry(child, &t->children, sibling) {
855 			unsigned int child_points;
856 
857 			if (process_shares_mm(child, p->mm))
858 				continue;
859 			/*
860 			 * oom_badness() returns 0 if the thread is unkillable
861 			 */
862 			child_points = oom_badness(child,
863 					oc->memcg, oc->nodemask, totalpages);
864 			if (child_points > victim_points) {
865 				put_task_struct(victim);
866 				victim = child;
867 				victim_points = child_points;
868 				get_task_struct(victim);
869 			}
870 		}
871 	}
872 	read_unlock(&tasklist_lock);
873 
874 	p = find_lock_task_mm(victim);
875 	if (!p) {
876 		put_task_struct(victim);
877 		return;
878 	} else if (victim != p) {
879 		get_task_struct(p);
880 		put_task_struct(victim);
881 		victim = p;
882 	}
883 
884 	/* Get a reference to safely compare mm after task_unlock(victim) */
885 	mm = victim->mm;
886 	atomic_inc(&mm->mm_count);
887 	/*
888 	 * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
889 	 * the OOM victim from depleting the memory reserves from the user
890 	 * space under its control.
891 	 */
892 	do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
893 	mark_oom_victim(victim);
894 	pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
895 		task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
896 		K(get_mm_counter(victim->mm, MM_ANONPAGES)),
897 		K(get_mm_counter(victim->mm, MM_FILEPAGES)),
898 		K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
899 	task_unlock(victim);
900 
901 	/*
902 	 * Kill all user processes sharing victim->mm in other thread groups, if
903 	 * any.  They don't get access to memory reserves, though, to avoid
904 	 * depletion of all memory.  This prevents mm->mmap_sem livelock when an
905 	 * oom killed thread cannot exit because it requires the semaphore and
906 	 * its contended by another thread trying to allocate memory itself.
907 	 * That thread will now get access to memory reserves since it has a
908 	 * pending fatal signal.
909 	 */
910 	rcu_read_lock();
911 	for_each_process(p) {
912 		if (!process_shares_mm(p, mm))
913 			continue;
914 		if (same_thread_group(p, victim))
915 			continue;
916 		if (unlikely(p->flags & PF_KTHREAD) || is_global_init(p)) {
917 			/*
918 			 * We cannot use oom_reaper for the mm shared by this
919 			 * process because it wouldn't get killed and so the
920 			 * memory might be still used. Hide the mm from the oom
921 			 * killer to guarantee OOM forward progress.
922 			 */
923 			can_oom_reap = false;
924 			set_bit(MMF_OOM_REAPED, &mm->flags);
925 			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
926 					task_pid_nr(victim), victim->comm,
927 					task_pid_nr(p), p->comm);
928 			continue;
929 		}
930 		do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
931 	}
932 	rcu_read_unlock();
933 
934 	if (can_oom_reap)
935 		wake_oom_reaper(victim);
936 
937 	mmdrop(mm);
938 	put_task_struct(victim);
939 }
940 #undef K
941 
942 /*
943  * Determines whether the kernel must panic because of the panic_on_oom sysctl.
944  */
945 void check_panic_on_oom(struct oom_control *oc, enum oom_constraint constraint)
946 {
947 	if (likely(!sysctl_panic_on_oom))
948 		return;
949 	if (sysctl_panic_on_oom != 2) {
950 		/*
951 		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
952 		 * does not panic for cpuset, mempolicy, or memcg allocation
953 		 * failures.
954 		 */
955 		if (constraint != CONSTRAINT_NONE)
956 			return;
957 	}
958 	/* Do not panic for oom kills triggered by sysrq */
959 	if (is_sysrq_oom(oc))
960 		return;
961 	dump_header(oc, NULL);
962 	panic("Out of memory: %s panic_on_oom is enabled\n",
963 		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
964 }
965 
966 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
967 
968 int register_oom_notifier(struct notifier_block *nb)
969 {
970 	return blocking_notifier_chain_register(&oom_notify_list, nb);
971 }
972 EXPORT_SYMBOL_GPL(register_oom_notifier);
973 
974 int unregister_oom_notifier(struct notifier_block *nb)
975 {
976 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
977 }
978 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
979 
980 /**
981  * out_of_memory - kill the "best" process when we run out of memory
982  * @oc: pointer to struct oom_control
983  *
984  * If we run out of memory, we have the choice between either
985  * killing a random task (bad), letting the system crash (worse)
986  * OR try to be smart about which process to kill. Note that we
987  * don't have to be perfect here, we just have to be good.
988  */
989 bool out_of_memory(struct oom_control *oc)
990 {
991 	struct task_struct *p;
992 	unsigned long totalpages;
993 	unsigned long freed = 0;
994 	unsigned int uninitialized_var(points);
995 	enum oom_constraint constraint = CONSTRAINT_NONE;
996 
997 	if (oom_killer_disabled)
998 		return false;
999 
1000 	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1001 	if (freed > 0)
1002 		/* Got some memory back in the last second. */
1003 		return true;
1004 
1005 	/*
1006 	 * If current has a pending SIGKILL or is exiting, then automatically
1007 	 * select it.  The goal is to allow it to allocate so that it may
1008 	 * quickly exit and free its memory.
1009 	 */
1010 	if (task_will_free_mem(current)) {
1011 		mark_oom_victim(current);
1012 		wake_oom_reaper(current);
1013 		return true;
1014 	}
1015 
1016 	/*
1017 	 * The OOM killer does not compensate for IO-less reclaim.
1018 	 * pagefault_out_of_memory lost its gfp context so we have to
1019 	 * make sure exclude 0 mask - all other users should have at least
1020 	 * ___GFP_DIRECT_RECLAIM to get here.
1021 	 */
1022 	if (oc->gfp_mask && !(oc->gfp_mask & (__GFP_FS|__GFP_NOFAIL)))
1023 		return true;
1024 
1025 	/*
1026 	 * Check if there were limitations on the allocation (only relevant for
1027 	 * NUMA) that may require different handling.
1028 	 */
1029 	constraint = constrained_alloc(oc, &totalpages);
1030 	if (constraint != CONSTRAINT_MEMORY_POLICY)
1031 		oc->nodemask = NULL;
1032 	check_panic_on_oom(oc, constraint);
1033 
1034 	if (sysctl_oom_kill_allocating_task && current->mm &&
1035 	    !oom_unkillable_task(current, NULL, oc->nodemask) &&
1036 	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1037 		get_task_struct(current);
1038 		oom_kill_process(oc, current, 0, totalpages,
1039 				 "Out of memory (oom_kill_allocating_task)");
1040 		return true;
1041 	}
1042 
1043 	p = select_bad_process(oc, &points, totalpages);
1044 	/* Found nothing?!?! Either we hang forever, or we panic. */
1045 	if (!p && !is_sysrq_oom(oc)) {
1046 		dump_header(oc, NULL);
1047 		panic("Out of memory and no killable processes...\n");
1048 	}
1049 	if (p && p != (void *)-1UL) {
1050 		oom_kill_process(oc, p, points, totalpages, "Out of memory");
1051 		/*
1052 		 * Give the killed process a good chance to exit before trying
1053 		 * to allocate memory again.
1054 		 */
1055 		schedule_timeout_killable(1);
1056 	}
1057 	return true;
1058 }
1059 
1060 /*
1061  * The pagefault handler calls here because it is out of memory, so kill a
1062  * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1063  * killing is already in progress so do nothing.
1064  */
1065 void pagefault_out_of_memory(void)
1066 {
1067 	struct oom_control oc = {
1068 		.zonelist = NULL,
1069 		.nodemask = NULL,
1070 		.memcg = NULL,
1071 		.gfp_mask = 0,
1072 		.order = 0,
1073 	};
1074 
1075 	if (mem_cgroup_oom_synchronize(true))
1076 		return;
1077 
1078 	if (!mutex_trylock(&oom_lock))
1079 		return;
1080 
1081 	if (!out_of_memory(&oc)) {
1082 		/*
1083 		 * There shouldn't be any user tasks runnable while the
1084 		 * OOM killer is disabled, so the current task has to
1085 		 * be a racing OOM victim for which oom_killer_disable()
1086 		 * is waiting for.
1087 		 */
1088 		WARN_ON(test_thread_flag(TIF_MEMDIE));
1089 	}
1090 
1091 	mutex_unlock(&oom_lock);
1092 }
1093