1 /* 2 * linux/mm/oom_kill.c 3 * 4 * Copyright (C) 1998,2000 Rik van Riel 5 * Thanks go out to Claus Fischer for some serious inspiration and 6 * for goading me into coding this file... 7 * Copyright (C) 2010 Google, Inc. 8 * Rewritten by David Rientjes 9 * 10 * The routines in this file are used to kill a process when 11 * we're seriously out of memory. This gets called from __alloc_pages() 12 * in mm/page_alloc.c when we really run out of memory. 13 * 14 * Since we won't call these routines often (on a well-configured 15 * machine) this file will double as a 'coding guide' and a signpost 16 * for newbie kernel hackers. It features several pointers to major 17 * kernel subsystems and hints as to where to find out what things do. 18 */ 19 20 #include <linux/oom.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/gfp.h> 24 #include <linux/sched.h> 25 #include <linux/sched/mm.h> 26 #include <linux/sched/coredump.h> 27 #include <linux/sched/task.h> 28 #include <linux/swap.h> 29 #include <linux/timex.h> 30 #include <linux/jiffies.h> 31 #include <linux/cpuset.h> 32 #include <linux/export.h> 33 #include <linux/notifier.h> 34 #include <linux/memcontrol.h> 35 #include <linux/mempolicy.h> 36 #include <linux/security.h> 37 #include <linux/ptrace.h> 38 #include <linux/freezer.h> 39 #include <linux/ftrace.h> 40 #include <linux/ratelimit.h> 41 #include <linux/kthread.h> 42 #include <linux/init.h> 43 #include <linux/mmu_notifier.h> 44 45 #include <asm/tlb.h> 46 #include "internal.h" 47 #include "slab.h" 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/oom.h> 51 52 int sysctl_panic_on_oom; 53 int sysctl_oom_kill_allocating_task; 54 int sysctl_oom_dump_tasks = 1; 55 56 DEFINE_MUTEX(oom_lock); 57 58 #ifdef CONFIG_NUMA 59 /** 60 * has_intersects_mems_allowed() - check task eligiblity for kill 61 * @start: task struct of which task to consider 62 * @mask: nodemask passed to page allocator for mempolicy ooms 63 * 64 * Task eligibility is determined by whether or not a candidate task, @tsk, 65 * shares the same mempolicy nodes as current if it is bound by such a policy 66 * and whether or not it has the same set of allowed cpuset nodes. 67 */ 68 static bool has_intersects_mems_allowed(struct task_struct *start, 69 const nodemask_t *mask) 70 { 71 struct task_struct *tsk; 72 bool ret = false; 73 74 rcu_read_lock(); 75 for_each_thread(start, tsk) { 76 if (mask) { 77 /* 78 * If this is a mempolicy constrained oom, tsk's 79 * cpuset is irrelevant. Only return true if its 80 * mempolicy intersects current, otherwise it may be 81 * needlessly killed. 82 */ 83 ret = mempolicy_nodemask_intersects(tsk, mask); 84 } else { 85 /* 86 * This is not a mempolicy constrained oom, so only 87 * check the mems of tsk's cpuset. 88 */ 89 ret = cpuset_mems_allowed_intersects(current, tsk); 90 } 91 if (ret) 92 break; 93 } 94 rcu_read_unlock(); 95 96 return ret; 97 } 98 #else 99 static bool has_intersects_mems_allowed(struct task_struct *tsk, 100 const nodemask_t *mask) 101 { 102 return true; 103 } 104 #endif /* CONFIG_NUMA */ 105 106 /* 107 * The process p may have detached its own ->mm while exiting or through 108 * use_mm(), but one or more of its subthreads may still have a valid 109 * pointer. Return p, or any of its subthreads with a valid ->mm, with 110 * task_lock() held. 111 */ 112 struct task_struct *find_lock_task_mm(struct task_struct *p) 113 { 114 struct task_struct *t; 115 116 rcu_read_lock(); 117 118 for_each_thread(p, t) { 119 task_lock(t); 120 if (likely(t->mm)) 121 goto found; 122 task_unlock(t); 123 } 124 t = NULL; 125 found: 126 rcu_read_unlock(); 127 128 return t; 129 } 130 131 /* 132 * order == -1 means the oom kill is required by sysrq, otherwise only 133 * for display purposes. 134 */ 135 static inline bool is_sysrq_oom(struct oom_control *oc) 136 { 137 return oc->order == -1; 138 } 139 140 static inline bool is_memcg_oom(struct oom_control *oc) 141 { 142 return oc->memcg != NULL; 143 } 144 145 /* return true if the task is not adequate as candidate victim task. */ 146 static bool oom_unkillable_task(struct task_struct *p, 147 struct mem_cgroup *memcg, const nodemask_t *nodemask) 148 { 149 if (is_global_init(p)) 150 return true; 151 if (p->flags & PF_KTHREAD) 152 return true; 153 154 /* When mem_cgroup_out_of_memory() and p is not member of the group */ 155 if (memcg && !task_in_mem_cgroup(p, memcg)) 156 return true; 157 158 /* p may not have freeable memory in nodemask */ 159 if (!has_intersects_mems_allowed(p, nodemask)) 160 return true; 161 162 return false; 163 } 164 165 /* 166 * Print out unreclaimble slabs info when unreclaimable slabs amount is greater 167 * than all user memory (LRU pages) 168 */ 169 static bool is_dump_unreclaim_slabs(void) 170 { 171 unsigned long nr_lru; 172 173 nr_lru = global_node_page_state(NR_ACTIVE_ANON) + 174 global_node_page_state(NR_INACTIVE_ANON) + 175 global_node_page_state(NR_ACTIVE_FILE) + 176 global_node_page_state(NR_INACTIVE_FILE) + 177 global_node_page_state(NR_ISOLATED_ANON) + 178 global_node_page_state(NR_ISOLATED_FILE) + 179 global_node_page_state(NR_UNEVICTABLE); 180 181 return (global_node_page_state(NR_SLAB_UNRECLAIMABLE) > nr_lru); 182 } 183 184 /** 185 * oom_badness - heuristic function to determine which candidate task to kill 186 * @p: task struct of which task we should calculate 187 * @totalpages: total present RAM allowed for page allocation 188 * @memcg: task's memory controller, if constrained 189 * @nodemask: nodemask passed to page allocator for mempolicy ooms 190 * 191 * The heuristic for determining which task to kill is made to be as simple and 192 * predictable as possible. The goal is to return the highest value for the 193 * task consuming the most memory to avoid subsequent oom failures. 194 */ 195 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg, 196 const nodemask_t *nodemask, unsigned long totalpages) 197 { 198 long points; 199 long adj; 200 201 if (oom_unkillable_task(p, memcg, nodemask)) 202 return 0; 203 204 p = find_lock_task_mm(p); 205 if (!p) 206 return 0; 207 208 /* 209 * Do not even consider tasks which are explicitly marked oom 210 * unkillable or have been already oom reaped or the are in 211 * the middle of vfork 212 */ 213 adj = (long)p->signal->oom_score_adj; 214 if (adj == OOM_SCORE_ADJ_MIN || 215 test_bit(MMF_OOM_SKIP, &p->mm->flags) || 216 in_vfork(p)) { 217 task_unlock(p); 218 return 0; 219 } 220 221 /* 222 * The baseline for the badness score is the proportion of RAM that each 223 * task's rss, pagetable and swap space use. 224 */ 225 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) + 226 mm_pgtables_bytes(p->mm) / PAGE_SIZE; 227 task_unlock(p); 228 229 /* Normalize to oom_score_adj units */ 230 adj *= totalpages / 1000; 231 points += adj; 232 233 /* 234 * Never return 0 for an eligible task regardless of the root bonus and 235 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here). 236 */ 237 return points > 0 ? points : 1; 238 } 239 240 enum oom_constraint { 241 CONSTRAINT_NONE, 242 CONSTRAINT_CPUSET, 243 CONSTRAINT_MEMORY_POLICY, 244 CONSTRAINT_MEMCG, 245 }; 246 247 /* 248 * Determine the type of allocation constraint. 249 */ 250 static enum oom_constraint constrained_alloc(struct oom_control *oc) 251 { 252 struct zone *zone; 253 struct zoneref *z; 254 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask); 255 bool cpuset_limited = false; 256 int nid; 257 258 if (is_memcg_oom(oc)) { 259 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1; 260 return CONSTRAINT_MEMCG; 261 } 262 263 /* Default to all available memory */ 264 oc->totalpages = totalram_pages + total_swap_pages; 265 266 if (!IS_ENABLED(CONFIG_NUMA)) 267 return CONSTRAINT_NONE; 268 269 if (!oc->zonelist) 270 return CONSTRAINT_NONE; 271 /* 272 * Reach here only when __GFP_NOFAIL is used. So, we should avoid 273 * to kill current.We have to random task kill in this case. 274 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. 275 */ 276 if (oc->gfp_mask & __GFP_THISNODE) 277 return CONSTRAINT_NONE; 278 279 /* 280 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in 281 * the page allocator means a mempolicy is in effect. Cpuset policy 282 * is enforced in get_page_from_freelist(). 283 */ 284 if (oc->nodemask && 285 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) { 286 oc->totalpages = total_swap_pages; 287 for_each_node_mask(nid, *oc->nodemask) 288 oc->totalpages += node_spanned_pages(nid); 289 return CONSTRAINT_MEMORY_POLICY; 290 } 291 292 /* Check this allocation failure is caused by cpuset's wall function */ 293 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist, 294 high_zoneidx, oc->nodemask) 295 if (!cpuset_zone_allowed(zone, oc->gfp_mask)) 296 cpuset_limited = true; 297 298 if (cpuset_limited) { 299 oc->totalpages = total_swap_pages; 300 for_each_node_mask(nid, cpuset_current_mems_allowed) 301 oc->totalpages += node_spanned_pages(nid); 302 return CONSTRAINT_CPUSET; 303 } 304 return CONSTRAINT_NONE; 305 } 306 307 static int oom_evaluate_task(struct task_struct *task, void *arg) 308 { 309 struct oom_control *oc = arg; 310 unsigned long points; 311 312 if (oom_unkillable_task(task, NULL, oc->nodemask)) 313 goto next; 314 315 /* 316 * This task already has access to memory reserves and is being killed. 317 * Don't allow any other task to have access to the reserves unless 318 * the task has MMF_OOM_SKIP because chances that it would release 319 * any memory is quite low. 320 */ 321 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) { 322 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags)) 323 goto next; 324 goto abort; 325 } 326 327 /* 328 * If task is allocating a lot of memory and has been marked to be 329 * killed first if it triggers an oom, then select it. 330 */ 331 if (oom_task_origin(task)) { 332 points = ULONG_MAX; 333 goto select; 334 } 335 336 points = oom_badness(task, NULL, oc->nodemask, oc->totalpages); 337 if (!points || points < oc->chosen_points) 338 goto next; 339 340 /* Prefer thread group leaders for display purposes */ 341 if (points == oc->chosen_points && thread_group_leader(oc->chosen)) 342 goto next; 343 select: 344 if (oc->chosen) 345 put_task_struct(oc->chosen); 346 get_task_struct(task); 347 oc->chosen = task; 348 oc->chosen_points = points; 349 next: 350 return 0; 351 abort: 352 if (oc->chosen) 353 put_task_struct(oc->chosen); 354 oc->chosen = (void *)-1UL; 355 return 1; 356 } 357 358 /* 359 * Simple selection loop. We choose the process with the highest number of 360 * 'points'. In case scan was aborted, oc->chosen is set to -1. 361 */ 362 static void select_bad_process(struct oom_control *oc) 363 { 364 if (is_memcg_oom(oc)) 365 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc); 366 else { 367 struct task_struct *p; 368 369 rcu_read_lock(); 370 for_each_process(p) 371 if (oom_evaluate_task(p, oc)) 372 break; 373 rcu_read_unlock(); 374 } 375 376 oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages; 377 } 378 379 /** 380 * dump_tasks - dump current memory state of all system tasks 381 * @memcg: current's memory controller, if constrained 382 * @nodemask: nodemask passed to page allocator for mempolicy ooms 383 * 384 * Dumps the current memory state of all eligible tasks. Tasks not in the same 385 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes 386 * are not shown. 387 * State information includes task's pid, uid, tgid, vm size, rss, 388 * pgtables_bytes, swapents, oom_score_adj value, and name. 389 */ 390 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask) 391 { 392 struct task_struct *p; 393 struct task_struct *task; 394 395 pr_info("[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name\n"); 396 rcu_read_lock(); 397 for_each_process(p) { 398 if (oom_unkillable_task(p, memcg, nodemask)) 399 continue; 400 401 task = find_lock_task_mm(p); 402 if (!task) { 403 /* 404 * This is a kthread or all of p's threads have already 405 * detached their mm's. There's no need to report 406 * them; they can't be oom killed anyway. 407 */ 408 continue; 409 } 410 411 pr_info("[%5d] %5d %5d %8lu %8lu %8ld %8lu %5hd %s\n", 412 task->pid, from_kuid(&init_user_ns, task_uid(task)), 413 task->tgid, task->mm->total_vm, get_mm_rss(task->mm), 414 mm_pgtables_bytes(task->mm), 415 get_mm_counter(task->mm, MM_SWAPENTS), 416 task->signal->oom_score_adj, task->comm); 417 task_unlock(task); 418 } 419 rcu_read_unlock(); 420 } 421 422 static void dump_header(struct oom_control *oc, struct task_struct *p) 423 { 424 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), nodemask=%*pbl, order=%d, oom_score_adj=%hd\n", 425 current->comm, oc->gfp_mask, &oc->gfp_mask, 426 nodemask_pr_args(oc->nodemask), oc->order, 427 current->signal->oom_score_adj); 428 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order) 429 pr_warn("COMPACTION is disabled!!!\n"); 430 431 cpuset_print_current_mems_allowed(); 432 dump_stack(); 433 if (is_memcg_oom(oc)) 434 mem_cgroup_print_oom_info(oc->memcg, p); 435 else { 436 show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask); 437 if (is_dump_unreclaim_slabs()) 438 dump_unreclaimable_slab(); 439 } 440 if (sysctl_oom_dump_tasks) 441 dump_tasks(oc->memcg, oc->nodemask); 442 } 443 444 /* 445 * Number of OOM victims in flight 446 */ 447 static atomic_t oom_victims = ATOMIC_INIT(0); 448 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait); 449 450 static bool oom_killer_disabled __read_mostly; 451 452 #define K(x) ((x) << (PAGE_SHIFT-10)) 453 454 /* 455 * task->mm can be NULL if the task is the exited group leader. So to 456 * determine whether the task is using a particular mm, we examine all the 457 * task's threads: if one of those is using this mm then this task was also 458 * using it. 459 */ 460 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm) 461 { 462 struct task_struct *t; 463 464 for_each_thread(p, t) { 465 struct mm_struct *t_mm = READ_ONCE(t->mm); 466 if (t_mm) 467 return t_mm == mm; 468 } 469 return false; 470 } 471 472 #ifdef CONFIG_MMU 473 /* 474 * OOM Reaper kernel thread which tries to reap the memory used by the OOM 475 * victim (if that is possible) to help the OOM killer to move on. 476 */ 477 static struct task_struct *oom_reaper_th; 478 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait); 479 static struct task_struct *oom_reaper_list; 480 static DEFINE_SPINLOCK(oom_reaper_lock); 481 482 void __oom_reap_task_mm(struct mm_struct *mm) 483 { 484 struct vm_area_struct *vma; 485 486 /* 487 * Tell all users of get_user/copy_from_user etc... that the content 488 * is no longer stable. No barriers really needed because unmapping 489 * should imply barriers already and the reader would hit a page fault 490 * if it stumbled over a reaped memory. 491 */ 492 set_bit(MMF_UNSTABLE, &mm->flags); 493 494 for (vma = mm->mmap ; vma; vma = vma->vm_next) { 495 if (!can_madv_dontneed_vma(vma)) 496 continue; 497 498 /* 499 * Only anonymous pages have a good chance to be dropped 500 * without additional steps which we cannot afford as we 501 * are OOM already. 502 * 503 * We do not even care about fs backed pages because all 504 * which are reclaimable have already been reclaimed and 505 * we do not want to block exit_mmap by keeping mm ref 506 * count elevated without a good reason. 507 */ 508 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) { 509 const unsigned long start = vma->vm_start; 510 const unsigned long end = vma->vm_end; 511 struct mmu_gather tlb; 512 513 tlb_gather_mmu(&tlb, mm, start, end); 514 mmu_notifier_invalidate_range_start(mm, start, end); 515 unmap_page_range(&tlb, vma, start, end, NULL); 516 mmu_notifier_invalidate_range_end(mm, start, end); 517 tlb_finish_mmu(&tlb, start, end); 518 } 519 } 520 } 521 522 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm) 523 { 524 bool ret = true; 525 526 /* 527 * We have to make sure to not race with the victim exit path 528 * and cause premature new oom victim selection: 529 * oom_reap_task_mm exit_mm 530 * mmget_not_zero 531 * mmput 532 * atomic_dec_and_test 533 * exit_oom_victim 534 * [...] 535 * out_of_memory 536 * select_bad_process 537 * # no TIF_MEMDIE task selects new victim 538 * unmap_page_range # frees some memory 539 */ 540 mutex_lock(&oom_lock); 541 542 if (!down_read_trylock(&mm->mmap_sem)) { 543 ret = false; 544 trace_skip_task_reaping(tsk->pid); 545 goto unlock_oom; 546 } 547 548 /* 549 * If the mm has invalidate_{start,end}() notifiers that could block, 550 * sleep to give the oom victim some more time. 551 * TODO: we really want to get rid of this ugly hack and make sure that 552 * notifiers cannot block for unbounded amount of time 553 */ 554 if (mm_has_blockable_invalidate_notifiers(mm)) { 555 up_read(&mm->mmap_sem); 556 schedule_timeout_idle(HZ); 557 goto unlock_oom; 558 } 559 560 /* 561 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't 562 * work on the mm anymore. The check for MMF_OOM_SKIP must run 563 * under mmap_sem for reading because it serializes against the 564 * down_write();up_write() cycle in exit_mmap(). 565 */ 566 if (test_bit(MMF_OOM_SKIP, &mm->flags)) { 567 up_read(&mm->mmap_sem); 568 trace_skip_task_reaping(tsk->pid); 569 goto unlock_oom; 570 } 571 572 trace_start_task_reaping(tsk->pid); 573 574 __oom_reap_task_mm(mm); 575 576 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n", 577 task_pid_nr(tsk), tsk->comm, 578 K(get_mm_counter(mm, MM_ANONPAGES)), 579 K(get_mm_counter(mm, MM_FILEPAGES)), 580 K(get_mm_counter(mm, MM_SHMEMPAGES))); 581 up_read(&mm->mmap_sem); 582 583 trace_finish_task_reaping(tsk->pid); 584 unlock_oom: 585 mutex_unlock(&oom_lock); 586 return ret; 587 } 588 589 #define MAX_OOM_REAP_RETRIES 10 590 static void oom_reap_task(struct task_struct *tsk) 591 { 592 int attempts = 0; 593 struct mm_struct *mm = tsk->signal->oom_mm; 594 595 /* Retry the down_read_trylock(mmap_sem) a few times */ 596 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm)) 597 schedule_timeout_idle(HZ/10); 598 599 if (attempts <= MAX_OOM_REAP_RETRIES || 600 test_bit(MMF_OOM_SKIP, &mm->flags)) 601 goto done; 602 603 pr_info("oom_reaper: unable to reap pid:%d (%s)\n", 604 task_pid_nr(tsk), tsk->comm); 605 debug_show_all_locks(); 606 607 done: 608 tsk->oom_reaper_list = NULL; 609 610 /* 611 * Hide this mm from OOM killer because it has been either reaped or 612 * somebody can't call up_write(mmap_sem). 613 */ 614 set_bit(MMF_OOM_SKIP, &mm->flags); 615 616 /* Drop a reference taken by wake_oom_reaper */ 617 put_task_struct(tsk); 618 } 619 620 static int oom_reaper(void *unused) 621 { 622 while (true) { 623 struct task_struct *tsk = NULL; 624 625 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL); 626 spin_lock(&oom_reaper_lock); 627 if (oom_reaper_list != NULL) { 628 tsk = oom_reaper_list; 629 oom_reaper_list = tsk->oom_reaper_list; 630 } 631 spin_unlock(&oom_reaper_lock); 632 633 if (tsk) 634 oom_reap_task(tsk); 635 } 636 637 return 0; 638 } 639 640 static void wake_oom_reaper(struct task_struct *tsk) 641 { 642 /* tsk is already queued? */ 643 if (tsk == oom_reaper_list || tsk->oom_reaper_list) 644 return; 645 646 get_task_struct(tsk); 647 648 spin_lock(&oom_reaper_lock); 649 tsk->oom_reaper_list = oom_reaper_list; 650 oom_reaper_list = tsk; 651 spin_unlock(&oom_reaper_lock); 652 trace_wake_reaper(tsk->pid); 653 wake_up(&oom_reaper_wait); 654 } 655 656 static int __init oom_init(void) 657 { 658 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper"); 659 return 0; 660 } 661 subsys_initcall(oom_init) 662 #else 663 static inline void wake_oom_reaper(struct task_struct *tsk) 664 { 665 } 666 #endif /* CONFIG_MMU */ 667 668 /** 669 * mark_oom_victim - mark the given task as OOM victim 670 * @tsk: task to mark 671 * 672 * Has to be called with oom_lock held and never after 673 * oom has been disabled already. 674 * 675 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either 676 * under task_lock or operate on the current). 677 */ 678 static void mark_oom_victim(struct task_struct *tsk) 679 { 680 struct mm_struct *mm = tsk->mm; 681 682 WARN_ON(oom_killer_disabled); 683 /* OOM killer might race with memcg OOM */ 684 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE)) 685 return; 686 687 /* oom_mm is bound to the signal struct life time. */ 688 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) { 689 mmgrab(tsk->signal->oom_mm); 690 set_bit(MMF_OOM_VICTIM, &mm->flags); 691 } 692 693 /* 694 * Make sure that the task is woken up from uninterruptible sleep 695 * if it is frozen because OOM killer wouldn't be able to free 696 * any memory and livelock. freezing_slow_path will tell the freezer 697 * that TIF_MEMDIE tasks should be ignored. 698 */ 699 __thaw_task(tsk); 700 atomic_inc(&oom_victims); 701 trace_mark_victim(tsk->pid); 702 } 703 704 /** 705 * exit_oom_victim - note the exit of an OOM victim 706 */ 707 void exit_oom_victim(void) 708 { 709 clear_thread_flag(TIF_MEMDIE); 710 711 if (!atomic_dec_return(&oom_victims)) 712 wake_up_all(&oom_victims_wait); 713 } 714 715 /** 716 * oom_killer_enable - enable OOM killer 717 */ 718 void oom_killer_enable(void) 719 { 720 oom_killer_disabled = false; 721 pr_info("OOM killer enabled.\n"); 722 } 723 724 /** 725 * oom_killer_disable - disable OOM killer 726 * @timeout: maximum timeout to wait for oom victims in jiffies 727 * 728 * Forces all page allocations to fail rather than trigger OOM killer. 729 * Will block and wait until all OOM victims are killed or the given 730 * timeout expires. 731 * 732 * The function cannot be called when there are runnable user tasks because 733 * the userspace would see unexpected allocation failures as a result. Any 734 * new usage of this function should be consulted with MM people. 735 * 736 * Returns true if successful and false if the OOM killer cannot be 737 * disabled. 738 */ 739 bool oom_killer_disable(signed long timeout) 740 { 741 signed long ret; 742 743 /* 744 * Make sure to not race with an ongoing OOM killer. Check that the 745 * current is not killed (possibly due to sharing the victim's memory). 746 */ 747 if (mutex_lock_killable(&oom_lock)) 748 return false; 749 oom_killer_disabled = true; 750 mutex_unlock(&oom_lock); 751 752 ret = wait_event_interruptible_timeout(oom_victims_wait, 753 !atomic_read(&oom_victims), timeout); 754 if (ret <= 0) { 755 oom_killer_enable(); 756 return false; 757 } 758 pr_info("OOM killer disabled.\n"); 759 760 return true; 761 } 762 763 static inline bool __task_will_free_mem(struct task_struct *task) 764 { 765 struct signal_struct *sig = task->signal; 766 767 /* 768 * A coredumping process may sleep for an extended period in exit_mm(), 769 * so the oom killer cannot assume that the process will promptly exit 770 * and release memory. 771 */ 772 if (sig->flags & SIGNAL_GROUP_COREDUMP) 773 return false; 774 775 if (sig->flags & SIGNAL_GROUP_EXIT) 776 return true; 777 778 if (thread_group_empty(task) && (task->flags & PF_EXITING)) 779 return true; 780 781 return false; 782 } 783 784 /* 785 * Checks whether the given task is dying or exiting and likely to 786 * release its address space. This means that all threads and processes 787 * sharing the same mm have to be killed or exiting. 788 * Caller has to make sure that task->mm is stable (hold task_lock or 789 * it operates on the current). 790 */ 791 static bool task_will_free_mem(struct task_struct *task) 792 { 793 struct mm_struct *mm = task->mm; 794 struct task_struct *p; 795 bool ret = true; 796 797 /* 798 * Skip tasks without mm because it might have passed its exit_mm and 799 * exit_oom_victim. oom_reaper could have rescued that but do not rely 800 * on that for now. We can consider find_lock_task_mm in future. 801 */ 802 if (!mm) 803 return false; 804 805 if (!__task_will_free_mem(task)) 806 return false; 807 808 /* 809 * This task has already been drained by the oom reaper so there are 810 * only small chances it will free some more 811 */ 812 if (test_bit(MMF_OOM_SKIP, &mm->flags)) 813 return false; 814 815 if (atomic_read(&mm->mm_users) <= 1) 816 return true; 817 818 /* 819 * Make sure that all tasks which share the mm with the given tasks 820 * are dying as well to make sure that a) nobody pins its mm and 821 * b) the task is also reapable by the oom reaper. 822 */ 823 rcu_read_lock(); 824 for_each_process(p) { 825 if (!process_shares_mm(p, mm)) 826 continue; 827 if (same_thread_group(task, p)) 828 continue; 829 ret = __task_will_free_mem(p); 830 if (!ret) 831 break; 832 } 833 rcu_read_unlock(); 834 835 return ret; 836 } 837 838 static void oom_kill_process(struct oom_control *oc, const char *message) 839 { 840 struct task_struct *p = oc->chosen; 841 unsigned int points = oc->chosen_points; 842 struct task_struct *victim = p; 843 struct task_struct *child; 844 struct task_struct *t; 845 struct mm_struct *mm; 846 unsigned int victim_points = 0; 847 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL, 848 DEFAULT_RATELIMIT_BURST); 849 bool can_oom_reap = true; 850 851 /* 852 * If the task is already exiting, don't alarm the sysadmin or kill 853 * its children or threads, just give it access to memory reserves 854 * so it can die quickly 855 */ 856 task_lock(p); 857 if (task_will_free_mem(p)) { 858 mark_oom_victim(p); 859 wake_oom_reaper(p); 860 task_unlock(p); 861 put_task_struct(p); 862 return; 863 } 864 task_unlock(p); 865 866 if (__ratelimit(&oom_rs)) 867 dump_header(oc, p); 868 869 pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n", 870 message, task_pid_nr(p), p->comm, points); 871 872 /* 873 * If any of p's children has a different mm and is eligible for kill, 874 * the one with the highest oom_badness() score is sacrificed for its 875 * parent. This attempts to lose the minimal amount of work done while 876 * still freeing memory. 877 */ 878 read_lock(&tasklist_lock); 879 for_each_thread(p, t) { 880 list_for_each_entry(child, &t->children, sibling) { 881 unsigned int child_points; 882 883 if (process_shares_mm(child, p->mm)) 884 continue; 885 /* 886 * oom_badness() returns 0 if the thread is unkillable 887 */ 888 child_points = oom_badness(child, 889 oc->memcg, oc->nodemask, oc->totalpages); 890 if (child_points > victim_points) { 891 put_task_struct(victim); 892 victim = child; 893 victim_points = child_points; 894 get_task_struct(victim); 895 } 896 } 897 } 898 read_unlock(&tasklist_lock); 899 900 p = find_lock_task_mm(victim); 901 if (!p) { 902 put_task_struct(victim); 903 return; 904 } else if (victim != p) { 905 get_task_struct(p); 906 put_task_struct(victim); 907 victim = p; 908 } 909 910 /* Get a reference to safely compare mm after task_unlock(victim) */ 911 mm = victim->mm; 912 mmgrab(mm); 913 914 /* Raise event before sending signal: task reaper must see this */ 915 count_vm_event(OOM_KILL); 916 memcg_memory_event_mm(mm, MEMCG_OOM_KILL); 917 918 /* 919 * We should send SIGKILL before granting access to memory reserves 920 * in order to prevent the OOM victim from depleting the memory 921 * reserves from the user space under its control. 922 */ 923 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true); 924 mark_oom_victim(victim); 925 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n", 926 task_pid_nr(victim), victim->comm, K(victim->mm->total_vm), 927 K(get_mm_counter(victim->mm, MM_ANONPAGES)), 928 K(get_mm_counter(victim->mm, MM_FILEPAGES)), 929 K(get_mm_counter(victim->mm, MM_SHMEMPAGES))); 930 task_unlock(victim); 931 932 /* 933 * Kill all user processes sharing victim->mm in other thread groups, if 934 * any. They don't get access to memory reserves, though, to avoid 935 * depletion of all memory. This prevents mm->mmap_sem livelock when an 936 * oom killed thread cannot exit because it requires the semaphore and 937 * its contended by another thread trying to allocate memory itself. 938 * That thread will now get access to memory reserves since it has a 939 * pending fatal signal. 940 */ 941 rcu_read_lock(); 942 for_each_process(p) { 943 if (!process_shares_mm(p, mm)) 944 continue; 945 if (same_thread_group(p, victim)) 946 continue; 947 if (is_global_init(p)) { 948 can_oom_reap = false; 949 set_bit(MMF_OOM_SKIP, &mm->flags); 950 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n", 951 task_pid_nr(victim), victim->comm, 952 task_pid_nr(p), p->comm); 953 continue; 954 } 955 /* 956 * No use_mm() user needs to read from the userspace so we are 957 * ok to reap it. 958 */ 959 if (unlikely(p->flags & PF_KTHREAD)) 960 continue; 961 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true); 962 } 963 rcu_read_unlock(); 964 965 if (can_oom_reap) 966 wake_oom_reaper(victim); 967 968 mmdrop(mm); 969 put_task_struct(victim); 970 } 971 #undef K 972 973 /* 974 * Determines whether the kernel must panic because of the panic_on_oom sysctl. 975 */ 976 static void check_panic_on_oom(struct oom_control *oc, 977 enum oom_constraint constraint) 978 { 979 if (likely(!sysctl_panic_on_oom)) 980 return; 981 if (sysctl_panic_on_oom != 2) { 982 /* 983 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel 984 * does not panic for cpuset, mempolicy, or memcg allocation 985 * failures. 986 */ 987 if (constraint != CONSTRAINT_NONE) 988 return; 989 } 990 /* Do not panic for oom kills triggered by sysrq */ 991 if (is_sysrq_oom(oc)) 992 return; 993 dump_header(oc, NULL); 994 panic("Out of memory: %s panic_on_oom is enabled\n", 995 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); 996 } 997 998 static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 999 1000 int register_oom_notifier(struct notifier_block *nb) 1001 { 1002 return blocking_notifier_chain_register(&oom_notify_list, nb); 1003 } 1004 EXPORT_SYMBOL_GPL(register_oom_notifier); 1005 1006 int unregister_oom_notifier(struct notifier_block *nb) 1007 { 1008 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 1009 } 1010 EXPORT_SYMBOL_GPL(unregister_oom_notifier); 1011 1012 /** 1013 * out_of_memory - kill the "best" process when we run out of memory 1014 * @oc: pointer to struct oom_control 1015 * 1016 * If we run out of memory, we have the choice between either 1017 * killing a random task (bad), letting the system crash (worse) 1018 * OR try to be smart about which process to kill. Note that we 1019 * don't have to be perfect here, we just have to be good. 1020 */ 1021 bool out_of_memory(struct oom_control *oc) 1022 { 1023 unsigned long freed = 0; 1024 enum oom_constraint constraint = CONSTRAINT_NONE; 1025 1026 if (oom_killer_disabled) 1027 return false; 1028 1029 if (!is_memcg_oom(oc)) { 1030 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 1031 if (freed > 0) 1032 /* Got some memory back in the last second. */ 1033 return true; 1034 } 1035 1036 /* 1037 * If current has a pending SIGKILL or is exiting, then automatically 1038 * select it. The goal is to allow it to allocate so that it may 1039 * quickly exit and free its memory. 1040 */ 1041 if (task_will_free_mem(current)) { 1042 mark_oom_victim(current); 1043 wake_oom_reaper(current); 1044 return true; 1045 } 1046 1047 /* 1048 * The OOM killer does not compensate for IO-less reclaim. 1049 * pagefault_out_of_memory lost its gfp context so we have to 1050 * make sure exclude 0 mask - all other users should have at least 1051 * ___GFP_DIRECT_RECLAIM to get here. 1052 */ 1053 if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS)) 1054 return true; 1055 1056 /* 1057 * Check if there were limitations on the allocation (only relevant for 1058 * NUMA and memcg) that may require different handling. 1059 */ 1060 constraint = constrained_alloc(oc); 1061 if (constraint != CONSTRAINT_MEMORY_POLICY) 1062 oc->nodemask = NULL; 1063 check_panic_on_oom(oc, constraint); 1064 1065 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task && 1066 current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) && 1067 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) { 1068 get_task_struct(current); 1069 oc->chosen = current; 1070 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)"); 1071 return true; 1072 } 1073 1074 select_bad_process(oc); 1075 /* Found nothing?!?! Either we hang forever, or we panic. */ 1076 if (!oc->chosen && !is_sysrq_oom(oc) && !is_memcg_oom(oc)) { 1077 dump_header(oc, NULL); 1078 panic("Out of memory and no killable processes...\n"); 1079 } 1080 if (oc->chosen && oc->chosen != (void *)-1UL) { 1081 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" : 1082 "Memory cgroup out of memory"); 1083 /* 1084 * Give the killed process a good chance to exit before trying 1085 * to allocate memory again. 1086 */ 1087 schedule_timeout_killable(1); 1088 } 1089 return !!oc->chosen; 1090 } 1091 1092 /* 1093 * The pagefault handler calls here because it is out of memory, so kill a 1094 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom 1095 * killing is already in progress so do nothing. 1096 */ 1097 void pagefault_out_of_memory(void) 1098 { 1099 struct oom_control oc = { 1100 .zonelist = NULL, 1101 .nodemask = NULL, 1102 .memcg = NULL, 1103 .gfp_mask = 0, 1104 .order = 0, 1105 }; 1106 1107 if (mem_cgroup_oom_synchronize(true)) 1108 return; 1109 1110 if (!mutex_trylock(&oom_lock)) 1111 return; 1112 out_of_memory(&oc); 1113 mutex_unlock(&oom_lock); 1114 } 1115