xref: /openbmc/linux/mm/oom_kill.c (revision b595076a)
1 /*
2  *  linux/mm/oom_kill.c
3  *
4  *  Copyright (C)  1998,2000  Rik van Riel
5  *	Thanks go out to Claus Fischer for some serious inspiration and
6  *	for goading me into coding this file...
7  *  Copyright (C)  2010  Google, Inc.
8  *	Rewritten by David Rientjes
9  *
10  *  The routines in this file are used to kill a process when
11  *  we're seriously out of memory. This gets called from __alloc_pages()
12  *  in mm/page_alloc.c when we really run out of memory.
13  *
14  *  Since we won't call these routines often (on a well-configured
15  *  machine) this file will double as a 'coding guide' and a signpost
16  *  for newbie kernel hackers. It features several pointers to major
17  *  kernel subsystems and hints as to where to find out what things do.
18  */
19 
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/swap.h>
26 #include <linux/timex.h>
27 #include <linux/jiffies.h>
28 #include <linux/cpuset.h>
29 #include <linux/module.h>
30 #include <linux/notifier.h>
31 #include <linux/memcontrol.h>
32 #include <linux/mempolicy.h>
33 #include <linux/security.h>
34 
35 int sysctl_panic_on_oom;
36 int sysctl_oom_kill_allocating_task;
37 int sysctl_oom_dump_tasks = 1;
38 static DEFINE_SPINLOCK(zone_scan_lock);
39 
40 #ifdef CONFIG_NUMA
41 /**
42  * has_intersects_mems_allowed() - check task eligiblity for kill
43  * @tsk: task struct of which task to consider
44  * @mask: nodemask passed to page allocator for mempolicy ooms
45  *
46  * Task eligibility is determined by whether or not a candidate task, @tsk,
47  * shares the same mempolicy nodes as current if it is bound by such a policy
48  * and whether or not it has the same set of allowed cpuset nodes.
49  */
50 static bool has_intersects_mems_allowed(struct task_struct *tsk,
51 					const nodemask_t *mask)
52 {
53 	struct task_struct *start = tsk;
54 
55 	do {
56 		if (mask) {
57 			/*
58 			 * If this is a mempolicy constrained oom, tsk's
59 			 * cpuset is irrelevant.  Only return true if its
60 			 * mempolicy intersects current, otherwise it may be
61 			 * needlessly killed.
62 			 */
63 			if (mempolicy_nodemask_intersects(tsk, mask))
64 				return true;
65 		} else {
66 			/*
67 			 * This is not a mempolicy constrained oom, so only
68 			 * check the mems of tsk's cpuset.
69 			 */
70 			if (cpuset_mems_allowed_intersects(current, tsk))
71 				return true;
72 		}
73 	} while_each_thread(start, tsk);
74 
75 	return false;
76 }
77 #else
78 static bool has_intersects_mems_allowed(struct task_struct *tsk,
79 					const nodemask_t *mask)
80 {
81 	return true;
82 }
83 #endif /* CONFIG_NUMA */
84 
85 /*
86  * If this is a system OOM (not a memcg OOM) and the task selected to be
87  * killed is not already running at high (RT) priorities, speed up the
88  * recovery by boosting the dying task to the lowest FIFO priority.
89  * That helps with the recovery and avoids interfering with RT tasks.
90  */
91 static void boost_dying_task_prio(struct task_struct *p,
92 				  struct mem_cgroup *mem)
93 {
94 	struct sched_param param = { .sched_priority = 1 };
95 
96 	if (mem)
97 		return;
98 
99 	if (!rt_task(p))
100 		sched_setscheduler_nocheck(p, SCHED_FIFO, &param);
101 }
102 
103 /*
104  * The process p may have detached its own ->mm while exiting or through
105  * use_mm(), but one or more of its subthreads may still have a valid
106  * pointer.  Return p, or any of its subthreads with a valid ->mm, with
107  * task_lock() held.
108  */
109 struct task_struct *find_lock_task_mm(struct task_struct *p)
110 {
111 	struct task_struct *t = p;
112 
113 	do {
114 		task_lock(t);
115 		if (likely(t->mm))
116 			return t;
117 		task_unlock(t);
118 	} while_each_thread(p, t);
119 
120 	return NULL;
121 }
122 
123 /* return true if the task is not adequate as candidate victim task. */
124 static bool oom_unkillable_task(struct task_struct *p,
125 		const struct mem_cgroup *mem, const nodemask_t *nodemask)
126 {
127 	if (is_global_init(p))
128 		return true;
129 	if (p->flags & PF_KTHREAD)
130 		return true;
131 
132 	/* When mem_cgroup_out_of_memory() and p is not member of the group */
133 	if (mem && !task_in_mem_cgroup(p, mem))
134 		return true;
135 
136 	/* p may not have freeable memory in nodemask */
137 	if (!has_intersects_mems_allowed(p, nodemask))
138 		return true;
139 
140 	return false;
141 }
142 
143 /**
144  * oom_badness - heuristic function to determine which candidate task to kill
145  * @p: task struct of which task we should calculate
146  * @totalpages: total present RAM allowed for page allocation
147  *
148  * The heuristic for determining which task to kill is made to be as simple and
149  * predictable as possible.  The goal is to return the highest value for the
150  * task consuming the most memory to avoid subsequent oom failures.
151  */
152 unsigned int oom_badness(struct task_struct *p, struct mem_cgroup *mem,
153 		      const nodemask_t *nodemask, unsigned long totalpages)
154 {
155 	int points;
156 
157 	if (oom_unkillable_task(p, mem, nodemask))
158 		return 0;
159 
160 	p = find_lock_task_mm(p);
161 	if (!p)
162 		return 0;
163 
164 	/*
165 	 * Shortcut check for a thread sharing p->mm that is OOM_SCORE_ADJ_MIN
166 	 * so the entire heuristic doesn't need to be executed for something
167 	 * that cannot be killed.
168 	 */
169 	if (atomic_read(&p->mm->oom_disable_count)) {
170 		task_unlock(p);
171 		return 0;
172 	}
173 
174 	/*
175 	 * When the PF_OOM_ORIGIN bit is set, it indicates the task should have
176 	 * priority for oom killing.
177 	 */
178 	if (p->flags & PF_OOM_ORIGIN) {
179 		task_unlock(p);
180 		return 1000;
181 	}
182 
183 	/*
184 	 * The memory controller may have a limit of 0 bytes, so avoid a divide
185 	 * by zero, if necessary.
186 	 */
187 	if (!totalpages)
188 		totalpages = 1;
189 
190 	/*
191 	 * The baseline for the badness score is the proportion of RAM that each
192 	 * task's rss and swap space use.
193 	 */
194 	points = (get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS)) * 1000 /
195 			totalpages;
196 	task_unlock(p);
197 
198 	/*
199 	 * Root processes get 3% bonus, just like the __vm_enough_memory()
200 	 * implementation used by LSMs.
201 	 */
202 	if (has_capability_noaudit(p, CAP_SYS_ADMIN))
203 		points -= 30;
204 
205 	/*
206 	 * /proc/pid/oom_score_adj ranges from -1000 to +1000 such that it may
207 	 * either completely disable oom killing or always prefer a certain
208 	 * task.
209 	 */
210 	points += p->signal->oom_score_adj;
211 
212 	/*
213 	 * Never return 0 for an eligible task that may be killed since it's
214 	 * possible that no single user task uses more than 0.1% of memory and
215 	 * no single admin tasks uses more than 3.0%.
216 	 */
217 	if (points <= 0)
218 		return 1;
219 	return (points < 1000) ? points : 1000;
220 }
221 
222 /*
223  * Determine the type of allocation constraint.
224  */
225 #ifdef CONFIG_NUMA
226 static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
227 				gfp_t gfp_mask, nodemask_t *nodemask,
228 				unsigned long *totalpages)
229 {
230 	struct zone *zone;
231 	struct zoneref *z;
232 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
233 	bool cpuset_limited = false;
234 	int nid;
235 
236 	/* Default to all available memory */
237 	*totalpages = totalram_pages + total_swap_pages;
238 
239 	if (!zonelist)
240 		return CONSTRAINT_NONE;
241 	/*
242 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
243 	 * to kill current.We have to random task kill in this case.
244 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
245 	 */
246 	if (gfp_mask & __GFP_THISNODE)
247 		return CONSTRAINT_NONE;
248 
249 	/*
250 	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
251 	 * the page allocator means a mempolicy is in effect.  Cpuset policy
252 	 * is enforced in get_page_from_freelist().
253 	 */
254 	if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask)) {
255 		*totalpages = total_swap_pages;
256 		for_each_node_mask(nid, *nodemask)
257 			*totalpages += node_spanned_pages(nid);
258 		return CONSTRAINT_MEMORY_POLICY;
259 	}
260 
261 	/* Check this allocation failure is caused by cpuset's wall function */
262 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
263 			high_zoneidx, nodemask)
264 		if (!cpuset_zone_allowed_softwall(zone, gfp_mask))
265 			cpuset_limited = true;
266 
267 	if (cpuset_limited) {
268 		*totalpages = total_swap_pages;
269 		for_each_node_mask(nid, cpuset_current_mems_allowed)
270 			*totalpages += node_spanned_pages(nid);
271 		return CONSTRAINT_CPUSET;
272 	}
273 	return CONSTRAINT_NONE;
274 }
275 #else
276 static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
277 				gfp_t gfp_mask, nodemask_t *nodemask,
278 				unsigned long *totalpages)
279 {
280 	*totalpages = totalram_pages + total_swap_pages;
281 	return CONSTRAINT_NONE;
282 }
283 #endif
284 
285 /*
286  * Simple selection loop. We chose the process with the highest
287  * number of 'points'. We expect the caller will lock the tasklist.
288  *
289  * (not docbooked, we don't want this one cluttering up the manual)
290  */
291 static struct task_struct *select_bad_process(unsigned int *ppoints,
292 		unsigned long totalpages, struct mem_cgroup *mem,
293 		const nodemask_t *nodemask)
294 {
295 	struct task_struct *p;
296 	struct task_struct *chosen = NULL;
297 	*ppoints = 0;
298 
299 	for_each_process(p) {
300 		unsigned int points;
301 
302 		if (oom_unkillable_task(p, mem, nodemask))
303 			continue;
304 
305 		/*
306 		 * This task already has access to memory reserves and is
307 		 * being killed. Don't allow any other task access to the
308 		 * memory reserve.
309 		 *
310 		 * Note: this may have a chance of deadlock if it gets
311 		 * blocked waiting for another task which itself is waiting
312 		 * for memory. Is there a better alternative?
313 		 */
314 		if (test_tsk_thread_flag(p, TIF_MEMDIE))
315 			return ERR_PTR(-1UL);
316 
317 		/*
318 		 * This is in the process of releasing memory so wait for it
319 		 * to finish before killing some other task by mistake.
320 		 *
321 		 * However, if p is the current task, we allow the 'kill' to
322 		 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
323 		 * which will allow it to gain access to memory reserves in
324 		 * the process of exiting and releasing its resources.
325 		 * Otherwise we could get an easy OOM deadlock.
326 		 */
327 		if (thread_group_empty(p) && (p->flags & PF_EXITING) && p->mm) {
328 			if (p != current)
329 				return ERR_PTR(-1UL);
330 
331 			chosen = p;
332 			*ppoints = 1000;
333 		}
334 
335 		points = oom_badness(p, mem, nodemask, totalpages);
336 		if (points > *ppoints) {
337 			chosen = p;
338 			*ppoints = points;
339 		}
340 	}
341 
342 	return chosen;
343 }
344 
345 /**
346  * dump_tasks - dump current memory state of all system tasks
347  * @mem: current's memory controller, if constrained
348  * @nodemask: nodemask passed to page allocator for mempolicy ooms
349  *
350  * Dumps the current memory state of all eligible tasks.  Tasks not in the same
351  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
352  * are not shown.
353  * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
354  * value, oom_score_adj value, and name.
355  *
356  * Call with tasklist_lock read-locked.
357  */
358 static void dump_tasks(const struct mem_cgroup *mem, const nodemask_t *nodemask)
359 {
360 	struct task_struct *p;
361 	struct task_struct *task;
362 
363 	pr_info("[ pid ]   uid  tgid total_vm      rss cpu oom_adj oom_score_adj name\n");
364 	for_each_process(p) {
365 		if (oom_unkillable_task(p, mem, nodemask))
366 			continue;
367 
368 		task = find_lock_task_mm(p);
369 		if (!task) {
370 			/*
371 			 * This is a kthread or all of p's threads have already
372 			 * detached their mm's.  There's no need to report
373 			 * them; they can't be oom killed anyway.
374 			 */
375 			continue;
376 		}
377 
378 		pr_info("[%5d] %5d %5d %8lu %8lu %3u     %3d         %5d %s\n",
379 			task->pid, task_uid(task), task->tgid,
380 			task->mm->total_vm, get_mm_rss(task->mm),
381 			task_cpu(task), task->signal->oom_adj,
382 			task->signal->oom_score_adj, task->comm);
383 		task_unlock(task);
384 	}
385 }
386 
387 static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order,
388 			struct mem_cgroup *mem, const nodemask_t *nodemask)
389 {
390 	task_lock(current);
391 	pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, "
392 		"oom_adj=%d, oom_score_adj=%d\n",
393 		current->comm, gfp_mask, order, current->signal->oom_adj,
394 		current->signal->oom_score_adj);
395 	cpuset_print_task_mems_allowed(current);
396 	task_unlock(current);
397 	dump_stack();
398 	mem_cgroup_print_oom_info(mem, p);
399 	show_mem();
400 	if (sysctl_oom_dump_tasks)
401 		dump_tasks(mem, nodemask);
402 }
403 
404 #define K(x) ((x) << (PAGE_SHIFT-10))
405 static int oom_kill_task(struct task_struct *p, struct mem_cgroup *mem)
406 {
407 	struct task_struct *q;
408 	struct mm_struct *mm;
409 
410 	p = find_lock_task_mm(p);
411 	if (!p)
412 		return 1;
413 
414 	/* mm cannot be safely dereferenced after task_unlock(p) */
415 	mm = p->mm;
416 
417 	pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n",
418 		task_pid_nr(p), p->comm, K(p->mm->total_vm),
419 		K(get_mm_counter(p->mm, MM_ANONPAGES)),
420 		K(get_mm_counter(p->mm, MM_FILEPAGES)));
421 	task_unlock(p);
422 
423 	/*
424 	 * Kill all processes sharing p->mm in other thread groups, if any.
425 	 * They don't get access to memory reserves or a higher scheduler
426 	 * priority, though, to avoid depletion of all memory or task
427 	 * starvation.  This prevents mm->mmap_sem livelock when an oom killed
428 	 * task cannot exit because it requires the semaphore and its contended
429 	 * by another thread trying to allocate memory itself.  That thread will
430 	 * now get access to memory reserves since it has a pending fatal
431 	 * signal.
432 	 */
433 	for_each_process(q)
434 		if (q->mm == mm && !same_thread_group(q, p)) {
435 			task_lock(q);	/* Protect ->comm from prctl() */
436 			pr_err("Kill process %d (%s) sharing same memory\n",
437 				task_pid_nr(q), q->comm);
438 			task_unlock(q);
439 			force_sig(SIGKILL, q);
440 		}
441 
442 	set_tsk_thread_flag(p, TIF_MEMDIE);
443 	force_sig(SIGKILL, p);
444 
445 	/*
446 	 * We give our sacrificial lamb high priority and access to
447 	 * all the memory it needs. That way it should be able to
448 	 * exit() and clear out its resources quickly...
449 	 */
450 	boost_dying_task_prio(p, mem);
451 
452 	return 0;
453 }
454 #undef K
455 
456 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
457 			    unsigned int points, unsigned long totalpages,
458 			    struct mem_cgroup *mem, nodemask_t *nodemask,
459 			    const char *message)
460 {
461 	struct task_struct *victim = p;
462 	struct task_struct *child;
463 	struct task_struct *t = p;
464 	unsigned int victim_points = 0;
465 
466 	if (printk_ratelimit())
467 		dump_header(p, gfp_mask, order, mem, nodemask);
468 
469 	/*
470 	 * If the task is already exiting, don't alarm the sysadmin or kill
471 	 * its children or threads, just set TIF_MEMDIE so it can die quickly
472 	 */
473 	if (p->flags & PF_EXITING) {
474 		set_tsk_thread_flag(p, TIF_MEMDIE);
475 		boost_dying_task_prio(p, mem);
476 		return 0;
477 	}
478 
479 	task_lock(p);
480 	pr_err("%s: Kill process %d (%s) score %d or sacrifice child\n",
481 		message, task_pid_nr(p), p->comm, points);
482 	task_unlock(p);
483 
484 	/*
485 	 * If any of p's children has a different mm and is eligible for kill,
486 	 * the one with the highest badness() score is sacrificed for its
487 	 * parent.  This attempts to lose the minimal amount of work done while
488 	 * still freeing memory.
489 	 */
490 	do {
491 		list_for_each_entry(child, &t->children, sibling) {
492 			unsigned int child_points;
493 
494 			/*
495 			 * oom_badness() returns 0 if the thread is unkillable
496 			 */
497 			child_points = oom_badness(child, mem, nodemask,
498 								totalpages);
499 			if (child_points > victim_points) {
500 				victim = child;
501 				victim_points = child_points;
502 			}
503 		}
504 	} while_each_thread(p, t);
505 
506 	return oom_kill_task(victim, mem);
507 }
508 
509 /*
510  * Determines whether the kernel must panic because of the panic_on_oom sysctl.
511  */
512 static void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask,
513 				int order, const nodemask_t *nodemask)
514 {
515 	if (likely(!sysctl_panic_on_oom))
516 		return;
517 	if (sysctl_panic_on_oom != 2) {
518 		/*
519 		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
520 		 * does not panic for cpuset, mempolicy, or memcg allocation
521 		 * failures.
522 		 */
523 		if (constraint != CONSTRAINT_NONE)
524 			return;
525 	}
526 	read_lock(&tasklist_lock);
527 	dump_header(NULL, gfp_mask, order, NULL, nodemask);
528 	read_unlock(&tasklist_lock);
529 	panic("Out of memory: %s panic_on_oom is enabled\n",
530 		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
531 }
532 
533 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
534 void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
535 {
536 	unsigned long limit;
537 	unsigned int points = 0;
538 	struct task_struct *p;
539 
540 	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, 0, NULL);
541 	limit = mem_cgroup_get_limit(mem) >> PAGE_SHIFT;
542 	read_lock(&tasklist_lock);
543 retry:
544 	p = select_bad_process(&points, limit, mem, NULL);
545 	if (!p || PTR_ERR(p) == -1UL)
546 		goto out;
547 
548 	if (oom_kill_process(p, gfp_mask, 0, points, limit, mem, NULL,
549 				"Memory cgroup out of memory"))
550 		goto retry;
551 out:
552 	read_unlock(&tasklist_lock);
553 }
554 #endif
555 
556 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
557 
558 int register_oom_notifier(struct notifier_block *nb)
559 {
560 	return blocking_notifier_chain_register(&oom_notify_list, nb);
561 }
562 EXPORT_SYMBOL_GPL(register_oom_notifier);
563 
564 int unregister_oom_notifier(struct notifier_block *nb)
565 {
566 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
567 }
568 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
569 
570 /*
571  * Try to acquire the OOM killer lock for the zones in zonelist.  Returns zero
572  * if a parallel OOM killing is already taking place that includes a zone in
573  * the zonelist.  Otherwise, locks all zones in the zonelist and returns 1.
574  */
575 int try_set_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
576 {
577 	struct zoneref *z;
578 	struct zone *zone;
579 	int ret = 1;
580 
581 	spin_lock(&zone_scan_lock);
582 	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
583 		if (zone_is_oom_locked(zone)) {
584 			ret = 0;
585 			goto out;
586 		}
587 	}
588 
589 	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
590 		/*
591 		 * Lock each zone in the zonelist under zone_scan_lock so a
592 		 * parallel invocation of try_set_zonelist_oom() doesn't succeed
593 		 * when it shouldn't.
594 		 */
595 		zone_set_flag(zone, ZONE_OOM_LOCKED);
596 	}
597 
598 out:
599 	spin_unlock(&zone_scan_lock);
600 	return ret;
601 }
602 
603 /*
604  * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
605  * allocation attempts with zonelists containing them may now recall the OOM
606  * killer, if necessary.
607  */
608 void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
609 {
610 	struct zoneref *z;
611 	struct zone *zone;
612 
613 	spin_lock(&zone_scan_lock);
614 	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
615 		zone_clear_flag(zone, ZONE_OOM_LOCKED);
616 	}
617 	spin_unlock(&zone_scan_lock);
618 }
619 
620 /*
621  * Try to acquire the oom killer lock for all system zones.  Returns zero if a
622  * parallel oom killing is taking place, otherwise locks all zones and returns
623  * non-zero.
624  */
625 static int try_set_system_oom(void)
626 {
627 	struct zone *zone;
628 	int ret = 1;
629 
630 	spin_lock(&zone_scan_lock);
631 	for_each_populated_zone(zone)
632 		if (zone_is_oom_locked(zone)) {
633 			ret = 0;
634 			goto out;
635 		}
636 	for_each_populated_zone(zone)
637 		zone_set_flag(zone, ZONE_OOM_LOCKED);
638 out:
639 	spin_unlock(&zone_scan_lock);
640 	return ret;
641 }
642 
643 /*
644  * Clears ZONE_OOM_LOCKED for all system zones so that failed allocation
645  * attempts or page faults may now recall the oom killer, if necessary.
646  */
647 static void clear_system_oom(void)
648 {
649 	struct zone *zone;
650 
651 	spin_lock(&zone_scan_lock);
652 	for_each_populated_zone(zone)
653 		zone_clear_flag(zone, ZONE_OOM_LOCKED);
654 	spin_unlock(&zone_scan_lock);
655 }
656 
657 /**
658  * out_of_memory - kill the "best" process when we run out of memory
659  * @zonelist: zonelist pointer
660  * @gfp_mask: memory allocation flags
661  * @order: amount of memory being requested as a power of 2
662  * @nodemask: nodemask passed to page allocator
663  *
664  * If we run out of memory, we have the choice between either
665  * killing a random task (bad), letting the system crash (worse)
666  * OR try to be smart about which process to kill. Note that we
667  * don't have to be perfect here, we just have to be good.
668  */
669 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask,
670 		int order, nodemask_t *nodemask)
671 {
672 	const nodemask_t *mpol_mask;
673 	struct task_struct *p;
674 	unsigned long totalpages;
675 	unsigned long freed = 0;
676 	unsigned int points;
677 	enum oom_constraint constraint = CONSTRAINT_NONE;
678 	int killed = 0;
679 
680 	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
681 	if (freed > 0)
682 		/* Got some memory back in the last second. */
683 		return;
684 
685 	/*
686 	 * If current has a pending SIGKILL, then automatically select it.  The
687 	 * goal is to allow it to allocate so that it may quickly exit and free
688 	 * its memory.
689 	 */
690 	if (fatal_signal_pending(current)) {
691 		set_thread_flag(TIF_MEMDIE);
692 		boost_dying_task_prio(current, NULL);
693 		return;
694 	}
695 
696 	/*
697 	 * Check if there were limitations on the allocation (only relevant for
698 	 * NUMA) that may require different handling.
699 	 */
700 	constraint = constrained_alloc(zonelist, gfp_mask, nodemask,
701 						&totalpages);
702 	mpol_mask = (constraint == CONSTRAINT_MEMORY_POLICY) ? nodemask : NULL;
703 	check_panic_on_oom(constraint, gfp_mask, order, mpol_mask);
704 
705 	read_lock(&tasklist_lock);
706 	if (sysctl_oom_kill_allocating_task &&
707 	    !oom_unkillable_task(current, NULL, nodemask) &&
708 	    current->mm && !atomic_read(&current->mm->oom_disable_count)) {
709 		/*
710 		 * oom_kill_process() needs tasklist_lock held.  If it returns
711 		 * non-zero, current could not be killed so we must fallback to
712 		 * the tasklist scan.
713 		 */
714 		if (!oom_kill_process(current, gfp_mask, order, 0, totalpages,
715 				NULL, nodemask,
716 				"Out of memory (oom_kill_allocating_task)"))
717 			goto out;
718 	}
719 
720 retry:
721 	p = select_bad_process(&points, totalpages, NULL, mpol_mask);
722 	if (PTR_ERR(p) == -1UL)
723 		goto out;
724 
725 	/* Found nothing?!?! Either we hang forever, or we panic. */
726 	if (!p) {
727 		dump_header(NULL, gfp_mask, order, NULL, mpol_mask);
728 		read_unlock(&tasklist_lock);
729 		panic("Out of memory and no killable processes...\n");
730 	}
731 
732 	if (oom_kill_process(p, gfp_mask, order, points, totalpages, NULL,
733 				nodemask, "Out of memory"))
734 		goto retry;
735 	killed = 1;
736 out:
737 	read_unlock(&tasklist_lock);
738 
739 	/*
740 	 * Give "p" a good chance of killing itself before we
741 	 * retry to allocate memory unless "p" is current
742 	 */
743 	if (killed && !test_thread_flag(TIF_MEMDIE))
744 		schedule_timeout_uninterruptible(1);
745 }
746 
747 /*
748  * The pagefault handler calls here because it is out of memory, so kill a
749  * memory-hogging task.  If a populated zone has ZONE_OOM_LOCKED set, a parallel
750  * oom killing is already in progress so do nothing.  If a task is found with
751  * TIF_MEMDIE set, it has been killed so do nothing and allow it to exit.
752  */
753 void pagefault_out_of_memory(void)
754 {
755 	if (try_set_system_oom()) {
756 		out_of_memory(NULL, 0, 0, NULL);
757 		clear_system_oom();
758 	}
759 	if (!test_thread_flag(TIF_MEMDIE))
760 		schedule_timeout_uninterruptible(1);
761 }
762