xref: /openbmc/linux/mm/oom_kill.c (revision 9ac8d3fb)
1 /*
2  *  linux/mm/oom_kill.c
3  *
4  *  Copyright (C)  1998,2000  Rik van Riel
5  *	Thanks go out to Claus Fischer for some serious inspiration and
6  *	for goading me into coding this file...
7  *
8  *  The routines in this file are used to kill a process when
9  *  we're seriously out of memory. This gets called from __alloc_pages()
10  *  in mm/page_alloc.c when we really run out of memory.
11  *
12  *  Since we won't call these routines often (on a well-configured
13  *  machine) this file will double as a 'coding guide' and a signpost
14  *  for newbie kernel hackers. It features several pointers to major
15  *  kernel subsystems and hints as to where to find out what things do.
16  */
17 
18 #include <linux/oom.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/sched.h>
22 #include <linux/swap.h>
23 #include <linux/timex.h>
24 #include <linux/jiffies.h>
25 #include <linux/cpuset.h>
26 #include <linux/module.h>
27 #include <linux/notifier.h>
28 #include <linux/memcontrol.h>
29 #include <linux/security.h>
30 
31 int sysctl_panic_on_oom;
32 int sysctl_oom_kill_allocating_task;
33 int sysctl_oom_dump_tasks;
34 static DEFINE_SPINLOCK(zone_scan_mutex);
35 /* #define DEBUG */
36 
37 /**
38  * badness - calculate a numeric value for how bad this task has been
39  * @p: task struct of which task we should calculate
40  * @uptime: current uptime in seconds
41  * @mem: target memory controller
42  *
43  * The formula used is relatively simple and documented inline in the
44  * function. The main rationale is that we want to select a good task
45  * to kill when we run out of memory.
46  *
47  * Good in this context means that:
48  * 1) we lose the minimum amount of work done
49  * 2) we recover a large amount of memory
50  * 3) we don't kill anything innocent of eating tons of memory
51  * 4) we want to kill the minimum amount of processes (one)
52  * 5) we try to kill the process the user expects us to kill, this
53  *    algorithm has been meticulously tuned to meet the principle
54  *    of least surprise ... (be careful when you change it)
55  */
56 
57 unsigned long badness(struct task_struct *p, unsigned long uptime)
58 {
59 	unsigned long points, cpu_time, run_time, s;
60 	struct mm_struct *mm;
61 	struct task_struct *child;
62 
63 	task_lock(p);
64 	mm = p->mm;
65 	if (!mm) {
66 		task_unlock(p);
67 		return 0;
68 	}
69 
70 	/*
71 	 * The memory size of the process is the basis for the badness.
72 	 */
73 	points = mm->total_vm;
74 
75 	/*
76 	 * After this unlock we can no longer dereference local variable `mm'
77 	 */
78 	task_unlock(p);
79 
80 	/*
81 	 * swapoff can easily use up all memory, so kill those first.
82 	 */
83 	if (p->flags & PF_SWAPOFF)
84 		return ULONG_MAX;
85 
86 	/*
87 	 * Processes which fork a lot of child processes are likely
88 	 * a good choice. We add half the vmsize of the children if they
89 	 * have an own mm. This prevents forking servers to flood the
90 	 * machine with an endless amount of children. In case a single
91 	 * child is eating the vast majority of memory, adding only half
92 	 * to the parents will make the child our kill candidate of choice.
93 	 */
94 	list_for_each_entry(child, &p->children, sibling) {
95 		task_lock(child);
96 		if (child->mm != mm && child->mm)
97 			points += child->mm->total_vm/2 + 1;
98 		task_unlock(child);
99 	}
100 
101 	/*
102 	 * CPU time is in tens of seconds and run time is in thousands
103          * of seconds. There is no particular reason for this other than
104          * that it turned out to work very well in practice.
105 	 */
106 	cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
107 		>> (SHIFT_HZ + 3);
108 
109 	if (uptime >= p->start_time.tv_sec)
110 		run_time = (uptime - p->start_time.tv_sec) >> 10;
111 	else
112 		run_time = 0;
113 
114 	s = int_sqrt(cpu_time);
115 	if (s)
116 		points /= s;
117 	s = int_sqrt(int_sqrt(run_time));
118 	if (s)
119 		points /= s;
120 
121 	/*
122 	 * Niced processes are most likely less important, so double
123 	 * their badness points.
124 	 */
125 	if (task_nice(p) > 0)
126 		points *= 2;
127 
128 	/*
129 	 * Superuser processes are usually more important, so we make it
130 	 * less likely that we kill those.
131 	 */
132 	if (has_capability(p, CAP_SYS_ADMIN) ||
133 	    has_capability(p, CAP_SYS_RESOURCE))
134 		points /= 4;
135 
136 	/*
137 	 * We don't want to kill a process with direct hardware access.
138 	 * Not only could that mess up the hardware, but usually users
139 	 * tend to only have this flag set on applications they think
140 	 * of as important.
141 	 */
142 	if (has_capability(p, CAP_SYS_RAWIO))
143 		points /= 4;
144 
145 	/*
146 	 * If p's nodes don't overlap ours, it may still help to kill p
147 	 * because p may have allocated or otherwise mapped memory on
148 	 * this node before. However it will be less likely.
149 	 */
150 	if (!cpuset_mems_allowed_intersects(current, p))
151 		points /= 8;
152 
153 	/*
154 	 * Adjust the score by oomkilladj.
155 	 */
156 	if (p->oomkilladj) {
157 		if (p->oomkilladj > 0) {
158 			if (!points)
159 				points = 1;
160 			points <<= p->oomkilladj;
161 		} else
162 			points >>= -(p->oomkilladj);
163 	}
164 
165 #ifdef DEBUG
166 	printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
167 	p->pid, p->comm, points);
168 #endif
169 	return points;
170 }
171 
172 /*
173  * Determine the type of allocation constraint.
174  */
175 static inline enum oom_constraint constrained_alloc(struct zonelist *zonelist,
176 						    gfp_t gfp_mask)
177 {
178 #ifdef CONFIG_NUMA
179 	struct zone *zone;
180 	struct zoneref *z;
181 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
182 	nodemask_t nodes = node_states[N_HIGH_MEMORY];
183 
184 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
185 		if (cpuset_zone_allowed_softwall(zone, gfp_mask))
186 			node_clear(zone_to_nid(zone), nodes);
187 		else
188 			return CONSTRAINT_CPUSET;
189 
190 	if (!nodes_empty(nodes))
191 		return CONSTRAINT_MEMORY_POLICY;
192 #endif
193 
194 	return CONSTRAINT_NONE;
195 }
196 
197 /*
198  * Simple selection loop. We chose the process with the highest
199  * number of 'points'. We expect the caller will lock the tasklist.
200  *
201  * (not docbooked, we don't want this one cluttering up the manual)
202  */
203 static struct task_struct *select_bad_process(unsigned long *ppoints,
204 						struct mem_cgroup *mem)
205 {
206 	struct task_struct *g, *p;
207 	struct task_struct *chosen = NULL;
208 	struct timespec uptime;
209 	*ppoints = 0;
210 
211 	do_posix_clock_monotonic_gettime(&uptime);
212 	do_each_thread(g, p) {
213 		unsigned long points;
214 
215 		/*
216 		 * skip kernel threads and tasks which have already released
217 		 * their mm.
218 		 */
219 		if (!p->mm)
220 			continue;
221 		/* skip the init task */
222 		if (is_global_init(p))
223 			continue;
224 		if (mem && !task_in_mem_cgroup(p, mem))
225 			continue;
226 
227 		/*
228 		 * This task already has access to memory reserves and is
229 		 * being killed. Don't allow any other task access to the
230 		 * memory reserve.
231 		 *
232 		 * Note: this may have a chance of deadlock if it gets
233 		 * blocked waiting for another task which itself is waiting
234 		 * for memory. Is there a better alternative?
235 		 */
236 		if (test_tsk_thread_flag(p, TIF_MEMDIE))
237 			return ERR_PTR(-1UL);
238 
239 		/*
240 		 * This is in the process of releasing memory so wait for it
241 		 * to finish before killing some other task by mistake.
242 		 *
243 		 * However, if p is the current task, we allow the 'kill' to
244 		 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
245 		 * which will allow it to gain access to memory reserves in
246 		 * the process of exiting and releasing its resources.
247 		 * Otherwise we could get an easy OOM deadlock.
248 		 */
249 		if (p->flags & PF_EXITING) {
250 			if (p != current)
251 				return ERR_PTR(-1UL);
252 
253 			chosen = p;
254 			*ppoints = ULONG_MAX;
255 		}
256 
257 		if (p->oomkilladj == OOM_DISABLE)
258 			continue;
259 
260 		points = badness(p, uptime.tv_sec);
261 		if (points > *ppoints || !chosen) {
262 			chosen = p;
263 			*ppoints = points;
264 		}
265 	} while_each_thread(g, p);
266 
267 	return chosen;
268 }
269 
270 /**
271  * dump_tasks - dump current memory state of all system tasks
272  * @mem: target memory controller
273  *
274  * Dumps the current memory state of all system tasks, excluding kernel threads.
275  * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
276  * score, and name.
277  *
278  * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are
279  * shown.
280  *
281  * Call with tasklist_lock read-locked.
282  */
283 static void dump_tasks(const struct mem_cgroup *mem)
284 {
285 	struct task_struct *g, *p;
286 
287 	printk(KERN_INFO "[ pid ]   uid  tgid total_vm      rss cpu oom_adj "
288 	       "name\n");
289 	do_each_thread(g, p) {
290 		/*
291 		 * total_vm and rss sizes do not exist for tasks with a
292 		 * detached mm so there's no need to report them.
293 		 */
294 		if (!p->mm)
295 			continue;
296 		if (mem && !task_in_mem_cgroup(p, mem))
297 			continue;
298 
299 		task_lock(p);
300 		printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3d     %3d %s\n",
301 		       p->pid, p->uid, p->tgid, p->mm->total_vm,
302 		       get_mm_rss(p->mm), (int)task_cpu(p), p->oomkilladj,
303 		       p->comm);
304 		task_unlock(p);
305 	} while_each_thread(g, p);
306 }
307 
308 /*
309  * Send SIGKILL to the selected  process irrespective of  CAP_SYS_RAW_IO
310  * flag though it's unlikely that  we select a process with CAP_SYS_RAW_IO
311  * set.
312  */
313 static void __oom_kill_task(struct task_struct *p, int verbose)
314 {
315 	if (is_global_init(p)) {
316 		WARN_ON(1);
317 		printk(KERN_WARNING "tried to kill init!\n");
318 		return;
319 	}
320 
321 	if (!p->mm) {
322 		WARN_ON(1);
323 		printk(KERN_WARNING "tried to kill an mm-less task!\n");
324 		return;
325 	}
326 
327 	if (verbose)
328 		printk(KERN_ERR "Killed process %d (%s)\n",
329 				task_pid_nr(p), p->comm);
330 
331 	/*
332 	 * We give our sacrificial lamb high priority and access to
333 	 * all the memory it needs. That way it should be able to
334 	 * exit() and clear out its resources quickly...
335 	 */
336 	p->rt.time_slice = HZ;
337 	set_tsk_thread_flag(p, TIF_MEMDIE);
338 
339 	force_sig(SIGKILL, p);
340 }
341 
342 static int oom_kill_task(struct task_struct *p)
343 {
344 	struct mm_struct *mm;
345 	struct task_struct *g, *q;
346 
347 	mm = p->mm;
348 
349 	/* WARNING: mm may not be dereferenced since we did not obtain its
350 	 * value from get_task_mm(p).  This is OK since all we need to do is
351 	 * compare mm to q->mm below.
352 	 *
353 	 * Furthermore, even if mm contains a non-NULL value, p->mm may
354 	 * change to NULL at any time since we do not hold task_lock(p).
355 	 * However, this is of no concern to us.
356 	 */
357 
358 	if (mm == NULL)
359 		return 1;
360 
361 	/*
362 	 * Don't kill the process if any threads are set to OOM_DISABLE
363 	 */
364 	do_each_thread(g, q) {
365 		if (q->mm == mm && q->oomkilladj == OOM_DISABLE)
366 			return 1;
367 	} while_each_thread(g, q);
368 
369 	__oom_kill_task(p, 1);
370 
371 	/*
372 	 * kill all processes that share the ->mm (i.e. all threads),
373 	 * but are in a different thread group. Don't let them have access
374 	 * to memory reserves though, otherwise we might deplete all memory.
375 	 */
376 	do_each_thread(g, q) {
377 		if (q->mm == mm && !same_thread_group(q, p))
378 			force_sig(SIGKILL, q);
379 	} while_each_thread(g, q);
380 
381 	return 0;
382 }
383 
384 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
385 			    unsigned long points, struct mem_cgroup *mem,
386 			    const char *message)
387 {
388 	struct task_struct *c;
389 
390 	if (printk_ratelimit()) {
391 		printk(KERN_WARNING "%s invoked oom-killer: "
392 			"gfp_mask=0x%x, order=%d, oomkilladj=%d\n",
393 			current->comm, gfp_mask, order, current->oomkilladj);
394 		dump_stack();
395 		show_mem();
396 		if (sysctl_oom_dump_tasks)
397 			dump_tasks(mem);
398 	}
399 
400 	/*
401 	 * If the task is already exiting, don't alarm the sysadmin or kill
402 	 * its children or threads, just set TIF_MEMDIE so it can die quickly
403 	 */
404 	if (p->flags & PF_EXITING) {
405 		__oom_kill_task(p, 0);
406 		return 0;
407 	}
408 
409 	printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
410 					message, task_pid_nr(p), p->comm, points);
411 
412 	/* Try to kill a child first */
413 	list_for_each_entry(c, &p->children, sibling) {
414 		if (c->mm == p->mm)
415 			continue;
416 		if (!oom_kill_task(c))
417 			return 0;
418 	}
419 	return oom_kill_task(p);
420 }
421 
422 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
423 void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
424 {
425 	unsigned long points = 0;
426 	struct task_struct *p;
427 
428 	cgroup_lock();
429 	read_lock(&tasklist_lock);
430 retry:
431 	p = select_bad_process(&points, mem);
432 	if (PTR_ERR(p) == -1UL)
433 		goto out;
434 
435 	if (!p)
436 		p = current;
437 
438 	if (oom_kill_process(p, gfp_mask, 0, points, mem,
439 				"Memory cgroup out of memory"))
440 		goto retry;
441 out:
442 	read_unlock(&tasklist_lock);
443 	cgroup_unlock();
444 }
445 #endif
446 
447 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
448 
449 int register_oom_notifier(struct notifier_block *nb)
450 {
451 	return blocking_notifier_chain_register(&oom_notify_list, nb);
452 }
453 EXPORT_SYMBOL_GPL(register_oom_notifier);
454 
455 int unregister_oom_notifier(struct notifier_block *nb)
456 {
457 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
458 }
459 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
460 
461 /*
462  * Try to acquire the OOM killer lock for the zones in zonelist.  Returns zero
463  * if a parallel OOM killing is already taking place that includes a zone in
464  * the zonelist.  Otherwise, locks all zones in the zonelist and returns 1.
465  */
466 int try_set_zone_oom(struct zonelist *zonelist, gfp_t gfp_mask)
467 {
468 	struct zoneref *z;
469 	struct zone *zone;
470 	int ret = 1;
471 
472 	spin_lock(&zone_scan_mutex);
473 	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
474 		if (zone_is_oom_locked(zone)) {
475 			ret = 0;
476 			goto out;
477 		}
478 	}
479 
480 	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
481 		/*
482 		 * Lock each zone in the zonelist under zone_scan_mutex so a
483 		 * parallel invocation of try_set_zone_oom() doesn't succeed
484 		 * when it shouldn't.
485 		 */
486 		zone_set_flag(zone, ZONE_OOM_LOCKED);
487 	}
488 
489 out:
490 	spin_unlock(&zone_scan_mutex);
491 	return ret;
492 }
493 
494 /*
495  * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
496  * allocation attempts with zonelists containing them may now recall the OOM
497  * killer, if necessary.
498  */
499 void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
500 {
501 	struct zoneref *z;
502 	struct zone *zone;
503 
504 	spin_lock(&zone_scan_mutex);
505 	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
506 		zone_clear_flag(zone, ZONE_OOM_LOCKED);
507 	}
508 	spin_unlock(&zone_scan_mutex);
509 }
510 
511 /**
512  * out_of_memory - kill the "best" process when we run out of memory
513  * @zonelist: zonelist pointer
514  * @gfp_mask: memory allocation flags
515  * @order: amount of memory being requested as a power of 2
516  *
517  * If we run out of memory, we have the choice between either
518  * killing a random task (bad), letting the system crash (worse)
519  * OR try to be smart about which process to kill. Note that we
520  * don't have to be perfect here, we just have to be good.
521  */
522 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
523 {
524 	struct task_struct *p;
525 	unsigned long points = 0;
526 	unsigned long freed = 0;
527 	enum oom_constraint constraint;
528 
529 	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
530 	if (freed > 0)
531 		/* Got some memory back in the last second. */
532 		return;
533 
534 	if (sysctl_panic_on_oom == 2)
535 		panic("out of memory. Compulsory panic_on_oom is selected.\n");
536 
537 	/*
538 	 * Check if there were limitations on the allocation (only relevant for
539 	 * NUMA) that may require different handling.
540 	 */
541 	constraint = constrained_alloc(zonelist, gfp_mask);
542 	read_lock(&tasklist_lock);
543 
544 	switch (constraint) {
545 	case CONSTRAINT_MEMORY_POLICY:
546 		oom_kill_process(current, gfp_mask, order, points, NULL,
547 				"No available memory (MPOL_BIND)");
548 		break;
549 
550 	case CONSTRAINT_NONE:
551 		if (sysctl_panic_on_oom)
552 			panic("out of memory. panic_on_oom is selected\n");
553 		/* Fall-through */
554 	case CONSTRAINT_CPUSET:
555 		if (sysctl_oom_kill_allocating_task) {
556 			oom_kill_process(current, gfp_mask, order, points, NULL,
557 					"Out of memory (oom_kill_allocating_task)");
558 			break;
559 		}
560 retry:
561 		/*
562 		 * Rambo mode: Shoot down a process and hope it solves whatever
563 		 * issues we may have.
564 		 */
565 		p = select_bad_process(&points, NULL);
566 
567 		if (PTR_ERR(p) == -1UL)
568 			goto out;
569 
570 		/* Found nothing?!?! Either we hang forever, or we panic. */
571 		if (!p) {
572 			read_unlock(&tasklist_lock);
573 			panic("Out of memory and no killable processes...\n");
574 		}
575 
576 		if (oom_kill_process(p, gfp_mask, order, points, NULL,
577 				     "Out of memory"))
578 			goto retry;
579 
580 		break;
581 	}
582 
583 out:
584 	read_unlock(&tasklist_lock);
585 
586 	/*
587 	 * Give "p" a good chance of killing itself before we
588 	 * retry to allocate memory unless "p" is current
589 	 */
590 	if (!test_thread_flag(TIF_MEMDIE))
591 		schedule_timeout_uninterruptible(1);
592 }
593