1 /* 2 * linux/mm/oom_kill.c 3 * 4 * Copyright (C) 1998,2000 Rik van Riel 5 * Thanks go out to Claus Fischer for some serious inspiration and 6 * for goading me into coding this file... 7 * 8 * The routines in this file are used to kill a process when 9 * we're seriously out of memory. This gets called from __alloc_pages() 10 * in mm/page_alloc.c when we really run out of memory. 11 * 12 * Since we won't call these routines often (on a well-configured 13 * machine) this file will double as a 'coding guide' and a signpost 14 * for newbie kernel hackers. It features several pointers to major 15 * kernel subsystems and hints as to where to find out what things do. 16 */ 17 18 #include <linux/oom.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/sched.h> 22 #include <linux/swap.h> 23 #include <linux/timex.h> 24 #include <linux/jiffies.h> 25 #include <linux/cpuset.h> 26 #include <linux/module.h> 27 #include <linux/notifier.h> 28 #include <linux/memcontrol.h> 29 #include <linux/security.h> 30 31 int sysctl_panic_on_oom; 32 int sysctl_oom_kill_allocating_task; 33 int sysctl_oom_dump_tasks; 34 static DEFINE_SPINLOCK(zone_scan_mutex); 35 /* #define DEBUG */ 36 37 /** 38 * badness - calculate a numeric value for how bad this task has been 39 * @p: task struct of which task we should calculate 40 * @uptime: current uptime in seconds 41 * @mem: target memory controller 42 * 43 * The formula used is relatively simple and documented inline in the 44 * function. The main rationale is that we want to select a good task 45 * to kill when we run out of memory. 46 * 47 * Good in this context means that: 48 * 1) we lose the minimum amount of work done 49 * 2) we recover a large amount of memory 50 * 3) we don't kill anything innocent of eating tons of memory 51 * 4) we want to kill the minimum amount of processes (one) 52 * 5) we try to kill the process the user expects us to kill, this 53 * algorithm has been meticulously tuned to meet the principle 54 * of least surprise ... (be careful when you change it) 55 */ 56 57 unsigned long badness(struct task_struct *p, unsigned long uptime) 58 { 59 unsigned long points, cpu_time, run_time, s; 60 struct mm_struct *mm; 61 struct task_struct *child; 62 63 task_lock(p); 64 mm = p->mm; 65 if (!mm) { 66 task_unlock(p); 67 return 0; 68 } 69 70 /* 71 * The memory size of the process is the basis for the badness. 72 */ 73 points = mm->total_vm; 74 75 /* 76 * After this unlock we can no longer dereference local variable `mm' 77 */ 78 task_unlock(p); 79 80 /* 81 * swapoff can easily use up all memory, so kill those first. 82 */ 83 if (p->flags & PF_SWAPOFF) 84 return ULONG_MAX; 85 86 /* 87 * Processes which fork a lot of child processes are likely 88 * a good choice. We add half the vmsize of the children if they 89 * have an own mm. This prevents forking servers to flood the 90 * machine with an endless amount of children. In case a single 91 * child is eating the vast majority of memory, adding only half 92 * to the parents will make the child our kill candidate of choice. 93 */ 94 list_for_each_entry(child, &p->children, sibling) { 95 task_lock(child); 96 if (child->mm != mm && child->mm) 97 points += child->mm->total_vm/2 + 1; 98 task_unlock(child); 99 } 100 101 /* 102 * CPU time is in tens of seconds and run time is in thousands 103 * of seconds. There is no particular reason for this other than 104 * that it turned out to work very well in practice. 105 */ 106 cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime)) 107 >> (SHIFT_HZ + 3); 108 109 if (uptime >= p->start_time.tv_sec) 110 run_time = (uptime - p->start_time.tv_sec) >> 10; 111 else 112 run_time = 0; 113 114 s = int_sqrt(cpu_time); 115 if (s) 116 points /= s; 117 s = int_sqrt(int_sqrt(run_time)); 118 if (s) 119 points /= s; 120 121 /* 122 * Niced processes are most likely less important, so double 123 * their badness points. 124 */ 125 if (task_nice(p) > 0) 126 points *= 2; 127 128 /* 129 * Superuser processes are usually more important, so we make it 130 * less likely that we kill those. 131 */ 132 if (has_capability(p, CAP_SYS_ADMIN) || 133 has_capability(p, CAP_SYS_RESOURCE)) 134 points /= 4; 135 136 /* 137 * We don't want to kill a process with direct hardware access. 138 * Not only could that mess up the hardware, but usually users 139 * tend to only have this flag set on applications they think 140 * of as important. 141 */ 142 if (has_capability(p, CAP_SYS_RAWIO)) 143 points /= 4; 144 145 /* 146 * If p's nodes don't overlap ours, it may still help to kill p 147 * because p may have allocated or otherwise mapped memory on 148 * this node before. However it will be less likely. 149 */ 150 if (!cpuset_mems_allowed_intersects(current, p)) 151 points /= 8; 152 153 /* 154 * Adjust the score by oomkilladj. 155 */ 156 if (p->oomkilladj) { 157 if (p->oomkilladj > 0) { 158 if (!points) 159 points = 1; 160 points <<= p->oomkilladj; 161 } else 162 points >>= -(p->oomkilladj); 163 } 164 165 #ifdef DEBUG 166 printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n", 167 p->pid, p->comm, points); 168 #endif 169 return points; 170 } 171 172 /* 173 * Determine the type of allocation constraint. 174 */ 175 static inline enum oom_constraint constrained_alloc(struct zonelist *zonelist, 176 gfp_t gfp_mask) 177 { 178 #ifdef CONFIG_NUMA 179 struct zone *zone; 180 struct zoneref *z; 181 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 182 nodemask_t nodes = node_states[N_HIGH_MEMORY]; 183 184 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 185 if (cpuset_zone_allowed_softwall(zone, gfp_mask)) 186 node_clear(zone_to_nid(zone), nodes); 187 else 188 return CONSTRAINT_CPUSET; 189 190 if (!nodes_empty(nodes)) 191 return CONSTRAINT_MEMORY_POLICY; 192 #endif 193 194 return CONSTRAINT_NONE; 195 } 196 197 /* 198 * Simple selection loop. We chose the process with the highest 199 * number of 'points'. We expect the caller will lock the tasklist. 200 * 201 * (not docbooked, we don't want this one cluttering up the manual) 202 */ 203 static struct task_struct *select_bad_process(unsigned long *ppoints, 204 struct mem_cgroup *mem) 205 { 206 struct task_struct *g, *p; 207 struct task_struct *chosen = NULL; 208 struct timespec uptime; 209 *ppoints = 0; 210 211 do_posix_clock_monotonic_gettime(&uptime); 212 do_each_thread(g, p) { 213 unsigned long points; 214 215 /* 216 * skip kernel threads and tasks which have already released 217 * their mm. 218 */ 219 if (!p->mm) 220 continue; 221 /* skip the init task */ 222 if (is_global_init(p)) 223 continue; 224 if (mem && !task_in_mem_cgroup(p, mem)) 225 continue; 226 227 /* 228 * This task already has access to memory reserves and is 229 * being killed. Don't allow any other task access to the 230 * memory reserve. 231 * 232 * Note: this may have a chance of deadlock if it gets 233 * blocked waiting for another task which itself is waiting 234 * for memory. Is there a better alternative? 235 */ 236 if (test_tsk_thread_flag(p, TIF_MEMDIE)) 237 return ERR_PTR(-1UL); 238 239 /* 240 * This is in the process of releasing memory so wait for it 241 * to finish before killing some other task by mistake. 242 * 243 * However, if p is the current task, we allow the 'kill' to 244 * go ahead if it is exiting: this will simply set TIF_MEMDIE, 245 * which will allow it to gain access to memory reserves in 246 * the process of exiting and releasing its resources. 247 * Otherwise we could get an easy OOM deadlock. 248 */ 249 if (p->flags & PF_EXITING) { 250 if (p != current) 251 return ERR_PTR(-1UL); 252 253 chosen = p; 254 *ppoints = ULONG_MAX; 255 } 256 257 if (p->oomkilladj == OOM_DISABLE) 258 continue; 259 260 points = badness(p, uptime.tv_sec); 261 if (points > *ppoints || !chosen) { 262 chosen = p; 263 *ppoints = points; 264 } 265 } while_each_thread(g, p); 266 267 return chosen; 268 } 269 270 /** 271 * dump_tasks - dump current memory state of all system tasks 272 * @mem: target memory controller 273 * 274 * Dumps the current memory state of all system tasks, excluding kernel threads. 275 * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj 276 * score, and name. 277 * 278 * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are 279 * shown. 280 * 281 * Call with tasklist_lock read-locked. 282 */ 283 static void dump_tasks(const struct mem_cgroup *mem) 284 { 285 struct task_struct *g, *p; 286 287 printk(KERN_INFO "[ pid ] uid tgid total_vm rss cpu oom_adj " 288 "name\n"); 289 do_each_thread(g, p) { 290 /* 291 * total_vm and rss sizes do not exist for tasks with a 292 * detached mm so there's no need to report them. 293 */ 294 if (!p->mm) 295 continue; 296 if (mem && !task_in_mem_cgroup(p, mem)) 297 continue; 298 299 task_lock(p); 300 printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3d %3d %s\n", 301 p->pid, p->uid, p->tgid, p->mm->total_vm, 302 get_mm_rss(p->mm), (int)task_cpu(p), p->oomkilladj, 303 p->comm); 304 task_unlock(p); 305 } while_each_thread(g, p); 306 } 307 308 /* 309 * Send SIGKILL to the selected process irrespective of CAP_SYS_RAW_IO 310 * flag though it's unlikely that we select a process with CAP_SYS_RAW_IO 311 * set. 312 */ 313 static void __oom_kill_task(struct task_struct *p, int verbose) 314 { 315 if (is_global_init(p)) { 316 WARN_ON(1); 317 printk(KERN_WARNING "tried to kill init!\n"); 318 return; 319 } 320 321 if (!p->mm) { 322 WARN_ON(1); 323 printk(KERN_WARNING "tried to kill an mm-less task!\n"); 324 return; 325 } 326 327 if (verbose) 328 printk(KERN_ERR "Killed process %d (%s)\n", 329 task_pid_nr(p), p->comm); 330 331 /* 332 * We give our sacrificial lamb high priority and access to 333 * all the memory it needs. That way it should be able to 334 * exit() and clear out its resources quickly... 335 */ 336 p->rt.time_slice = HZ; 337 set_tsk_thread_flag(p, TIF_MEMDIE); 338 339 force_sig(SIGKILL, p); 340 } 341 342 static int oom_kill_task(struct task_struct *p) 343 { 344 struct mm_struct *mm; 345 struct task_struct *g, *q; 346 347 mm = p->mm; 348 349 /* WARNING: mm may not be dereferenced since we did not obtain its 350 * value from get_task_mm(p). This is OK since all we need to do is 351 * compare mm to q->mm below. 352 * 353 * Furthermore, even if mm contains a non-NULL value, p->mm may 354 * change to NULL at any time since we do not hold task_lock(p). 355 * However, this is of no concern to us. 356 */ 357 358 if (mm == NULL) 359 return 1; 360 361 /* 362 * Don't kill the process if any threads are set to OOM_DISABLE 363 */ 364 do_each_thread(g, q) { 365 if (q->mm == mm && q->oomkilladj == OOM_DISABLE) 366 return 1; 367 } while_each_thread(g, q); 368 369 __oom_kill_task(p, 1); 370 371 /* 372 * kill all processes that share the ->mm (i.e. all threads), 373 * but are in a different thread group. Don't let them have access 374 * to memory reserves though, otherwise we might deplete all memory. 375 */ 376 do_each_thread(g, q) { 377 if (q->mm == mm && !same_thread_group(q, p)) 378 force_sig(SIGKILL, q); 379 } while_each_thread(g, q); 380 381 return 0; 382 } 383 384 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, 385 unsigned long points, struct mem_cgroup *mem, 386 const char *message) 387 { 388 struct task_struct *c; 389 390 if (printk_ratelimit()) { 391 printk(KERN_WARNING "%s invoked oom-killer: " 392 "gfp_mask=0x%x, order=%d, oomkilladj=%d\n", 393 current->comm, gfp_mask, order, current->oomkilladj); 394 dump_stack(); 395 show_mem(); 396 if (sysctl_oom_dump_tasks) 397 dump_tasks(mem); 398 } 399 400 /* 401 * If the task is already exiting, don't alarm the sysadmin or kill 402 * its children or threads, just set TIF_MEMDIE so it can die quickly 403 */ 404 if (p->flags & PF_EXITING) { 405 __oom_kill_task(p, 0); 406 return 0; 407 } 408 409 printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n", 410 message, task_pid_nr(p), p->comm, points); 411 412 /* Try to kill a child first */ 413 list_for_each_entry(c, &p->children, sibling) { 414 if (c->mm == p->mm) 415 continue; 416 if (!oom_kill_task(c)) 417 return 0; 418 } 419 return oom_kill_task(p); 420 } 421 422 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 423 void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask) 424 { 425 unsigned long points = 0; 426 struct task_struct *p; 427 428 cgroup_lock(); 429 read_lock(&tasklist_lock); 430 retry: 431 p = select_bad_process(&points, mem); 432 if (PTR_ERR(p) == -1UL) 433 goto out; 434 435 if (!p) 436 p = current; 437 438 if (oom_kill_process(p, gfp_mask, 0, points, mem, 439 "Memory cgroup out of memory")) 440 goto retry; 441 out: 442 read_unlock(&tasklist_lock); 443 cgroup_unlock(); 444 } 445 #endif 446 447 static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 448 449 int register_oom_notifier(struct notifier_block *nb) 450 { 451 return blocking_notifier_chain_register(&oom_notify_list, nb); 452 } 453 EXPORT_SYMBOL_GPL(register_oom_notifier); 454 455 int unregister_oom_notifier(struct notifier_block *nb) 456 { 457 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 458 } 459 EXPORT_SYMBOL_GPL(unregister_oom_notifier); 460 461 /* 462 * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero 463 * if a parallel OOM killing is already taking place that includes a zone in 464 * the zonelist. Otherwise, locks all zones in the zonelist and returns 1. 465 */ 466 int try_set_zone_oom(struct zonelist *zonelist, gfp_t gfp_mask) 467 { 468 struct zoneref *z; 469 struct zone *zone; 470 int ret = 1; 471 472 spin_lock(&zone_scan_mutex); 473 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 474 if (zone_is_oom_locked(zone)) { 475 ret = 0; 476 goto out; 477 } 478 } 479 480 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 481 /* 482 * Lock each zone in the zonelist under zone_scan_mutex so a 483 * parallel invocation of try_set_zone_oom() doesn't succeed 484 * when it shouldn't. 485 */ 486 zone_set_flag(zone, ZONE_OOM_LOCKED); 487 } 488 489 out: 490 spin_unlock(&zone_scan_mutex); 491 return ret; 492 } 493 494 /* 495 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed 496 * allocation attempts with zonelists containing them may now recall the OOM 497 * killer, if necessary. 498 */ 499 void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask) 500 { 501 struct zoneref *z; 502 struct zone *zone; 503 504 spin_lock(&zone_scan_mutex); 505 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 506 zone_clear_flag(zone, ZONE_OOM_LOCKED); 507 } 508 spin_unlock(&zone_scan_mutex); 509 } 510 511 /** 512 * out_of_memory - kill the "best" process when we run out of memory 513 * @zonelist: zonelist pointer 514 * @gfp_mask: memory allocation flags 515 * @order: amount of memory being requested as a power of 2 516 * 517 * If we run out of memory, we have the choice between either 518 * killing a random task (bad), letting the system crash (worse) 519 * OR try to be smart about which process to kill. Note that we 520 * don't have to be perfect here, we just have to be good. 521 */ 522 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order) 523 { 524 struct task_struct *p; 525 unsigned long points = 0; 526 unsigned long freed = 0; 527 enum oom_constraint constraint; 528 529 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 530 if (freed > 0) 531 /* Got some memory back in the last second. */ 532 return; 533 534 if (sysctl_panic_on_oom == 2) 535 panic("out of memory. Compulsory panic_on_oom is selected.\n"); 536 537 /* 538 * Check if there were limitations on the allocation (only relevant for 539 * NUMA) that may require different handling. 540 */ 541 constraint = constrained_alloc(zonelist, gfp_mask); 542 read_lock(&tasklist_lock); 543 544 switch (constraint) { 545 case CONSTRAINT_MEMORY_POLICY: 546 oom_kill_process(current, gfp_mask, order, points, NULL, 547 "No available memory (MPOL_BIND)"); 548 break; 549 550 case CONSTRAINT_NONE: 551 if (sysctl_panic_on_oom) 552 panic("out of memory. panic_on_oom is selected\n"); 553 /* Fall-through */ 554 case CONSTRAINT_CPUSET: 555 if (sysctl_oom_kill_allocating_task) { 556 oom_kill_process(current, gfp_mask, order, points, NULL, 557 "Out of memory (oom_kill_allocating_task)"); 558 break; 559 } 560 retry: 561 /* 562 * Rambo mode: Shoot down a process and hope it solves whatever 563 * issues we may have. 564 */ 565 p = select_bad_process(&points, NULL); 566 567 if (PTR_ERR(p) == -1UL) 568 goto out; 569 570 /* Found nothing?!?! Either we hang forever, or we panic. */ 571 if (!p) { 572 read_unlock(&tasklist_lock); 573 panic("Out of memory and no killable processes...\n"); 574 } 575 576 if (oom_kill_process(p, gfp_mask, order, points, NULL, 577 "Out of memory")) 578 goto retry; 579 580 break; 581 } 582 583 out: 584 read_unlock(&tasklist_lock); 585 586 /* 587 * Give "p" a good chance of killing itself before we 588 * retry to allocate memory unless "p" is current 589 */ 590 if (!test_thread_flag(TIF_MEMDIE)) 591 schedule_timeout_uninterruptible(1); 592 } 593