1 /* 2 * linux/mm/oom_kill.c 3 * 4 * Copyright (C) 1998,2000 Rik van Riel 5 * Thanks go out to Claus Fischer for some serious inspiration and 6 * for goading me into coding this file... 7 * Copyright (C) 2010 Google, Inc. 8 * Rewritten by David Rientjes 9 * 10 * The routines in this file are used to kill a process when 11 * we're seriously out of memory. This gets called from __alloc_pages() 12 * in mm/page_alloc.c when we really run out of memory. 13 * 14 * Since we won't call these routines often (on a well-configured 15 * machine) this file will double as a 'coding guide' and a signpost 16 * for newbie kernel hackers. It features several pointers to major 17 * kernel subsystems and hints as to where to find out what things do. 18 */ 19 20 #include <linux/oom.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/gfp.h> 24 #include <linux/sched.h> 25 #include <linux/sched/mm.h> 26 #include <linux/sched/coredump.h> 27 #include <linux/sched/task.h> 28 #include <linux/swap.h> 29 #include <linux/timex.h> 30 #include <linux/jiffies.h> 31 #include <linux/cpuset.h> 32 #include <linux/export.h> 33 #include <linux/notifier.h> 34 #include <linux/memcontrol.h> 35 #include <linux/mempolicy.h> 36 #include <linux/security.h> 37 #include <linux/ptrace.h> 38 #include <linux/freezer.h> 39 #include <linux/ftrace.h> 40 #include <linux/ratelimit.h> 41 #include <linux/kthread.h> 42 #include <linux/init.h> 43 #include <linux/mmu_notifier.h> 44 45 #include <asm/tlb.h> 46 #include "internal.h" 47 #include "slab.h" 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/oom.h> 51 52 int sysctl_panic_on_oom; 53 int sysctl_oom_kill_allocating_task; 54 int sysctl_oom_dump_tasks = 1; 55 56 /* 57 * Serializes oom killer invocations (out_of_memory()) from all contexts to 58 * prevent from over eager oom killing (e.g. when the oom killer is invoked 59 * from different domains). 60 * 61 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled 62 * and mark_oom_victim 63 */ 64 DEFINE_MUTEX(oom_lock); 65 66 #ifdef CONFIG_NUMA 67 /** 68 * has_intersects_mems_allowed() - check task eligiblity for kill 69 * @start: task struct of which task to consider 70 * @mask: nodemask passed to page allocator for mempolicy ooms 71 * 72 * Task eligibility is determined by whether or not a candidate task, @tsk, 73 * shares the same mempolicy nodes as current if it is bound by such a policy 74 * and whether or not it has the same set of allowed cpuset nodes. 75 */ 76 static bool has_intersects_mems_allowed(struct task_struct *start, 77 const nodemask_t *mask) 78 { 79 struct task_struct *tsk; 80 bool ret = false; 81 82 rcu_read_lock(); 83 for_each_thread(start, tsk) { 84 if (mask) { 85 /* 86 * If this is a mempolicy constrained oom, tsk's 87 * cpuset is irrelevant. Only return true if its 88 * mempolicy intersects current, otherwise it may be 89 * needlessly killed. 90 */ 91 ret = mempolicy_nodemask_intersects(tsk, mask); 92 } else { 93 /* 94 * This is not a mempolicy constrained oom, so only 95 * check the mems of tsk's cpuset. 96 */ 97 ret = cpuset_mems_allowed_intersects(current, tsk); 98 } 99 if (ret) 100 break; 101 } 102 rcu_read_unlock(); 103 104 return ret; 105 } 106 #else 107 static bool has_intersects_mems_allowed(struct task_struct *tsk, 108 const nodemask_t *mask) 109 { 110 return true; 111 } 112 #endif /* CONFIG_NUMA */ 113 114 /* 115 * The process p may have detached its own ->mm while exiting or through 116 * use_mm(), but one or more of its subthreads may still have a valid 117 * pointer. Return p, or any of its subthreads with a valid ->mm, with 118 * task_lock() held. 119 */ 120 struct task_struct *find_lock_task_mm(struct task_struct *p) 121 { 122 struct task_struct *t; 123 124 rcu_read_lock(); 125 126 for_each_thread(p, t) { 127 task_lock(t); 128 if (likely(t->mm)) 129 goto found; 130 task_unlock(t); 131 } 132 t = NULL; 133 found: 134 rcu_read_unlock(); 135 136 return t; 137 } 138 139 /* 140 * order == -1 means the oom kill is required by sysrq, otherwise only 141 * for display purposes. 142 */ 143 static inline bool is_sysrq_oom(struct oom_control *oc) 144 { 145 return oc->order == -1; 146 } 147 148 static inline bool is_memcg_oom(struct oom_control *oc) 149 { 150 return oc->memcg != NULL; 151 } 152 153 /* return true if the task is not adequate as candidate victim task. */ 154 static bool oom_unkillable_task(struct task_struct *p, 155 struct mem_cgroup *memcg, const nodemask_t *nodemask) 156 { 157 if (is_global_init(p)) 158 return true; 159 if (p->flags & PF_KTHREAD) 160 return true; 161 162 /* When mem_cgroup_out_of_memory() and p is not member of the group */ 163 if (memcg && !task_in_mem_cgroup(p, memcg)) 164 return true; 165 166 /* p may not have freeable memory in nodemask */ 167 if (!has_intersects_mems_allowed(p, nodemask)) 168 return true; 169 170 return false; 171 } 172 173 /* 174 * Print out unreclaimble slabs info when unreclaimable slabs amount is greater 175 * than all user memory (LRU pages) 176 */ 177 static bool is_dump_unreclaim_slabs(void) 178 { 179 unsigned long nr_lru; 180 181 nr_lru = global_node_page_state(NR_ACTIVE_ANON) + 182 global_node_page_state(NR_INACTIVE_ANON) + 183 global_node_page_state(NR_ACTIVE_FILE) + 184 global_node_page_state(NR_INACTIVE_FILE) + 185 global_node_page_state(NR_ISOLATED_ANON) + 186 global_node_page_state(NR_ISOLATED_FILE) + 187 global_node_page_state(NR_UNEVICTABLE); 188 189 return (global_node_page_state(NR_SLAB_UNRECLAIMABLE) > nr_lru); 190 } 191 192 /** 193 * oom_badness - heuristic function to determine which candidate task to kill 194 * @p: task struct of which task we should calculate 195 * @totalpages: total present RAM allowed for page allocation 196 * @memcg: task's memory controller, if constrained 197 * @nodemask: nodemask passed to page allocator for mempolicy ooms 198 * 199 * The heuristic for determining which task to kill is made to be as simple and 200 * predictable as possible. The goal is to return the highest value for the 201 * task consuming the most memory to avoid subsequent oom failures. 202 */ 203 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg, 204 const nodemask_t *nodemask, unsigned long totalpages) 205 { 206 long points; 207 long adj; 208 209 if (oom_unkillable_task(p, memcg, nodemask)) 210 return 0; 211 212 p = find_lock_task_mm(p); 213 if (!p) 214 return 0; 215 216 /* 217 * Do not even consider tasks which are explicitly marked oom 218 * unkillable or have been already oom reaped or the are in 219 * the middle of vfork 220 */ 221 adj = (long)p->signal->oom_score_adj; 222 if (adj == OOM_SCORE_ADJ_MIN || 223 test_bit(MMF_OOM_SKIP, &p->mm->flags) || 224 in_vfork(p)) { 225 task_unlock(p); 226 return 0; 227 } 228 229 /* 230 * The baseline for the badness score is the proportion of RAM that each 231 * task's rss, pagetable and swap space use. 232 */ 233 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) + 234 mm_pgtables_bytes(p->mm) / PAGE_SIZE; 235 task_unlock(p); 236 237 /* Normalize to oom_score_adj units */ 238 adj *= totalpages / 1000; 239 points += adj; 240 241 /* 242 * Never return 0 for an eligible task regardless of the root bonus and 243 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here). 244 */ 245 return points > 0 ? points : 1; 246 } 247 248 enum oom_constraint { 249 CONSTRAINT_NONE, 250 CONSTRAINT_CPUSET, 251 CONSTRAINT_MEMORY_POLICY, 252 CONSTRAINT_MEMCG, 253 }; 254 255 /* 256 * Determine the type of allocation constraint. 257 */ 258 static enum oom_constraint constrained_alloc(struct oom_control *oc) 259 { 260 struct zone *zone; 261 struct zoneref *z; 262 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask); 263 bool cpuset_limited = false; 264 int nid; 265 266 if (is_memcg_oom(oc)) { 267 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1; 268 return CONSTRAINT_MEMCG; 269 } 270 271 /* Default to all available memory */ 272 oc->totalpages = totalram_pages + total_swap_pages; 273 274 if (!IS_ENABLED(CONFIG_NUMA)) 275 return CONSTRAINT_NONE; 276 277 if (!oc->zonelist) 278 return CONSTRAINT_NONE; 279 /* 280 * Reach here only when __GFP_NOFAIL is used. So, we should avoid 281 * to kill current.We have to random task kill in this case. 282 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. 283 */ 284 if (oc->gfp_mask & __GFP_THISNODE) 285 return CONSTRAINT_NONE; 286 287 /* 288 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in 289 * the page allocator means a mempolicy is in effect. Cpuset policy 290 * is enforced in get_page_from_freelist(). 291 */ 292 if (oc->nodemask && 293 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) { 294 oc->totalpages = total_swap_pages; 295 for_each_node_mask(nid, *oc->nodemask) 296 oc->totalpages += node_spanned_pages(nid); 297 return CONSTRAINT_MEMORY_POLICY; 298 } 299 300 /* Check this allocation failure is caused by cpuset's wall function */ 301 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist, 302 high_zoneidx, oc->nodemask) 303 if (!cpuset_zone_allowed(zone, oc->gfp_mask)) 304 cpuset_limited = true; 305 306 if (cpuset_limited) { 307 oc->totalpages = total_swap_pages; 308 for_each_node_mask(nid, cpuset_current_mems_allowed) 309 oc->totalpages += node_spanned_pages(nid); 310 return CONSTRAINT_CPUSET; 311 } 312 return CONSTRAINT_NONE; 313 } 314 315 static int oom_evaluate_task(struct task_struct *task, void *arg) 316 { 317 struct oom_control *oc = arg; 318 unsigned long points; 319 320 if (oom_unkillable_task(task, NULL, oc->nodemask)) 321 goto next; 322 323 /* 324 * This task already has access to memory reserves and is being killed. 325 * Don't allow any other task to have access to the reserves unless 326 * the task has MMF_OOM_SKIP because chances that it would release 327 * any memory is quite low. 328 */ 329 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) { 330 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags)) 331 goto next; 332 goto abort; 333 } 334 335 /* 336 * If task is allocating a lot of memory and has been marked to be 337 * killed first if it triggers an oom, then select it. 338 */ 339 if (oom_task_origin(task)) { 340 points = ULONG_MAX; 341 goto select; 342 } 343 344 points = oom_badness(task, NULL, oc->nodemask, oc->totalpages); 345 if (!points || points < oc->chosen_points) 346 goto next; 347 348 /* Prefer thread group leaders for display purposes */ 349 if (points == oc->chosen_points && thread_group_leader(oc->chosen)) 350 goto next; 351 select: 352 if (oc->chosen) 353 put_task_struct(oc->chosen); 354 get_task_struct(task); 355 oc->chosen = task; 356 oc->chosen_points = points; 357 next: 358 return 0; 359 abort: 360 if (oc->chosen) 361 put_task_struct(oc->chosen); 362 oc->chosen = (void *)-1UL; 363 return 1; 364 } 365 366 /* 367 * Simple selection loop. We choose the process with the highest number of 368 * 'points'. In case scan was aborted, oc->chosen is set to -1. 369 */ 370 static void select_bad_process(struct oom_control *oc) 371 { 372 if (is_memcg_oom(oc)) 373 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc); 374 else { 375 struct task_struct *p; 376 377 rcu_read_lock(); 378 for_each_process(p) 379 if (oom_evaluate_task(p, oc)) 380 break; 381 rcu_read_unlock(); 382 } 383 384 oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages; 385 } 386 387 /** 388 * dump_tasks - dump current memory state of all system tasks 389 * @memcg: current's memory controller, if constrained 390 * @nodemask: nodemask passed to page allocator for mempolicy ooms 391 * 392 * Dumps the current memory state of all eligible tasks. Tasks not in the same 393 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes 394 * are not shown. 395 * State information includes task's pid, uid, tgid, vm size, rss, 396 * pgtables_bytes, swapents, oom_score_adj value, and name. 397 */ 398 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask) 399 { 400 struct task_struct *p; 401 struct task_struct *task; 402 403 pr_info("Tasks state (memory values in pages):\n"); 404 pr_info("[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name\n"); 405 rcu_read_lock(); 406 for_each_process(p) { 407 if (oom_unkillable_task(p, memcg, nodemask)) 408 continue; 409 410 task = find_lock_task_mm(p); 411 if (!task) { 412 /* 413 * This is a kthread or all of p's threads have already 414 * detached their mm's. There's no need to report 415 * them; they can't be oom killed anyway. 416 */ 417 continue; 418 } 419 420 pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu %5hd %s\n", 421 task->pid, from_kuid(&init_user_ns, task_uid(task)), 422 task->tgid, task->mm->total_vm, get_mm_rss(task->mm), 423 mm_pgtables_bytes(task->mm), 424 get_mm_counter(task->mm, MM_SWAPENTS), 425 task->signal->oom_score_adj, task->comm); 426 task_unlock(task); 427 } 428 rcu_read_unlock(); 429 } 430 431 static void dump_header(struct oom_control *oc, struct task_struct *p) 432 { 433 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), nodemask=%*pbl, order=%d, oom_score_adj=%hd\n", 434 current->comm, oc->gfp_mask, &oc->gfp_mask, 435 nodemask_pr_args(oc->nodemask), oc->order, 436 current->signal->oom_score_adj); 437 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order) 438 pr_warn("COMPACTION is disabled!!!\n"); 439 440 cpuset_print_current_mems_allowed(); 441 dump_stack(); 442 if (is_memcg_oom(oc)) 443 mem_cgroup_print_oom_info(oc->memcg, p); 444 else { 445 show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask); 446 if (is_dump_unreclaim_slabs()) 447 dump_unreclaimable_slab(); 448 } 449 if (sysctl_oom_dump_tasks) 450 dump_tasks(oc->memcg, oc->nodemask); 451 } 452 453 /* 454 * Number of OOM victims in flight 455 */ 456 static atomic_t oom_victims = ATOMIC_INIT(0); 457 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait); 458 459 static bool oom_killer_disabled __read_mostly; 460 461 #define K(x) ((x) << (PAGE_SHIFT-10)) 462 463 /* 464 * task->mm can be NULL if the task is the exited group leader. So to 465 * determine whether the task is using a particular mm, we examine all the 466 * task's threads: if one of those is using this mm then this task was also 467 * using it. 468 */ 469 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm) 470 { 471 struct task_struct *t; 472 473 for_each_thread(p, t) { 474 struct mm_struct *t_mm = READ_ONCE(t->mm); 475 if (t_mm) 476 return t_mm == mm; 477 } 478 return false; 479 } 480 481 #ifdef CONFIG_MMU 482 /* 483 * OOM Reaper kernel thread which tries to reap the memory used by the OOM 484 * victim (if that is possible) to help the OOM killer to move on. 485 */ 486 static struct task_struct *oom_reaper_th; 487 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait); 488 static struct task_struct *oom_reaper_list; 489 static DEFINE_SPINLOCK(oom_reaper_lock); 490 491 bool __oom_reap_task_mm(struct mm_struct *mm) 492 { 493 struct vm_area_struct *vma; 494 bool ret = true; 495 496 /* 497 * Tell all users of get_user/copy_from_user etc... that the content 498 * is no longer stable. No barriers really needed because unmapping 499 * should imply barriers already and the reader would hit a page fault 500 * if it stumbled over a reaped memory. 501 */ 502 set_bit(MMF_UNSTABLE, &mm->flags); 503 504 for (vma = mm->mmap ; vma; vma = vma->vm_next) { 505 if (!can_madv_dontneed_vma(vma)) 506 continue; 507 508 /* 509 * Only anonymous pages have a good chance to be dropped 510 * without additional steps which we cannot afford as we 511 * are OOM already. 512 * 513 * We do not even care about fs backed pages because all 514 * which are reclaimable have already been reclaimed and 515 * we do not want to block exit_mmap by keeping mm ref 516 * count elevated without a good reason. 517 */ 518 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) { 519 const unsigned long start = vma->vm_start; 520 const unsigned long end = vma->vm_end; 521 struct mmu_gather tlb; 522 523 tlb_gather_mmu(&tlb, mm, start, end); 524 if (mmu_notifier_invalidate_range_start_nonblock(mm, start, end)) { 525 tlb_finish_mmu(&tlb, start, end); 526 ret = false; 527 continue; 528 } 529 unmap_page_range(&tlb, vma, start, end, NULL); 530 mmu_notifier_invalidate_range_end(mm, start, end); 531 tlb_finish_mmu(&tlb, start, end); 532 } 533 } 534 535 return ret; 536 } 537 538 /* 539 * Reaps the address space of the give task. 540 * 541 * Returns true on success and false if none or part of the address space 542 * has been reclaimed and the caller should retry later. 543 */ 544 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm) 545 { 546 bool ret = true; 547 548 if (!down_read_trylock(&mm->mmap_sem)) { 549 trace_skip_task_reaping(tsk->pid); 550 return false; 551 } 552 553 /* 554 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't 555 * work on the mm anymore. The check for MMF_OOM_SKIP must run 556 * under mmap_sem for reading because it serializes against the 557 * down_write();up_write() cycle in exit_mmap(). 558 */ 559 if (test_bit(MMF_OOM_SKIP, &mm->flags)) { 560 trace_skip_task_reaping(tsk->pid); 561 goto out_unlock; 562 } 563 564 trace_start_task_reaping(tsk->pid); 565 566 /* failed to reap part of the address space. Try again later */ 567 ret = __oom_reap_task_mm(mm); 568 if (!ret) 569 goto out_finish; 570 571 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n", 572 task_pid_nr(tsk), tsk->comm, 573 K(get_mm_counter(mm, MM_ANONPAGES)), 574 K(get_mm_counter(mm, MM_FILEPAGES)), 575 K(get_mm_counter(mm, MM_SHMEMPAGES))); 576 out_finish: 577 trace_finish_task_reaping(tsk->pid); 578 out_unlock: 579 up_read(&mm->mmap_sem); 580 581 return ret; 582 } 583 584 #define MAX_OOM_REAP_RETRIES 10 585 static void oom_reap_task(struct task_struct *tsk) 586 { 587 int attempts = 0; 588 struct mm_struct *mm = tsk->signal->oom_mm; 589 590 /* Retry the down_read_trylock(mmap_sem) a few times */ 591 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm)) 592 schedule_timeout_idle(HZ/10); 593 594 if (attempts <= MAX_OOM_REAP_RETRIES || 595 test_bit(MMF_OOM_SKIP, &mm->flags)) 596 goto done; 597 598 pr_info("oom_reaper: unable to reap pid:%d (%s)\n", 599 task_pid_nr(tsk), tsk->comm); 600 debug_show_all_locks(); 601 602 done: 603 tsk->oom_reaper_list = NULL; 604 605 /* 606 * Hide this mm from OOM killer because it has been either reaped or 607 * somebody can't call up_write(mmap_sem). 608 */ 609 set_bit(MMF_OOM_SKIP, &mm->flags); 610 611 /* Drop a reference taken by wake_oom_reaper */ 612 put_task_struct(tsk); 613 } 614 615 static int oom_reaper(void *unused) 616 { 617 while (true) { 618 struct task_struct *tsk = NULL; 619 620 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL); 621 spin_lock(&oom_reaper_lock); 622 if (oom_reaper_list != NULL) { 623 tsk = oom_reaper_list; 624 oom_reaper_list = tsk->oom_reaper_list; 625 } 626 spin_unlock(&oom_reaper_lock); 627 628 if (tsk) 629 oom_reap_task(tsk); 630 } 631 632 return 0; 633 } 634 635 static void wake_oom_reaper(struct task_struct *tsk) 636 { 637 /* tsk is already queued? */ 638 if (tsk == oom_reaper_list || tsk->oom_reaper_list) 639 return; 640 641 get_task_struct(tsk); 642 643 spin_lock(&oom_reaper_lock); 644 tsk->oom_reaper_list = oom_reaper_list; 645 oom_reaper_list = tsk; 646 spin_unlock(&oom_reaper_lock); 647 trace_wake_reaper(tsk->pid); 648 wake_up(&oom_reaper_wait); 649 } 650 651 static int __init oom_init(void) 652 { 653 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper"); 654 return 0; 655 } 656 subsys_initcall(oom_init) 657 #else 658 static inline void wake_oom_reaper(struct task_struct *tsk) 659 { 660 } 661 #endif /* CONFIG_MMU */ 662 663 /** 664 * mark_oom_victim - mark the given task as OOM victim 665 * @tsk: task to mark 666 * 667 * Has to be called with oom_lock held and never after 668 * oom has been disabled already. 669 * 670 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either 671 * under task_lock or operate on the current). 672 */ 673 static void mark_oom_victim(struct task_struct *tsk) 674 { 675 struct mm_struct *mm = tsk->mm; 676 677 WARN_ON(oom_killer_disabled); 678 /* OOM killer might race with memcg OOM */ 679 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE)) 680 return; 681 682 /* oom_mm is bound to the signal struct life time. */ 683 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) { 684 mmgrab(tsk->signal->oom_mm); 685 set_bit(MMF_OOM_VICTIM, &mm->flags); 686 } 687 688 /* 689 * Make sure that the task is woken up from uninterruptible sleep 690 * if it is frozen because OOM killer wouldn't be able to free 691 * any memory and livelock. freezing_slow_path will tell the freezer 692 * that TIF_MEMDIE tasks should be ignored. 693 */ 694 __thaw_task(tsk); 695 atomic_inc(&oom_victims); 696 trace_mark_victim(tsk->pid); 697 } 698 699 /** 700 * exit_oom_victim - note the exit of an OOM victim 701 */ 702 void exit_oom_victim(void) 703 { 704 clear_thread_flag(TIF_MEMDIE); 705 706 if (!atomic_dec_return(&oom_victims)) 707 wake_up_all(&oom_victims_wait); 708 } 709 710 /** 711 * oom_killer_enable - enable OOM killer 712 */ 713 void oom_killer_enable(void) 714 { 715 oom_killer_disabled = false; 716 pr_info("OOM killer enabled.\n"); 717 } 718 719 /** 720 * oom_killer_disable - disable OOM killer 721 * @timeout: maximum timeout to wait for oom victims in jiffies 722 * 723 * Forces all page allocations to fail rather than trigger OOM killer. 724 * Will block and wait until all OOM victims are killed or the given 725 * timeout expires. 726 * 727 * The function cannot be called when there are runnable user tasks because 728 * the userspace would see unexpected allocation failures as a result. Any 729 * new usage of this function should be consulted with MM people. 730 * 731 * Returns true if successful and false if the OOM killer cannot be 732 * disabled. 733 */ 734 bool oom_killer_disable(signed long timeout) 735 { 736 signed long ret; 737 738 /* 739 * Make sure to not race with an ongoing OOM killer. Check that the 740 * current is not killed (possibly due to sharing the victim's memory). 741 */ 742 if (mutex_lock_killable(&oom_lock)) 743 return false; 744 oom_killer_disabled = true; 745 mutex_unlock(&oom_lock); 746 747 ret = wait_event_interruptible_timeout(oom_victims_wait, 748 !atomic_read(&oom_victims), timeout); 749 if (ret <= 0) { 750 oom_killer_enable(); 751 return false; 752 } 753 pr_info("OOM killer disabled.\n"); 754 755 return true; 756 } 757 758 static inline bool __task_will_free_mem(struct task_struct *task) 759 { 760 struct signal_struct *sig = task->signal; 761 762 /* 763 * A coredumping process may sleep for an extended period in exit_mm(), 764 * so the oom killer cannot assume that the process will promptly exit 765 * and release memory. 766 */ 767 if (sig->flags & SIGNAL_GROUP_COREDUMP) 768 return false; 769 770 if (sig->flags & SIGNAL_GROUP_EXIT) 771 return true; 772 773 if (thread_group_empty(task) && (task->flags & PF_EXITING)) 774 return true; 775 776 return false; 777 } 778 779 /* 780 * Checks whether the given task is dying or exiting and likely to 781 * release its address space. This means that all threads and processes 782 * sharing the same mm have to be killed or exiting. 783 * Caller has to make sure that task->mm is stable (hold task_lock or 784 * it operates on the current). 785 */ 786 static bool task_will_free_mem(struct task_struct *task) 787 { 788 struct mm_struct *mm = task->mm; 789 struct task_struct *p; 790 bool ret = true; 791 792 /* 793 * Skip tasks without mm because it might have passed its exit_mm and 794 * exit_oom_victim. oom_reaper could have rescued that but do not rely 795 * on that for now. We can consider find_lock_task_mm in future. 796 */ 797 if (!mm) 798 return false; 799 800 if (!__task_will_free_mem(task)) 801 return false; 802 803 /* 804 * This task has already been drained by the oom reaper so there are 805 * only small chances it will free some more 806 */ 807 if (test_bit(MMF_OOM_SKIP, &mm->flags)) 808 return false; 809 810 if (atomic_read(&mm->mm_users) <= 1) 811 return true; 812 813 /* 814 * Make sure that all tasks which share the mm with the given tasks 815 * are dying as well to make sure that a) nobody pins its mm and 816 * b) the task is also reapable by the oom reaper. 817 */ 818 rcu_read_lock(); 819 for_each_process(p) { 820 if (!process_shares_mm(p, mm)) 821 continue; 822 if (same_thread_group(task, p)) 823 continue; 824 ret = __task_will_free_mem(p); 825 if (!ret) 826 break; 827 } 828 rcu_read_unlock(); 829 830 return ret; 831 } 832 833 static void __oom_kill_process(struct task_struct *victim) 834 { 835 struct task_struct *p; 836 struct mm_struct *mm; 837 bool can_oom_reap = true; 838 839 p = find_lock_task_mm(victim); 840 if (!p) { 841 put_task_struct(victim); 842 return; 843 } else if (victim != p) { 844 get_task_struct(p); 845 put_task_struct(victim); 846 victim = p; 847 } 848 849 /* Get a reference to safely compare mm after task_unlock(victim) */ 850 mm = victim->mm; 851 mmgrab(mm); 852 853 /* Raise event before sending signal: task reaper must see this */ 854 count_vm_event(OOM_KILL); 855 memcg_memory_event_mm(mm, MEMCG_OOM_KILL); 856 857 /* 858 * We should send SIGKILL before granting access to memory reserves 859 * in order to prevent the OOM victim from depleting the memory 860 * reserves from the user space under its control. 861 */ 862 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID); 863 mark_oom_victim(victim); 864 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n", 865 task_pid_nr(victim), victim->comm, K(victim->mm->total_vm), 866 K(get_mm_counter(victim->mm, MM_ANONPAGES)), 867 K(get_mm_counter(victim->mm, MM_FILEPAGES)), 868 K(get_mm_counter(victim->mm, MM_SHMEMPAGES))); 869 task_unlock(victim); 870 871 /* 872 * Kill all user processes sharing victim->mm in other thread groups, if 873 * any. They don't get access to memory reserves, though, to avoid 874 * depletion of all memory. This prevents mm->mmap_sem livelock when an 875 * oom killed thread cannot exit because it requires the semaphore and 876 * its contended by another thread trying to allocate memory itself. 877 * That thread will now get access to memory reserves since it has a 878 * pending fatal signal. 879 */ 880 rcu_read_lock(); 881 for_each_process(p) { 882 if (!process_shares_mm(p, mm)) 883 continue; 884 if (same_thread_group(p, victim)) 885 continue; 886 if (is_global_init(p)) { 887 can_oom_reap = false; 888 set_bit(MMF_OOM_SKIP, &mm->flags); 889 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n", 890 task_pid_nr(victim), victim->comm, 891 task_pid_nr(p), p->comm); 892 continue; 893 } 894 /* 895 * No use_mm() user needs to read from the userspace so we are 896 * ok to reap it. 897 */ 898 if (unlikely(p->flags & PF_KTHREAD)) 899 continue; 900 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID); 901 } 902 rcu_read_unlock(); 903 904 if (can_oom_reap) 905 wake_oom_reaper(victim); 906 907 mmdrop(mm); 908 put_task_struct(victim); 909 } 910 #undef K 911 912 /* 913 * Kill provided task unless it's secured by setting 914 * oom_score_adj to OOM_SCORE_ADJ_MIN. 915 */ 916 static int oom_kill_memcg_member(struct task_struct *task, void *unused) 917 { 918 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) { 919 get_task_struct(task); 920 __oom_kill_process(task); 921 } 922 return 0; 923 } 924 925 static void oom_kill_process(struct oom_control *oc, const char *message) 926 { 927 struct task_struct *p = oc->chosen; 928 unsigned int points = oc->chosen_points; 929 struct task_struct *victim = p; 930 struct task_struct *child; 931 struct task_struct *t; 932 struct mem_cgroup *oom_group; 933 unsigned int victim_points = 0; 934 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL, 935 DEFAULT_RATELIMIT_BURST); 936 937 /* 938 * If the task is already exiting, don't alarm the sysadmin or kill 939 * its children or threads, just give it access to memory reserves 940 * so it can die quickly 941 */ 942 task_lock(p); 943 if (task_will_free_mem(p)) { 944 mark_oom_victim(p); 945 wake_oom_reaper(p); 946 task_unlock(p); 947 put_task_struct(p); 948 return; 949 } 950 task_unlock(p); 951 952 if (__ratelimit(&oom_rs)) 953 dump_header(oc, p); 954 955 pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n", 956 message, task_pid_nr(p), p->comm, points); 957 958 /* 959 * If any of p's children has a different mm and is eligible for kill, 960 * the one with the highest oom_badness() score is sacrificed for its 961 * parent. This attempts to lose the minimal amount of work done while 962 * still freeing memory. 963 */ 964 read_lock(&tasklist_lock); 965 for_each_thread(p, t) { 966 list_for_each_entry(child, &t->children, sibling) { 967 unsigned int child_points; 968 969 if (process_shares_mm(child, p->mm)) 970 continue; 971 /* 972 * oom_badness() returns 0 if the thread is unkillable 973 */ 974 child_points = oom_badness(child, 975 oc->memcg, oc->nodemask, oc->totalpages); 976 if (child_points > victim_points) { 977 put_task_struct(victim); 978 victim = child; 979 victim_points = child_points; 980 get_task_struct(victim); 981 } 982 } 983 } 984 read_unlock(&tasklist_lock); 985 986 /* 987 * Do we need to kill the entire memory cgroup? 988 * Or even one of the ancestor memory cgroups? 989 * Check this out before killing the victim task. 990 */ 991 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg); 992 993 __oom_kill_process(victim); 994 995 /* 996 * If necessary, kill all tasks in the selected memory cgroup. 997 */ 998 if (oom_group) { 999 mem_cgroup_print_oom_group(oom_group); 1000 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member, NULL); 1001 mem_cgroup_put(oom_group); 1002 } 1003 } 1004 1005 /* 1006 * Determines whether the kernel must panic because of the panic_on_oom sysctl. 1007 */ 1008 static void check_panic_on_oom(struct oom_control *oc, 1009 enum oom_constraint constraint) 1010 { 1011 if (likely(!sysctl_panic_on_oom)) 1012 return; 1013 if (sysctl_panic_on_oom != 2) { 1014 /* 1015 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel 1016 * does not panic for cpuset, mempolicy, or memcg allocation 1017 * failures. 1018 */ 1019 if (constraint != CONSTRAINT_NONE) 1020 return; 1021 } 1022 /* Do not panic for oom kills triggered by sysrq */ 1023 if (is_sysrq_oom(oc)) 1024 return; 1025 dump_header(oc, NULL); 1026 panic("Out of memory: %s panic_on_oom is enabled\n", 1027 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); 1028 } 1029 1030 static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 1031 1032 int register_oom_notifier(struct notifier_block *nb) 1033 { 1034 return blocking_notifier_chain_register(&oom_notify_list, nb); 1035 } 1036 EXPORT_SYMBOL_GPL(register_oom_notifier); 1037 1038 int unregister_oom_notifier(struct notifier_block *nb) 1039 { 1040 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 1041 } 1042 EXPORT_SYMBOL_GPL(unregister_oom_notifier); 1043 1044 /** 1045 * out_of_memory - kill the "best" process when we run out of memory 1046 * @oc: pointer to struct oom_control 1047 * 1048 * If we run out of memory, we have the choice between either 1049 * killing a random task (bad), letting the system crash (worse) 1050 * OR try to be smart about which process to kill. Note that we 1051 * don't have to be perfect here, we just have to be good. 1052 */ 1053 bool out_of_memory(struct oom_control *oc) 1054 { 1055 unsigned long freed = 0; 1056 enum oom_constraint constraint = CONSTRAINT_NONE; 1057 1058 if (oom_killer_disabled) 1059 return false; 1060 1061 if (!is_memcg_oom(oc)) { 1062 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 1063 if (freed > 0) 1064 /* Got some memory back in the last second. */ 1065 return true; 1066 } 1067 1068 /* 1069 * If current has a pending SIGKILL or is exiting, then automatically 1070 * select it. The goal is to allow it to allocate so that it may 1071 * quickly exit and free its memory. 1072 */ 1073 if (task_will_free_mem(current)) { 1074 mark_oom_victim(current); 1075 wake_oom_reaper(current); 1076 return true; 1077 } 1078 1079 /* 1080 * The OOM killer does not compensate for IO-less reclaim. 1081 * pagefault_out_of_memory lost its gfp context so we have to 1082 * make sure exclude 0 mask - all other users should have at least 1083 * ___GFP_DIRECT_RECLAIM to get here. 1084 */ 1085 if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS)) 1086 return true; 1087 1088 /* 1089 * Check if there were limitations on the allocation (only relevant for 1090 * NUMA and memcg) that may require different handling. 1091 */ 1092 constraint = constrained_alloc(oc); 1093 if (constraint != CONSTRAINT_MEMORY_POLICY) 1094 oc->nodemask = NULL; 1095 check_panic_on_oom(oc, constraint); 1096 1097 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task && 1098 current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) && 1099 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) { 1100 get_task_struct(current); 1101 oc->chosen = current; 1102 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)"); 1103 return true; 1104 } 1105 1106 select_bad_process(oc); 1107 /* Found nothing?!?! */ 1108 if (!oc->chosen) { 1109 dump_header(oc, NULL); 1110 pr_warn("Out of memory and no killable processes...\n"); 1111 /* 1112 * If we got here due to an actual allocation at the 1113 * system level, we cannot survive this and will enter 1114 * an endless loop in the allocator. Bail out now. 1115 */ 1116 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc)) 1117 panic("System is deadlocked on memory\n"); 1118 } 1119 if (oc->chosen && oc->chosen != (void *)-1UL) 1120 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" : 1121 "Memory cgroup out of memory"); 1122 return !!oc->chosen; 1123 } 1124 1125 /* 1126 * The pagefault handler calls here because it is out of memory, so kill a 1127 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom 1128 * killing is already in progress so do nothing. 1129 */ 1130 void pagefault_out_of_memory(void) 1131 { 1132 struct oom_control oc = { 1133 .zonelist = NULL, 1134 .nodemask = NULL, 1135 .memcg = NULL, 1136 .gfp_mask = 0, 1137 .order = 0, 1138 }; 1139 1140 if (mem_cgroup_oom_synchronize(true)) 1141 return; 1142 1143 if (!mutex_trylock(&oom_lock)) 1144 return; 1145 out_of_memory(&oc); 1146 mutex_unlock(&oom_lock); 1147 } 1148