1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/oom_kill.c 4 * 5 * Copyright (C) 1998,2000 Rik van Riel 6 * Thanks go out to Claus Fischer for some serious inspiration and 7 * for goading me into coding this file... 8 * Copyright (C) 2010 Google, Inc. 9 * Rewritten by David Rientjes 10 * 11 * The routines in this file are used to kill a process when 12 * we're seriously out of memory. This gets called from __alloc_pages() 13 * in mm/page_alloc.c when we really run out of memory. 14 * 15 * Since we won't call these routines often (on a well-configured 16 * machine) this file will double as a 'coding guide' and a signpost 17 * for newbie kernel hackers. It features several pointers to major 18 * kernel subsystems and hints as to where to find out what things do. 19 */ 20 21 #include <linux/oom.h> 22 #include <linux/mm.h> 23 #include <linux/err.h> 24 #include <linux/gfp.h> 25 #include <linux/sched.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/coredump.h> 28 #include <linux/sched/task.h> 29 #include <linux/sched/debug.h> 30 #include <linux/swap.h> 31 #include <linux/timex.h> 32 #include <linux/jiffies.h> 33 #include <linux/cpuset.h> 34 #include <linux/export.h> 35 #include <linux/notifier.h> 36 #include <linux/memcontrol.h> 37 #include <linux/mempolicy.h> 38 #include <linux/security.h> 39 #include <linux/ptrace.h> 40 #include <linux/freezer.h> 41 #include <linux/ftrace.h> 42 #include <linux/ratelimit.h> 43 #include <linux/kthread.h> 44 #include <linux/init.h> 45 #include <linux/mmu_notifier.h> 46 47 #include <asm/tlb.h> 48 #include "internal.h" 49 #include "slab.h" 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/oom.h> 53 54 int sysctl_panic_on_oom; 55 int sysctl_oom_kill_allocating_task; 56 int sysctl_oom_dump_tasks = 1; 57 58 /* 59 * Serializes oom killer invocations (out_of_memory()) from all contexts to 60 * prevent from over eager oom killing (e.g. when the oom killer is invoked 61 * from different domains). 62 * 63 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled 64 * and mark_oom_victim 65 */ 66 DEFINE_MUTEX(oom_lock); 67 /* Serializes oom_score_adj and oom_score_adj_min updates */ 68 DEFINE_MUTEX(oom_adj_mutex); 69 70 static inline bool is_memcg_oom(struct oom_control *oc) 71 { 72 return oc->memcg != NULL; 73 } 74 75 #ifdef CONFIG_NUMA 76 /** 77 * oom_cpuset_eligible() - check task eligiblity for kill 78 * @start: task struct of which task to consider 79 * @oc: pointer to struct oom_control 80 * 81 * Task eligibility is determined by whether or not a candidate task, @tsk, 82 * shares the same mempolicy nodes as current if it is bound by such a policy 83 * and whether or not it has the same set of allowed cpuset nodes. 84 * 85 * This function is assuming oom-killer context and 'current' has triggered 86 * the oom-killer. 87 */ 88 static bool oom_cpuset_eligible(struct task_struct *start, 89 struct oom_control *oc) 90 { 91 struct task_struct *tsk; 92 bool ret = false; 93 const nodemask_t *mask = oc->nodemask; 94 95 if (is_memcg_oom(oc)) 96 return true; 97 98 rcu_read_lock(); 99 for_each_thread(start, tsk) { 100 if (mask) { 101 /* 102 * If this is a mempolicy constrained oom, tsk's 103 * cpuset is irrelevant. Only return true if its 104 * mempolicy intersects current, otherwise it may be 105 * needlessly killed. 106 */ 107 ret = mempolicy_nodemask_intersects(tsk, mask); 108 } else { 109 /* 110 * This is not a mempolicy constrained oom, so only 111 * check the mems of tsk's cpuset. 112 */ 113 ret = cpuset_mems_allowed_intersects(current, tsk); 114 } 115 if (ret) 116 break; 117 } 118 rcu_read_unlock(); 119 120 return ret; 121 } 122 #else 123 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc) 124 { 125 return true; 126 } 127 #endif /* CONFIG_NUMA */ 128 129 /* 130 * The process p may have detached its own ->mm while exiting or through 131 * kthread_use_mm(), but one or more of its subthreads may still have a valid 132 * pointer. Return p, or any of its subthreads with a valid ->mm, with 133 * task_lock() held. 134 */ 135 struct task_struct *find_lock_task_mm(struct task_struct *p) 136 { 137 struct task_struct *t; 138 139 rcu_read_lock(); 140 141 for_each_thread(p, t) { 142 task_lock(t); 143 if (likely(t->mm)) 144 goto found; 145 task_unlock(t); 146 } 147 t = NULL; 148 found: 149 rcu_read_unlock(); 150 151 return t; 152 } 153 154 /* 155 * order == -1 means the oom kill is required by sysrq, otherwise only 156 * for display purposes. 157 */ 158 static inline bool is_sysrq_oom(struct oom_control *oc) 159 { 160 return oc->order == -1; 161 } 162 163 /* return true if the task is not adequate as candidate victim task. */ 164 static bool oom_unkillable_task(struct task_struct *p) 165 { 166 if (is_global_init(p)) 167 return true; 168 if (p->flags & PF_KTHREAD) 169 return true; 170 return false; 171 } 172 173 /** 174 * Check whether unreclaimable slab amount is greater than 175 * all user memory(LRU pages). 176 * dump_unreclaimable_slab() could help in the case that 177 * oom due to too much unreclaimable slab used by kernel. 178 */ 179 static bool should_dump_unreclaim_slab(void) 180 { 181 unsigned long nr_lru; 182 183 nr_lru = global_node_page_state(NR_ACTIVE_ANON) + 184 global_node_page_state(NR_INACTIVE_ANON) + 185 global_node_page_state(NR_ACTIVE_FILE) + 186 global_node_page_state(NR_INACTIVE_FILE) + 187 global_node_page_state(NR_ISOLATED_ANON) + 188 global_node_page_state(NR_ISOLATED_FILE) + 189 global_node_page_state(NR_UNEVICTABLE); 190 191 return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru); 192 } 193 194 /** 195 * oom_badness - heuristic function to determine which candidate task to kill 196 * @p: task struct of which task we should calculate 197 * @totalpages: total present RAM allowed for page allocation 198 * 199 * The heuristic for determining which task to kill is made to be as simple and 200 * predictable as possible. The goal is to return the highest value for the 201 * task consuming the most memory to avoid subsequent oom failures. 202 */ 203 long oom_badness(struct task_struct *p, unsigned long totalpages) 204 { 205 long points; 206 long adj; 207 208 if (oom_unkillable_task(p)) 209 return LONG_MIN; 210 211 p = find_lock_task_mm(p); 212 if (!p) 213 return LONG_MIN; 214 215 /* 216 * Do not even consider tasks which are explicitly marked oom 217 * unkillable or have been already oom reaped or the are in 218 * the middle of vfork 219 */ 220 adj = (long)p->signal->oom_score_adj; 221 if (adj == OOM_SCORE_ADJ_MIN || 222 test_bit(MMF_OOM_SKIP, &p->mm->flags) || 223 in_vfork(p)) { 224 task_unlock(p); 225 return LONG_MIN; 226 } 227 228 /* 229 * The baseline for the badness score is the proportion of RAM that each 230 * task's rss, pagetable and swap space use. 231 */ 232 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) + 233 mm_pgtables_bytes(p->mm) / PAGE_SIZE; 234 task_unlock(p); 235 236 /* Normalize to oom_score_adj units */ 237 adj *= totalpages / 1000; 238 points += adj; 239 240 return points; 241 } 242 243 static const char * const oom_constraint_text[] = { 244 [CONSTRAINT_NONE] = "CONSTRAINT_NONE", 245 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET", 246 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY", 247 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG", 248 }; 249 250 /* 251 * Determine the type of allocation constraint. 252 */ 253 static enum oom_constraint constrained_alloc(struct oom_control *oc) 254 { 255 struct zone *zone; 256 struct zoneref *z; 257 enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask); 258 bool cpuset_limited = false; 259 int nid; 260 261 if (is_memcg_oom(oc)) { 262 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1; 263 return CONSTRAINT_MEMCG; 264 } 265 266 /* Default to all available memory */ 267 oc->totalpages = totalram_pages() + total_swap_pages; 268 269 if (!IS_ENABLED(CONFIG_NUMA)) 270 return CONSTRAINT_NONE; 271 272 if (!oc->zonelist) 273 return CONSTRAINT_NONE; 274 /* 275 * Reach here only when __GFP_NOFAIL is used. So, we should avoid 276 * to kill current.We have to random task kill in this case. 277 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. 278 */ 279 if (oc->gfp_mask & __GFP_THISNODE) 280 return CONSTRAINT_NONE; 281 282 /* 283 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in 284 * the page allocator means a mempolicy is in effect. Cpuset policy 285 * is enforced in get_page_from_freelist(). 286 */ 287 if (oc->nodemask && 288 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) { 289 oc->totalpages = total_swap_pages; 290 for_each_node_mask(nid, *oc->nodemask) 291 oc->totalpages += node_present_pages(nid); 292 return CONSTRAINT_MEMORY_POLICY; 293 } 294 295 /* Check this allocation failure is caused by cpuset's wall function */ 296 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist, 297 highest_zoneidx, oc->nodemask) 298 if (!cpuset_zone_allowed(zone, oc->gfp_mask)) 299 cpuset_limited = true; 300 301 if (cpuset_limited) { 302 oc->totalpages = total_swap_pages; 303 for_each_node_mask(nid, cpuset_current_mems_allowed) 304 oc->totalpages += node_present_pages(nid); 305 return CONSTRAINT_CPUSET; 306 } 307 return CONSTRAINT_NONE; 308 } 309 310 static int oom_evaluate_task(struct task_struct *task, void *arg) 311 { 312 struct oom_control *oc = arg; 313 long points; 314 315 if (oom_unkillable_task(task)) 316 goto next; 317 318 /* p may not have freeable memory in nodemask */ 319 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc)) 320 goto next; 321 322 /* 323 * This task already has access to memory reserves and is being killed. 324 * Don't allow any other task to have access to the reserves unless 325 * the task has MMF_OOM_SKIP because chances that it would release 326 * any memory is quite low. 327 */ 328 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) { 329 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags)) 330 goto next; 331 goto abort; 332 } 333 334 /* 335 * If task is allocating a lot of memory and has been marked to be 336 * killed first if it triggers an oom, then select it. 337 */ 338 if (oom_task_origin(task)) { 339 points = LONG_MAX; 340 goto select; 341 } 342 343 points = oom_badness(task, oc->totalpages); 344 if (points == LONG_MIN || points < oc->chosen_points) 345 goto next; 346 347 select: 348 if (oc->chosen) 349 put_task_struct(oc->chosen); 350 get_task_struct(task); 351 oc->chosen = task; 352 oc->chosen_points = points; 353 next: 354 return 0; 355 abort: 356 if (oc->chosen) 357 put_task_struct(oc->chosen); 358 oc->chosen = (void *)-1UL; 359 return 1; 360 } 361 362 /* 363 * Simple selection loop. We choose the process with the highest number of 364 * 'points'. In case scan was aborted, oc->chosen is set to -1. 365 */ 366 static void select_bad_process(struct oom_control *oc) 367 { 368 oc->chosen_points = LONG_MIN; 369 370 if (is_memcg_oom(oc)) 371 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc); 372 else { 373 struct task_struct *p; 374 375 rcu_read_lock(); 376 for_each_process(p) 377 if (oom_evaluate_task(p, oc)) 378 break; 379 rcu_read_unlock(); 380 } 381 } 382 383 static int dump_task(struct task_struct *p, void *arg) 384 { 385 struct oom_control *oc = arg; 386 struct task_struct *task; 387 388 if (oom_unkillable_task(p)) 389 return 0; 390 391 /* p may not have freeable memory in nodemask */ 392 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc)) 393 return 0; 394 395 task = find_lock_task_mm(p); 396 if (!task) { 397 /* 398 * This is a kthread or all of p's threads have already 399 * detached their mm's. There's no need to report 400 * them; they can't be oom killed anyway. 401 */ 402 return 0; 403 } 404 405 pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu %5hd %s\n", 406 task->pid, from_kuid(&init_user_ns, task_uid(task)), 407 task->tgid, task->mm->total_vm, get_mm_rss(task->mm), 408 mm_pgtables_bytes(task->mm), 409 get_mm_counter(task->mm, MM_SWAPENTS), 410 task->signal->oom_score_adj, task->comm); 411 task_unlock(task); 412 413 return 0; 414 } 415 416 /** 417 * dump_tasks - dump current memory state of all system tasks 418 * @oc: pointer to struct oom_control 419 * 420 * Dumps the current memory state of all eligible tasks. Tasks not in the same 421 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes 422 * are not shown. 423 * State information includes task's pid, uid, tgid, vm size, rss, 424 * pgtables_bytes, swapents, oom_score_adj value, and name. 425 */ 426 static void dump_tasks(struct oom_control *oc) 427 { 428 pr_info("Tasks state (memory values in pages):\n"); 429 pr_info("[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name\n"); 430 431 if (is_memcg_oom(oc)) 432 mem_cgroup_scan_tasks(oc->memcg, dump_task, oc); 433 else { 434 struct task_struct *p; 435 436 rcu_read_lock(); 437 for_each_process(p) 438 dump_task(p, oc); 439 rcu_read_unlock(); 440 } 441 } 442 443 static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim) 444 { 445 /* one line summary of the oom killer context. */ 446 pr_info("oom-kill:constraint=%s,nodemask=%*pbl", 447 oom_constraint_text[oc->constraint], 448 nodemask_pr_args(oc->nodemask)); 449 cpuset_print_current_mems_allowed(); 450 mem_cgroup_print_oom_context(oc->memcg, victim); 451 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid, 452 from_kuid(&init_user_ns, task_uid(victim))); 453 } 454 455 static void dump_header(struct oom_control *oc, struct task_struct *p) 456 { 457 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n", 458 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order, 459 current->signal->oom_score_adj); 460 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order) 461 pr_warn("COMPACTION is disabled!!!\n"); 462 463 dump_stack(); 464 if (is_memcg_oom(oc)) 465 mem_cgroup_print_oom_meminfo(oc->memcg); 466 else { 467 show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask); 468 if (should_dump_unreclaim_slab()) 469 dump_unreclaimable_slab(); 470 } 471 if (sysctl_oom_dump_tasks) 472 dump_tasks(oc); 473 if (p) 474 dump_oom_summary(oc, p); 475 } 476 477 /* 478 * Number of OOM victims in flight 479 */ 480 static atomic_t oom_victims = ATOMIC_INIT(0); 481 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait); 482 483 static bool oom_killer_disabled __read_mostly; 484 485 #define K(x) ((x) << (PAGE_SHIFT-10)) 486 487 /* 488 * task->mm can be NULL if the task is the exited group leader. So to 489 * determine whether the task is using a particular mm, we examine all the 490 * task's threads: if one of those is using this mm then this task was also 491 * using it. 492 */ 493 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm) 494 { 495 struct task_struct *t; 496 497 for_each_thread(p, t) { 498 struct mm_struct *t_mm = READ_ONCE(t->mm); 499 if (t_mm) 500 return t_mm == mm; 501 } 502 return false; 503 } 504 505 #ifdef CONFIG_MMU 506 /* 507 * OOM Reaper kernel thread which tries to reap the memory used by the OOM 508 * victim (if that is possible) to help the OOM killer to move on. 509 */ 510 static struct task_struct *oom_reaper_th; 511 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait); 512 static struct task_struct *oom_reaper_list; 513 static DEFINE_SPINLOCK(oom_reaper_lock); 514 515 bool __oom_reap_task_mm(struct mm_struct *mm) 516 { 517 struct vm_area_struct *vma; 518 bool ret = true; 519 520 /* 521 * Tell all users of get_user/copy_from_user etc... that the content 522 * is no longer stable. No barriers really needed because unmapping 523 * should imply barriers already and the reader would hit a page fault 524 * if it stumbled over a reaped memory. 525 */ 526 set_bit(MMF_UNSTABLE, &mm->flags); 527 528 for (vma = mm->mmap ; vma; vma = vma->vm_next) { 529 if (!can_madv_lru_vma(vma)) 530 continue; 531 532 /* 533 * Only anonymous pages have a good chance to be dropped 534 * without additional steps which we cannot afford as we 535 * are OOM already. 536 * 537 * We do not even care about fs backed pages because all 538 * which are reclaimable have already been reclaimed and 539 * we do not want to block exit_mmap by keeping mm ref 540 * count elevated without a good reason. 541 */ 542 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) { 543 struct mmu_notifier_range range; 544 struct mmu_gather tlb; 545 546 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, 547 vma, mm, vma->vm_start, 548 vma->vm_end); 549 tlb_gather_mmu(&tlb, mm, range.start, range.end); 550 if (mmu_notifier_invalidate_range_start_nonblock(&range)) { 551 tlb_finish_mmu(&tlb, range.start, range.end); 552 ret = false; 553 continue; 554 } 555 unmap_page_range(&tlb, vma, range.start, range.end, NULL); 556 mmu_notifier_invalidate_range_end(&range); 557 tlb_finish_mmu(&tlb, range.start, range.end); 558 } 559 } 560 561 return ret; 562 } 563 564 /* 565 * Reaps the address space of the give task. 566 * 567 * Returns true on success and false if none or part of the address space 568 * has been reclaimed and the caller should retry later. 569 */ 570 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm) 571 { 572 bool ret = true; 573 574 if (!mmap_read_trylock(mm)) { 575 trace_skip_task_reaping(tsk->pid); 576 return false; 577 } 578 579 /* 580 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't 581 * work on the mm anymore. The check for MMF_OOM_SKIP must run 582 * under mmap_lock for reading because it serializes against the 583 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap(). 584 */ 585 if (test_bit(MMF_OOM_SKIP, &mm->flags)) { 586 trace_skip_task_reaping(tsk->pid); 587 goto out_unlock; 588 } 589 590 trace_start_task_reaping(tsk->pid); 591 592 /* failed to reap part of the address space. Try again later */ 593 ret = __oom_reap_task_mm(mm); 594 if (!ret) 595 goto out_finish; 596 597 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n", 598 task_pid_nr(tsk), tsk->comm, 599 K(get_mm_counter(mm, MM_ANONPAGES)), 600 K(get_mm_counter(mm, MM_FILEPAGES)), 601 K(get_mm_counter(mm, MM_SHMEMPAGES))); 602 out_finish: 603 trace_finish_task_reaping(tsk->pid); 604 out_unlock: 605 mmap_read_unlock(mm); 606 607 return ret; 608 } 609 610 #define MAX_OOM_REAP_RETRIES 10 611 static void oom_reap_task(struct task_struct *tsk) 612 { 613 int attempts = 0; 614 struct mm_struct *mm = tsk->signal->oom_mm; 615 616 /* Retry the mmap_read_trylock(mm) a few times */ 617 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm)) 618 schedule_timeout_idle(HZ/10); 619 620 if (attempts <= MAX_OOM_REAP_RETRIES || 621 test_bit(MMF_OOM_SKIP, &mm->flags)) 622 goto done; 623 624 pr_info("oom_reaper: unable to reap pid:%d (%s)\n", 625 task_pid_nr(tsk), tsk->comm); 626 sched_show_task(tsk); 627 debug_show_all_locks(); 628 629 done: 630 tsk->oom_reaper_list = NULL; 631 632 /* 633 * Hide this mm from OOM killer because it has been either reaped or 634 * somebody can't call mmap_write_unlock(mm). 635 */ 636 set_bit(MMF_OOM_SKIP, &mm->flags); 637 638 /* Drop a reference taken by wake_oom_reaper */ 639 put_task_struct(tsk); 640 } 641 642 static int oom_reaper(void *unused) 643 { 644 while (true) { 645 struct task_struct *tsk = NULL; 646 647 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL); 648 spin_lock(&oom_reaper_lock); 649 if (oom_reaper_list != NULL) { 650 tsk = oom_reaper_list; 651 oom_reaper_list = tsk->oom_reaper_list; 652 } 653 spin_unlock(&oom_reaper_lock); 654 655 if (tsk) 656 oom_reap_task(tsk); 657 } 658 659 return 0; 660 } 661 662 static void wake_oom_reaper(struct task_struct *tsk) 663 { 664 /* mm is already queued? */ 665 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags)) 666 return; 667 668 get_task_struct(tsk); 669 670 spin_lock(&oom_reaper_lock); 671 tsk->oom_reaper_list = oom_reaper_list; 672 oom_reaper_list = tsk; 673 spin_unlock(&oom_reaper_lock); 674 trace_wake_reaper(tsk->pid); 675 wake_up(&oom_reaper_wait); 676 } 677 678 static int __init oom_init(void) 679 { 680 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper"); 681 return 0; 682 } 683 subsys_initcall(oom_init) 684 #else 685 static inline void wake_oom_reaper(struct task_struct *tsk) 686 { 687 } 688 #endif /* CONFIG_MMU */ 689 690 /** 691 * mark_oom_victim - mark the given task as OOM victim 692 * @tsk: task to mark 693 * 694 * Has to be called with oom_lock held and never after 695 * oom has been disabled already. 696 * 697 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either 698 * under task_lock or operate on the current). 699 */ 700 static void mark_oom_victim(struct task_struct *tsk) 701 { 702 struct mm_struct *mm = tsk->mm; 703 704 WARN_ON(oom_killer_disabled); 705 /* OOM killer might race with memcg OOM */ 706 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE)) 707 return; 708 709 /* oom_mm is bound to the signal struct life time. */ 710 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) { 711 mmgrab(tsk->signal->oom_mm); 712 set_bit(MMF_OOM_VICTIM, &mm->flags); 713 } 714 715 /* 716 * Make sure that the task is woken up from uninterruptible sleep 717 * if it is frozen because OOM killer wouldn't be able to free 718 * any memory and livelock. freezing_slow_path will tell the freezer 719 * that TIF_MEMDIE tasks should be ignored. 720 */ 721 __thaw_task(tsk); 722 atomic_inc(&oom_victims); 723 trace_mark_victim(tsk->pid); 724 } 725 726 /** 727 * exit_oom_victim - note the exit of an OOM victim 728 */ 729 void exit_oom_victim(void) 730 { 731 clear_thread_flag(TIF_MEMDIE); 732 733 if (!atomic_dec_return(&oom_victims)) 734 wake_up_all(&oom_victims_wait); 735 } 736 737 /** 738 * oom_killer_enable - enable OOM killer 739 */ 740 void oom_killer_enable(void) 741 { 742 oom_killer_disabled = false; 743 pr_info("OOM killer enabled.\n"); 744 } 745 746 /** 747 * oom_killer_disable - disable OOM killer 748 * @timeout: maximum timeout to wait for oom victims in jiffies 749 * 750 * Forces all page allocations to fail rather than trigger OOM killer. 751 * Will block and wait until all OOM victims are killed or the given 752 * timeout expires. 753 * 754 * The function cannot be called when there are runnable user tasks because 755 * the userspace would see unexpected allocation failures as a result. Any 756 * new usage of this function should be consulted with MM people. 757 * 758 * Returns true if successful and false if the OOM killer cannot be 759 * disabled. 760 */ 761 bool oom_killer_disable(signed long timeout) 762 { 763 signed long ret; 764 765 /* 766 * Make sure to not race with an ongoing OOM killer. Check that the 767 * current is not killed (possibly due to sharing the victim's memory). 768 */ 769 if (mutex_lock_killable(&oom_lock)) 770 return false; 771 oom_killer_disabled = true; 772 mutex_unlock(&oom_lock); 773 774 ret = wait_event_interruptible_timeout(oom_victims_wait, 775 !atomic_read(&oom_victims), timeout); 776 if (ret <= 0) { 777 oom_killer_enable(); 778 return false; 779 } 780 pr_info("OOM killer disabled.\n"); 781 782 return true; 783 } 784 785 static inline bool __task_will_free_mem(struct task_struct *task) 786 { 787 struct signal_struct *sig = task->signal; 788 789 /* 790 * A coredumping process may sleep for an extended period in exit_mm(), 791 * so the oom killer cannot assume that the process will promptly exit 792 * and release memory. 793 */ 794 if (sig->flags & SIGNAL_GROUP_COREDUMP) 795 return false; 796 797 if (sig->flags & SIGNAL_GROUP_EXIT) 798 return true; 799 800 if (thread_group_empty(task) && (task->flags & PF_EXITING)) 801 return true; 802 803 return false; 804 } 805 806 /* 807 * Checks whether the given task is dying or exiting and likely to 808 * release its address space. This means that all threads and processes 809 * sharing the same mm have to be killed or exiting. 810 * Caller has to make sure that task->mm is stable (hold task_lock or 811 * it operates on the current). 812 */ 813 static bool task_will_free_mem(struct task_struct *task) 814 { 815 struct mm_struct *mm = task->mm; 816 struct task_struct *p; 817 bool ret = true; 818 819 /* 820 * Skip tasks without mm because it might have passed its exit_mm and 821 * exit_oom_victim. oom_reaper could have rescued that but do not rely 822 * on that for now. We can consider find_lock_task_mm in future. 823 */ 824 if (!mm) 825 return false; 826 827 if (!__task_will_free_mem(task)) 828 return false; 829 830 /* 831 * This task has already been drained by the oom reaper so there are 832 * only small chances it will free some more 833 */ 834 if (test_bit(MMF_OOM_SKIP, &mm->flags)) 835 return false; 836 837 if (atomic_read(&mm->mm_users) <= 1) 838 return true; 839 840 /* 841 * Make sure that all tasks which share the mm with the given tasks 842 * are dying as well to make sure that a) nobody pins its mm and 843 * b) the task is also reapable by the oom reaper. 844 */ 845 rcu_read_lock(); 846 for_each_process(p) { 847 if (!process_shares_mm(p, mm)) 848 continue; 849 if (same_thread_group(task, p)) 850 continue; 851 ret = __task_will_free_mem(p); 852 if (!ret) 853 break; 854 } 855 rcu_read_unlock(); 856 857 return ret; 858 } 859 860 static void __oom_kill_process(struct task_struct *victim, const char *message) 861 { 862 struct task_struct *p; 863 struct mm_struct *mm; 864 bool can_oom_reap = true; 865 866 p = find_lock_task_mm(victim); 867 if (!p) { 868 pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n", 869 message, task_pid_nr(victim), victim->comm); 870 put_task_struct(victim); 871 return; 872 } else if (victim != p) { 873 get_task_struct(p); 874 put_task_struct(victim); 875 victim = p; 876 } 877 878 /* Get a reference to safely compare mm after task_unlock(victim) */ 879 mm = victim->mm; 880 mmgrab(mm); 881 882 /* Raise event before sending signal: task reaper must see this */ 883 count_vm_event(OOM_KILL); 884 memcg_memory_event_mm(mm, MEMCG_OOM_KILL); 885 886 /* 887 * We should send SIGKILL before granting access to memory reserves 888 * in order to prevent the OOM victim from depleting the memory 889 * reserves from the user space under its control. 890 */ 891 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID); 892 mark_oom_victim(victim); 893 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n", 894 message, task_pid_nr(victim), victim->comm, K(mm->total_vm), 895 K(get_mm_counter(mm, MM_ANONPAGES)), 896 K(get_mm_counter(mm, MM_FILEPAGES)), 897 K(get_mm_counter(mm, MM_SHMEMPAGES)), 898 from_kuid(&init_user_ns, task_uid(victim)), 899 mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj); 900 task_unlock(victim); 901 902 /* 903 * Kill all user processes sharing victim->mm in other thread groups, if 904 * any. They don't get access to memory reserves, though, to avoid 905 * depletion of all memory. This prevents mm->mmap_lock livelock when an 906 * oom killed thread cannot exit because it requires the semaphore and 907 * its contended by another thread trying to allocate memory itself. 908 * That thread will now get access to memory reserves since it has a 909 * pending fatal signal. 910 */ 911 rcu_read_lock(); 912 for_each_process(p) { 913 if (!process_shares_mm(p, mm)) 914 continue; 915 if (same_thread_group(p, victim)) 916 continue; 917 if (is_global_init(p)) { 918 can_oom_reap = false; 919 set_bit(MMF_OOM_SKIP, &mm->flags); 920 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n", 921 task_pid_nr(victim), victim->comm, 922 task_pid_nr(p), p->comm); 923 continue; 924 } 925 /* 926 * No kthead_use_mm() user needs to read from the userspace so 927 * we are ok to reap it. 928 */ 929 if (unlikely(p->flags & PF_KTHREAD)) 930 continue; 931 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID); 932 } 933 rcu_read_unlock(); 934 935 if (can_oom_reap) 936 wake_oom_reaper(victim); 937 938 mmdrop(mm); 939 put_task_struct(victim); 940 } 941 #undef K 942 943 /* 944 * Kill provided task unless it's secured by setting 945 * oom_score_adj to OOM_SCORE_ADJ_MIN. 946 */ 947 static int oom_kill_memcg_member(struct task_struct *task, void *message) 948 { 949 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN && 950 !is_global_init(task)) { 951 get_task_struct(task); 952 __oom_kill_process(task, message); 953 } 954 return 0; 955 } 956 957 static void oom_kill_process(struct oom_control *oc, const char *message) 958 { 959 struct task_struct *victim = oc->chosen; 960 struct mem_cgroup *oom_group; 961 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL, 962 DEFAULT_RATELIMIT_BURST); 963 964 /* 965 * If the task is already exiting, don't alarm the sysadmin or kill 966 * its children or threads, just give it access to memory reserves 967 * so it can die quickly 968 */ 969 task_lock(victim); 970 if (task_will_free_mem(victim)) { 971 mark_oom_victim(victim); 972 wake_oom_reaper(victim); 973 task_unlock(victim); 974 put_task_struct(victim); 975 return; 976 } 977 task_unlock(victim); 978 979 if (__ratelimit(&oom_rs)) 980 dump_header(oc, victim); 981 982 /* 983 * Do we need to kill the entire memory cgroup? 984 * Or even one of the ancestor memory cgroups? 985 * Check this out before killing the victim task. 986 */ 987 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg); 988 989 __oom_kill_process(victim, message); 990 991 /* 992 * If necessary, kill all tasks in the selected memory cgroup. 993 */ 994 if (oom_group) { 995 mem_cgroup_print_oom_group(oom_group); 996 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member, 997 (void*)message); 998 mem_cgroup_put(oom_group); 999 } 1000 } 1001 1002 /* 1003 * Determines whether the kernel must panic because of the panic_on_oom sysctl. 1004 */ 1005 static void check_panic_on_oom(struct oom_control *oc) 1006 { 1007 if (likely(!sysctl_panic_on_oom)) 1008 return; 1009 if (sysctl_panic_on_oom != 2) { 1010 /* 1011 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel 1012 * does not panic for cpuset, mempolicy, or memcg allocation 1013 * failures. 1014 */ 1015 if (oc->constraint != CONSTRAINT_NONE) 1016 return; 1017 } 1018 /* Do not panic for oom kills triggered by sysrq */ 1019 if (is_sysrq_oom(oc)) 1020 return; 1021 dump_header(oc, NULL); 1022 panic("Out of memory: %s panic_on_oom is enabled\n", 1023 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); 1024 } 1025 1026 static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 1027 1028 int register_oom_notifier(struct notifier_block *nb) 1029 { 1030 return blocking_notifier_chain_register(&oom_notify_list, nb); 1031 } 1032 EXPORT_SYMBOL_GPL(register_oom_notifier); 1033 1034 int unregister_oom_notifier(struct notifier_block *nb) 1035 { 1036 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 1037 } 1038 EXPORT_SYMBOL_GPL(unregister_oom_notifier); 1039 1040 /** 1041 * out_of_memory - kill the "best" process when we run out of memory 1042 * @oc: pointer to struct oom_control 1043 * 1044 * If we run out of memory, we have the choice between either 1045 * killing a random task (bad), letting the system crash (worse) 1046 * OR try to be smart about which process to kill. Note that we 1047 * don't have to be perfect here, we just have to be good. 1048 */ 1049 bool out_of_memory(struct oom_control *oc) 1050 { 1051 unsigned long freed = 0; 1052 1053 if (oom_killer_disabled) 1054 return false; 1055 1056 if (!is_memcg_oom(oc)) { 1057 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 1058 if (freed > 0) 1059 /* Got some memory back in the last second. */ 1060 return true; 1061 } 1062 1063 /* 1064 * If current has a pending SIGKILL or is exiting, then automatically 1065 * select it. The goal is to allow it to allocate so that it may 1066 * quickly exit and free its memory. 1067 */ 1068 if (task_will_free_mem(current)) { 1069 mark_oom_victim(current); 1070 wake_oom_reaper(current); 1071 return true; 1072 } 1073 1074 /* 1075 * The OOM killer does not compensate for IO-less reclaim. 1076 * pagefault_out_of_memory lost its gfp context so we have to 1077 * make sure exclude 0 mask - all other users should have at least 1078 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to 1079 * invoke the OOM killer even if it is a GFP_NOFS allocation. 1080 */ 1081 if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc)) 1082 return true; 1083 1084 /* 1085 * Check if there were limitations on the allocation (only relevant for 1086 * NUMA and memcg) that may require different handling. 1087 */ 1088 oc->constraint = constrained_alloc(oc); 1089 if (oc->constraint != CONSTRAINT_MEMORY_POLICY) 1090 oc->nodemask = NULL; 1091 check_panic_on_oom(oc); 1092 1093 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task && 1094 current->mm && !oom_unkillable_task(current) && 1095 oom_cpuset_eligible(current, oc) && 1096 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) { 1097 get_task_struct(current); 1098 oc->chosen = current; 1099 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)"); 1100 return true; 1101 } 1102 1103 select_bad_process(oc); 1104 /* Found nothing?!?! */ 1105 if (!oc->chosen) { 1106 dump_header(oc, NULL); 1107 pr_warn("Out of memory and no killable processes...\n"); 1108 /* 1109 * If we got here due to an actual allocation at the 1110 * system level, we cannot survive this and will enter 1111 * an endless loop in the allocator. Bail out now. 1112 */ 1113 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc)) 1114 panic("System is deadlocked on memory\n"); 1115 } 1116 if (oc->chosen && oc->chosen != (void *)-1UL) 1117 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" : 1118 "Memory cgroup out of memory"); 1119 return !!oc->chosen; 1120 } 1121 1122 /* 1123 * The pagefault handler calls here because it is out of memory, so kill a 1124 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom 1125 * killing is already in progress so do nothing. 1126 */ 1127 void pagefault_out_of_memory(void) 1128 { 1129 struct oom_control oc = { 1130 .zonelist = NULL, 1131 .nodemask = NULL, 1132 .memcg = NULL, 1133 .gfp_mask = 0, 1134 .order = 0, 1135 }; 1136 1137 if (mem_cgroup_oom_synchronize(true)) 1138 return; 1139 1140 if (!mutex_trylock(&oom_lock)) 1141 return; 1142 out_of_memory(&oc); 1143 mutex_unlock(&oom_lock); 1144 } 1145