1 /* 2 * linux/mm/oom_kill.c 3 * 4 * Copyright (C) 1998,2000 Rik van Riel 5 * Thanks go out to Claus Fischer for some serious inspiration and 6 * for goading me into coding this file... 7 * Copyright (C) 2010 Google, Inc. 8 * Rewritten by David Rientjes 9 * 10 * The routines in this file are used to kill a process when 11 * we're seriously out of memory. This gets called from __alloc_pages() 12 * in mm/page_alloc.c when we really run out of memory. 13 * 14 * Since we won't call these routines often (on a well-configured 15 * machine) this file will double as a 'coding guide' and a signpost 16 * for newbie kernel hackers. It features several pointers to major 17 * kernel subsystems and hints as to where to find out what things do. 18 */ 19 20 #include <linux/oom.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/gfp.h> 24 #include <linux/sched.h> 25 #include <linux/sched/mm.h> 26 #include <linux/sched/coredump.h> 27 #include <linux/sched/task.h> 28 #include <linux/swap.h> 29 #include <linux/timex.h> 30 #include <linux/jiffies.h> 31 #include <linux/cpuset.h> 32 #include <linux/export.h> 33 #include <linux/notifier.h> 34 #include <linux/memcontrol.h> 35 #include <linux/mempolicy.h> 36 #include <linux/security.h> 37 #include <linux/ptrace.h> 38 #include <linux/freezer.h> 39 #include <linux/ftrace.h> 40 #include <linux/ratelimit.h> 41 #include <linux/kthread.h> 42 #include <linux/init.h> 43 #include <linux/mmu_notifier.h> 44 45 #include <asm/tlb.h> 46 #include "internal.h" 47 #include "slab.h" 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/oom.h> 51 52 int sysctl_panic_on_oom; 53 int sysctl_oom_kill_allocating_task; 54 int sysctl_oom_dump_tasks = 1; 55 56 DEFINE_MUTEX(oom_lock); 57 58 #ifdef CONFIG_NUMA 59 /** 60 * has_intersects_mems_allowed() - check task eligiblity for kill 61 * @start: task struct of which task to consider 62 * @mask: nodemask passed to page allocator for mempolicy ooms 63 * 64 * Task eligibility is determined by whether or not a candidate task, @tsk, 65 * shares the same mempolicy nodes as current if it is bound by such a policy 66 * and whether or not it has the same set of allowed cpuset nodes. 67 */ 68 static bool has_intersects_mems_allowed(struct task_struct *start, 69 const nodemask_t *mask) 70 { 71 struct task_struct *tsk; 72 bool ret = false; 73 74 rcu_read_lock(); 75 for_each_thread(start, tsk) { 76 if (mask) { 77 /* 78 * If this is a mempolicy constrained oom, tsk's 79 * cpuset is irrelevant. Only return true if its 80 * mempolicy intersects current, otherwise it may be 81 * needlessly killed. 82 */ 83 ret = mempolicy_nodemask_intersects(tsk, mask); 84 } else { 85 /* 86 * This is not a mempolicy constrained oom, so only 87 * check the mems of tsk's cpuset. 88 */ 89 ret = cpuset_mems_allowed_intersects(current, tsk); 90 } 91 if (ret) 92 break; 93 } 94 rcu_read_unlock(); 95 96 return ret; 97 } 98 #else 99 static bool has_intersects_mems_allowed(struct task_struct *tsk, 100 const nodemask_t *mask) 101 { 102 return true; 103 } 104 #endif /* CONFIG_NUMA */ 105 106 /* 107 * The process p may have detached its own ->mm while exiting or through 108 * use_mm(), but one or more of its subthreads may still have a valid 109 * pointer. Return p, or any of its subthreads with a valid ->mm, with 110 * task_lock() held. 111 */ 112 struct task_struct *find_lock_task_mm(struct task_struct *p) 113 { 114 struct task_struct *t; 115 116 rcu_read_lock(); 117 118 for_each_thread(p, t) { 119 task_lock(t); 120 if (likely(t->mm)) 121 goto found; 122 task_unlock(t); 123 } 124 t = NULL; 125 found: 126 rcu_read_unlock(); 127 128 return t; 129 } 130 131 /* 132 * order == -1 means the oom kill is required by sysrq, otherwise only 133 * for display purposes. 134 */ 135 static inline bool is_sysrq_oom(struct oom_control *oc) 136 { 137 return oc->order == -1; 138 } 139 140 static inline bool is_memcg_oom(struct oom_control *oc) 141 { 142 return oc->memcg != NULL; 143 } 144 145 /* return true if the task is not adequate as candidate victim task. */ 146 static bool oom_unkillable_task(struct task_struct *p, 147 struct mem_cgroup *memcg, const nodemask_t *nodemask) 148 { 149 if (is_global_init(p)) 150 return true; 151 if (p->flags & PF_KTHREAD) 152 return true; 153 154 /* When mem_cgroup_out_of_memory() and p is not member of the group */ 155 if (memcg && !task_in_mem_cgroup(p, memcg)) 156 return true; 157 158 /* p may not have freeable memory in nodemask */ 159 if (!has_intersects_mems_allowed(p, nodemask)) 160 return true; 161 162 return false; 163 } 164 165 /* 166 * Print out unreclaimble slabs info when unreclaimable slabs amount is greater 167 * than all user memory (LRU pages) 168 */ 169 static bool is_dump_unreclaim_slabs(void) 170 { 171 unsigned long nr_lru; 172 173 nr_lru = global_node_page_state(NR_ACTIVE_ANON) + 174 global_node_page_state(NR_INACTIVE_ANON) + 175 global_node_page_state(NR_ACTIVE_FILE) + 176 global_node_page_state(NR_INACTIVE_FILE) + 177 global_node_page_state(NR_ISOLATED_ANON) + 178 global_node_page_state(NR_ISOLATED_FILE) + 179 global_node_page_state(NR_UNEVICTABLE); 180 181 return (global_node_page_state(NR_SLAB_UNRECLAIMABLE) > nr_lru); 182 } 183 184 /** 185 * oom_badness - heuristic function to determine which candidate task to kill 186 * @p: task struct of which task we should calculate 187 * @totalpages: total present RAM allowed for page allocation 188 * 189 * The heuristic for determining which task to kill is made to be as simple and 190 * predictable as possible. The goal is to return the highest value for the 191 * task consuming the most memory to avoid subsequent oom failures. 192 */ 193 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg, 194 const nodemask_t *nodemask, unsigned long totalpages) 195 { 196 long points; 197 long adj; 198 199 if (oom_unkillable_task(p, memcg, nodemask)) 200 return 0; 201 202 p = find_lock_task_mm(p); 203 if (!p) 204 return 0; 205 206 /* 207 * Do not even consider tasks which are explicitly marked oom 208 * unkillable or have been already oom reaped or the are in 209 * the middle of vfork 210 */ 211 adj = (long)p->signal->oom_score_adj; 212 if (adj == OOM_SCORE_ADJ_MIN || 213 test_bit(MMF_OOM_SKIP, &p->mm->flags) || 214 in_vfork(p)) { 215 task_unlock(p); 216 return 0; 217 } 218 219 /* 220 * The baseline for the badness score is the proportion of RAM that each 221 * task's rss, pagetable and swap space use. 222 */ 223 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) + 224 mm_pgtables_bytes(p->mm) / PAGE_SIZE; 225 task_unlock(p); 226 227 /* 228 * Root processes get 3% bonus, just like the __vm_enough_memory() 229 * implementation used by LSMs. 230 */ 231 if (has_capability_noaudit(p, CAP_SYS_ADMIN)) 232 points -= (points * 3) / 100; 233 234 /* Normalize to oom_score_adj units */ 235 adj *= totalpages / 1000; 236 points += adj; 237 238 /* 239 * Never return 0 for an eligible task regardless of the root bonus and 240 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here). 241 */ 242 return points > 0 ? points : 1; 243 } 244 245 enum oom_constraint { 246 CONSTRAINT_NONE, 247 CONSTRAINT_CPUSET, 248 CONSTRAINT_MEMORY_POLICY, 249 CONSTRAINT_MEMCG, 250 }; 251 252 /* 253 * Determine the type of allocation constraint. 254 */ 255 static enum oom_constraint constrained_alloc(struct oom_control *oc) 256 { 257 struct zone *zone; 258 struct zoneref *z; 259 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask); 260 bool cpuset_limited = false; 261 int nid; 262 263 if (is_memcg_oom(oc)) { 264 oc->totalpages = mem_cgroup_get_limit(oc->memcg) ?: 1; 265 return CONSTRAINT_MEMCG; 266 } 267 268 /* Default to all available memory */ 269 oc->totalpages = totalram_pages + total_swap_pages; 270 271 if (!IS_ENABLED(CONFIG_NUMA)) 272 return CONSTRAINT_NONE; 273 274 if (!oc->zonelist) 275 return CONSTRAINT_NONE; 276 /* 277 * Reach here only when __GFP_NOFAIL is used. So, we should avoid 278 * to kill current.We have to random task kill in this case. 279 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. 280 */ 281 if (oc->gfp_mask & __GFP_THISNODE) 282 return CONSTRAINT_NONE; 283 284 /* 285 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in 286 * the page allocator means a mempolicy is in effect. Cpuset policy 287 * is enforced in get_page_from_freelist(). 288 */ 289 if (oc->nodemask && 290 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) { 291 oc->totalpages = total_swap_pages; 292 for_each_node_mask(nid, *oc->nodemask) 293 oc->totalpages += node_spanned_pages(nid); 294 return CONSTRAINT_MEMORY_POLICY; 295 } 296 297 /* Check this allocation failure is caused by cpuset's wall function */ 298 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist, 299 high_zoneidx, oc->nodemask) 300 if (!cpuset_zone_allowed(zone, oc->gfp_mask)) 301 cpuset_limited = true; 302 303 if (cpuset_limited) { 304 oc->totalpages = total_swap_pages; 305 for_each_node_mask(nid, cpuset_current_mems_allowed) 306 oc->totalpages += node_spanned_pages(nid); 307 return CONSTRAINT_CPUSET; 308 } 309 return CONSTRAINT_NONE; 310 } 311 312 static int oom_evaluate_task(struct task_struct *task, void *arg) 313 { 314 struct oom_control *oc = arg; 315 unsigned long points; 316 317 if (oom_unkillable_task(task, NULL, oc->nodemask)) 318 goto next; 319 320 /* 321 * This task already has access to memory reserves and is being killed. 322 * Don't allow any other task to have access to the reserves unless 323 * the task has MMF_OOM_SKIP because chances that it would release 324 * any memory is quite low. 325 */ 326 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) { 327 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags)) 328 goto next; 329 goto abort; 330 } 331 332 /* 333 * If task is allocating a lot of memory and has been marked to be 334 * killed first if it triggers an oom, then select it. 335 */ 336 if (oom_task_origin(task)) { 337 points = ULONG_MAX; 338 goto select; 339 } 340 341 points = oom_badness(task, NULL, oc->nodemask, oc->totalpages); 342 if (!points || points < oc->chosen_points) 343 goto next; 344 345 /* Prefer thread group leaders for display purposes */ 346 if (points == oc->chosen_points && thread_group_leader(oc->chosen)) 347 goto next; 348 select: 349 if (oc->chosen) 350 put_task_struct(oc->chosen); 351 get_task_struct(task); 352 oc->chosen = task; 353 oc->chosen_points = points; 354 next: 355 return 0; 356 abort: 357 if (oc->chosen) 358 put_task_struct(oc->chosen); 359 oc->chosen = (void *)-1UL; 360 return 1; 361 } 362 363 /* 364 * Simple selection loop. We choose the process with the highest number of 365 * 'points'. In case scan was aborted, oc->chosen is set to -1. 366 */ 367 static void select_bad_process(struct oom_control *oc) 368 { 369 if (is_memcg_oom(oc)) 370 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc); 371 else { 372 struct task_struct *p; 373 374 rcu_read_lock(); 375 for_each_process(p) 376 if (oom_evaluate_task(p, oc)) 377 break; 378 rcu_read_unlock(); 379 } 380 381 oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages; 382 } 383 384 /** 385 * dump_tasks - dump current memory state of all system tasks 386 * @memcg: current's memory controller, if constrained 387 * @nodemask: nodemask passed to page allocator for mempolicy ooms 388 * 389 * Dumps the current memory state of all eligible tasks. Tasks not in the same 390 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes 391 * are not shown. 392 * State information includes task's pid, uid, tgid, vm size, rss, 393 * pgtables_bytes, swapents, oom_score_adj value, and name. 394 */ 395 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask) 396 { 397 struct task_struct *p; 398 struct task_struct *task; 399 400 pr_info("[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name\n"); 401 rcu_read_lock(); 402 for_each_process(p) { 403 if (oom_unkillable_task(p, memcg, nodemask)) 404 continue; 405 406 task = find_lock_task_mm(p); 407 if (!task) { 408 /* 409 * This is a kthread or all of p's threads have already 410 * detached their mm's. There's no need to report 411 * them; they can't be oom killed anyway. 412 */ 413 continue; 414 } 415 416 pr_info("[%5d] %5d %5d %8lu %8lu %8ld %8lu %5hd %s\n", 417 task->pid, from_kuid(&init_user_ns, task_uid(task)), 418 task->tgid, task->mm->total_vm, get_mm_rss(task->mm), 419 mm_pgtables_bytes(task->mm), 420 get_mm_counter(task->mm, MM_SWAPENTS), 421 task->signal->oom_score_adj, task->comm); 422 task_unlock(task); 423 } 424 rcu_read_unlock(); 425 } 426 427 static void dump_header(struct oom_control *oc, struct task_struct *p) 428 { 429 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), nodemask=%*pbl, order=%d, oom_score_adj=%hd\n", 430 current->comm, oc->gfp_mask, &oc->gfp_mask, 431 nodemask_pr_args(oc->nodemask), oc->order, 432 current->signal->oom_score_adj); 433 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order) 434 pr_warn("COMPACTION is disabled!!!\n"); 435 436 cpuset_print_current_mems_allowed(); 437 dump_stack(); 438 if (is_memcg_oom(oc)) 439 mem_cgroup_print_oom_info(oc->memcg, p); 440 else { 441 show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask); 442 if (is_dump_unreclaim_slabs()) 443 dump_unreclaimable_slab(); 444 } 445 if (sysctl_oom_dump_tasks) 446 dump_tasks(oc->memcg, oc->nodemask); 447 } 448 449 /* 450 * Number of OOM victims in flight 451 */ 452 static atomic_t oom_victims = ATOMIC_INIT(0); 453 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait); 454 455 static bool oom_killer_disabled __read_mostly; 456 457 #define K(x) ((x) << (PAGE_SHIFT-10)) 458 459 /* 460 * task->mm can be NULL if the task is the exited group leader. So to 461 * determine whether the task is using a particular mm, we examine all the 462 * task's threads: if one of those is using this mm then this task was also 463 * using it. 464 */ 465 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm) 466 { 467 struct task_struct *t; 468 469 for_each_thread(p, t) { 470 struct mm_struct *t_mm = READ_ONCE(t->mm); 471 if (t_mm) 472 return t_mm == mm; 473 } 474 return false; 475 } 476 477 478 #ifdef CONFIG_MMU 479 /* 480 * OOM Reaper kernel thread which tries to reap the memory used by the OOM 481 * victim (if that is possible) to help the OOM killer to move on. 482 */ 483 static struct task_struct *oom_reaper_th; 484 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait); 485 static struct task_struct *oom_reaper_list; 486 static DEFINE_SPINLOCK(oom_reaper_lock); 487 488 static bool __oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm) 489 { 490 struct mmu_gather tlb; 491 struct vm_area_struct *vma; 492 bool ret = true; 493 494 /* 495 * We have to make sure to not race with the victim exit path 496 * and cause premature new oom victim selection: 497 * __oom_reap_task_mm exit_mm 498 * mmget_not_zero 499 * mmput 500 * atomic_dec_and_test 501 * exit_oom_victim 502 * [...] 503 * out_of_memory 504 * select_bad_process 505 * # no TIF_MEMDIE task selects new victim 506 * unmap_page_range # frees some memory 507 */ 508 mutex_lock(&oom_lock); 509 510 if (!down_read_trylock(&mm->mmap_sem)) { 511 ret = false; 512 trace_skip_task_reaping(tsk->pid); 513 goto unlock_oom; 514 } 515 516 /* 517 * If the mm has notifiers then we would need to invalidate them around 518 * unmap_page_range and that is risky because notifiers can sleep and 519 * what they do is basically undeterministic. So let's have a short 520 * sleep to give the oom victim some more time. 521 * TODO: we really want to get rid of this ugly hack and make sure that 522 * notifiers cannot block for unbounded amount of time and add 523 * mmu_notifier_invalidate_range_{start,end} around unmap_page_range 524 */ 525 if (mm_has_notifiers(mm)) { 526 up_read(&mm->mmap_sem); 527 schedule_timeout_idle(HZ); 528 goto unlock_oom; 529 } 530 531 /* 532 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't 533 * work on the mm anymore. The check for MMF_OOM_SKIP must run 534 * under mmap_sem for reading because it serializes against the 535 * down_write();up_write() cycle in exit_mmap(). 536 */ 537 if (test_bit(MMF_OOM_SKIP, &mm->flags)) { 538 up_read(&mm->mmap_sem); 539 trace_skip_task_reaping(tsk->pid); 540 goto unlock_oom; 541 } 542 543 trace_start_task_reaping(tsk->pid); 544 545 /* 546 * Tell all users of get_user/copy_from_user etc... that the content 547 * is no longer stable. No barriers really needed because unmapping 548 * should imply barriers already and the reader would hit a page fault 549 * if it stumbled over a reaped memory. 550 */ 551 set_bit(MMF_UNSTABLE, &mm->flags); 552 553 for (vma = mm->mmap ; vma; vma = vma->vm_next) { 554 if (!can_madv_dontneed_vma(vma)) 555 continue; 556 557 /* 558 * Only anonymous pages have a good chance to be dropped 559 * without additional steps which we cannot afford as we 560 * are OOM already. 561 * 562 * We do not even care about fs backed pages because all 563 * which are reclaimable have already been reclaimed and 564 * we do not want to block exit_mmap by keeping mm ref 565 * count elevated without a good reason. 566 */ 567 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) { 568 tlb_gather_mmu(&tlb, mm, vma->vm_start, vma->vm_end); 569 unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end, 570 NULL); 571 tlb_finish_mmu(&tlb, vma->vm_start, vma->vm_end); 572 } 573 } 574 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n", 575 task_pid_nr(tsk), tsk->comm, 576 K(get_mm_counter(mm, MM_ANONPAGES)), 577 K(get_mm_counter(mm, MM_FILEPAGES)), 578 K(get_mm_counter(mm, MM_SHMEMPAGES))); 579 up_read(&mm->mmap_sem); 580 581 trace_finish_task_reaping(tsk->pid); 582 unlock_oom: 583 mutex_unlock(&oom_lock); 584 return ret; 585 } 586 587 #define MAX_OOM_REAP_RETRIES 10 588 static void oom_reap_task(struct task_struct *tsk) 589 { 590 int attempts = 0; 591 struct mm_struct *mm = tsk->signal->oom_mm; 592 593 /* Retry the down_read_trylock(mmap_sem) a few times */ 594 while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task_mm(tsk, mm)) 595 schedule_timeout_idle(HZ/10); 596 597 if (attempts <= MAX_OOM_REAP_RETRIES) 598 goto done; 599 600 601 pr_info("oom_reaper: unable to reap pid:%d (%s)\n", 602 task_pid_nr(tsk), tsk->comm); 603 debug_show_all_locks(); 604 605 done: 606 tsk->oom_reaper_list = NULL; 607 608 /* 609 * Hide this mm from OOM killer because it has been either reaped or 610 * somebody can't call up_write(mmap_sem). 611 */ 612 set_bit(MMF_OOM_SKIP, &mm->flags); 613 614 /* Drop a reference taken by wake_oom_reaper */ 615 put_task_struct(tsk); 616 } 617 618 static int oom_reaper(void *unused) 619 { 620 while (true) { 621 struct task_struct *tsk = NULL; 622 623 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL); 624 spin_lock(&oom_reaper_lock); 625 if (oom_reaper_list != NULL) { 626 tsk = oom_reaper_list; 627 oom_reaper_list = tsk->oom_reaper_list; 628 } 629 spin_unlock(&oom_reaper_lock); 630 631 if (tsk) 632 oom_reap_task(tsk); 633 } 634 635 return 0; 636 } 637 638 static void wake_oom_reaper(struct task_struct *tsk) 639 { 640 /* tsk is already queued? */ 641 if (tsk == oom_reaper_list || tsk->oom_reaper_list) 642 return; 643 644 get_task_struct(tsk); 645 646 spin_lock(&oom_reaper_lock); 647 tsk->oom_reaper_list = oom_reaper_list; 648 oom_reaper_list = tsk; 649 spin_unlock(&oom_reaper_lock); 650 trace_wake_reaper(tsk->pid); 651 wake_up(&oom_reaper_wait); 652 } 653 654 static int __init oom_init(void) 655 { 656 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper"); 657 return 0; 658 } 659 subsys_initcall(oom_init) 660 #else 661 static inline void wake_oom_reaper(struct task_struct *tsk) 662 { 663 } 664 #endif /* CONFIG_MMU */ 665 666 /** 667 * mark_oom_victim - mark the given task as OOM victim 668 * @tsk: task to mark 669 * 670 * Has to be called with oom_lock held and never after 671 * oom has been disabled already. 672 * 673 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either 674 * under task_lock or operate on the current). 675 */ 676 static void mark_oom_victim(struct task_struct *tsk) 677 { 678 struct mm_struct *mm = tsk->mm; 679 680 WARN_ON(oom_killer_disabled); 681 /* OOM killer might race with memcg OOM */ 682 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE)) 683 return; 684 685 /* oom_mm is bound to the signal struct life time. */ 686 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) { 687 mmgrab(tsk->signal->oom_mm); 688 set_bit(MMF_OOM_VICTIM, &mm->flags); 689 } 690 691 /* 692 * Make sure that the task is woken up from uninterruptible sleep 693 * if it is frozen because OOM killer wouldn't be able to free 694 * any memory and livelock. freezing_slow_path will tell the freezer 695 * that TIF_MEMDIE tasks should be ignored. 696 */ 697 __thaw_task(tsk); 698 atomic_inc(&oom_victims); 699 trace_mark_victim(tsk->pid); 700 } 701 702 /** 703 * exit_oom_victim - note the exit of an OOM victim 704 */ 705 void exit_oom_victim(void) 706 { 707 clear_thread_flag(TIF_MEMDIE); 708 709 if (!atomic_dec_return(&oom_victims)) 710 wake_up_all(&oom_victims_wait); 711 } 712 713 /** 714 * oom_killer_enable - enable OOM killer 715 */ 716 void oom_killer_enable(void) 717 { 718 oom_killer_disabled = false; 719 pr_info("OOM killer enabled.\n"); 720 } 721 722 /** 723 * oom_killer_disable - disable OOM killer 724 * @timeout: maximum timeout to wait for oom victims in jiffies 725 * 726 * Forces all page allocations to fail rather than trigger OOM killer. 727 * Will block and wait until all OOM victims are killed or the given 728 * timeout expires. 729 * 730 * The function cannot be called when there are runnable user tasks because 731 * the userspace would see unexpected allocation failures as a result. Any 732 * new usage of this function should be consulted with MM people. 733 * 734 * Returns true if successful and false if the OOM killer cannot be 735 * disabled. 736 */ 737 bool oom_killer_disable(signed long timeout) 738 { 739 signed long ret; 740 741 /* 742 * Make sure to not race with an ongoing OOM killer. Check that the 743 * current is not killed (possibly due to sharing the victim's memory). 744 */ 745 if (mutex_lock_killable(&oom_lock)) 746 return false; 747 oom_killer_disabled = true; 748 mutex_unlock(&oom_lock); 749 750 ret = wait_event_interruptible_timeout(oom_victims_wait, 751 !atomic_read(&oom_victims), timeout); 752 if (ret <= 0) { 753 oom_killer_enable(); 754 return false; 755 } 756 pr_info("OOM killer disabled.\n"); 757 758 return true; 759 } 760 761 static inline bool __task_will_free_mem(struct task_struct *task) 762 { 763 struct signal_struct *sig = task->signal; 764 765 /* 766 * A coredumping process may sleep for an extended period in exit_mm(), 767 * so the oom killer cannot assume that the process will promptly exit 768 * and release memory. 769 */ 770 if (sig->flags & SIGNAL_GROUP_COREDUMP) 771 return false; 772 773 if (sig->flags & SIGNAL_GROUP_EXIT) 774 return true; 775 776 if (thread_group_empty(task) && (task->flags & PF_EXITING)) 777 return true; 778 779 return false; 780 } 781 782 /* 783 * Checks whether the given task is dying or exiting and likely to 784 * release its address space. This means that all threads and processes 785 * sharing the same mm have to be killed or exiting. 786 * Caller has to make sure that task->mm is stable (hold task_lock or 787 * it operates on the current). 788 */ 789 static bool task_will_free_mem(struct task_struct *task) 790 { 791 struct mm_struct *mm = task->mm; 792 struct task_struct *p; 793 bool ret = true; 794 795 /* 796 * Skip tasks without mm because it might have passed its exit_mm and 797 * exit_oom_victim. oom_reaper could have rescued that but do not rely 798 * on that for now. We can consider find_lock_task_mm in future. 799 */ 800 if (!mm) 801 return false; 802 803 if (!__task_will_free_mem(task)) 804 return false; 805 806 /* 807 * This task has already been drained by the oom reaper so there are 808 * only small chances it will free some more 809 */ 810 if (test_bit(MMF_OOM_SKIP, &mm->flags)) 811 return false; 812 813 if (atomic_read(&mm->mm_users) <= 1) 814 return true; 815 816 /* 817 * Make sure that all tasks which share the mm with the given tasks 818 * are dying as well to make sure that a) nobody pins its mm and 819 * b) the task is also reapable by the oom reaper. 820 */ 821 rcu_read_lock(); 822 for_each_process(p) { 823 if (!process_shares_mm(p, mm)) 824 continue; 825 if (same_thread_group(task, p)) 826 continue; 827 ret = __task_will_free_mem(p); 828 if (!ret) 829 break; 830 } 831 rcu_read_unlock(); 832 833 return ret; 834 } 835 836 static void oom_kill_process(struct oom_control *oc, const char *message) 837 { 838 struct task_struct *p = oc->chosen; 839 unsigned int points = oc->chosen_points; 840 struct task_struct *victim = p; 841 struct task_struct *child; 842 struct task_struct *t; 843 struct mm_struct *mm; 844 unsigned int victim_points = 0; 845 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL, 846 DEFAULT_RATELIMIT_BURST); 847 bool can_oom_reap = true; 848 849 /* 850 * If the task is already exiting, don't alarm the sysadmin or kill 851 * its children or threads, just give it access to memory reserves 852 * so it can die quickly 853 */ 854 task_lock(p); 855 if (task_will_free_mem(p)) { 856 mark_oom_victim(p); 857 wake_oom_reaper(p); 858 task_unlock(p); 859 put_task_struct(p); 860 return; 861 } 862 task_unlock(p); 863 864 if (__ratelimit(&oom_rs)) 865 dump_header(oc, p); 866 867 pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n", 868 message, task_pid_nr(p), p->comm, points); 869 870 /* 871 * If any of p's children has a different mm and is eligible for kill, 872 * the one with the highest oom_badness() score is sacrificed for its 873 * parent. This attempts to lose the minimal amount of work done while 874 * still freeing memory. 875 */ 876 read_lock(&tasklist_lock); 877 for_each_thread(p, t) { 878 list_for_each_entry(child, &t->children, sibling) { 879 unsigned int child_points; 880 881 if (process_shares_mm(child, p->mm)) 882 continue; 883 /* 884 * oom_badness() returns 0 if the thread is unkillable 885 */ 886 child_points = oom_badness(child, 887 oc->memcg, oc->nodemask, oc->totalpages); 888 if (child_points > victim_points) { 889 put_task_struct(victim); 890 victim = child; 891 victim_points = child_points; 892 get_task_struct(victim); 893 } 894 } 895 } 896 read_unlock(&tasklist_lock); 897 898 p = find_lock_task_mm(victim); 899 if (!p) { 900 put_task_struct(victim); 901 return; 902 } else if (victim != p) { 903 get_task_struct(p); 904 put_task_struct(victim); 905 victim = p; 906 } 907 908 /* Get a reference to safely compare mm after task_unlock(victim) */ 909 mm = victim->mm; 910 mmgrab(mm); 911 912 /* Raise event before sending signal: task reaper must see this */ 913 count_vm_event(OOM_KILL); 914 count_memcg_event_mm(mm, OOM_KILL); 915 916 /* 917 * We should send SIGKILL before granting access to memory reserves 918 * in order to prevent the OOM victim from depleting the memory 919 * reserves from the user space under its control. 920 */ 921 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true); 922 mark_oom_victim(victim); 923 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n", 924 task_pid_nr(victim), victim->comm, K(victim->mm->total_vm), 925 K(get_mm_counter(victim->mm, MM_ANONPAGES)), 926 K(get_mm_counter(victim->mm, MM_FILEPAGES)), 927 K(get_mm_counter(victim->mm, MM_SHMEMPAGES))); 928 task_unlock(victim); 929 930 /* 931 * Kill all user processes sharing victim->mm in other thread groups, if 932 * any. They don't get access to memory reserves, though, to avoid 933 * depletion of all memory. This prevents mm->mmap_sem livelock when an 934 * oom killed thread cannot exit because it requires the semaphore and 935 * its contended by another thread trying to allocate memory itself. 936 * That thread will now get access to memory reserves since it has a 937 * pending fatal signal. 938 */ 939 rcu_read_lock(); 940 for_each_process(p) { 941 if (!process_shares_mm(p, mm)) 942 continue; 943 if (same_thread_group(p, victim)) 944 continue; 945 if (is_global_init(p)) { 946 can_oom_reap = false; 947 set_bit(MMF_OOM_SKIP, &mm->flags); 948 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n", 949 task_pid_nr(victim), victim->comm, 950 task_pid_nr(p), p->comm); 951 continue; 952 } 953 /* 954 * No use_mm() user needs to read from the userspace so we are 955 * ok to reap it. 956 */ 957 if (unlikely(p->flags & PF_KTHREAD)) 958 continue; 959 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true); 960 } 961 rcu_read_unlock(); 962 963 if (can_oom_reap) 964 wake_oom_reaper(victim); 965 966 mmdrop(mm); 967 put_task_struct(victim); 968 } 969 #undef K 970 971 /* 972 * Determines whether the kernel must panic because of the panic_on_oom sysctl. 973 */ 974 static void check_panic_on_oom(struct oom_control *oc, 975 enum oom_constraint constraint) 976 { 977 if (likely(!sysctl_panic_on_oom)) 978 return; 979 if (sysctl_panic_on_oom != 2) { 980 /* 981 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel 982 * does not panic for cpuset, mempolicy, or memcg allocation 983 * failures. 984 */ 985 if (constraint != CONSTRAINT_NONE) 986 return; 987 } 988 /* Do not panic for oom kills triggered by sysrq */ 989 if (is_sysrq_oom(oc)) 990 return; 991 dump_header(oc, NULL); 992 panic("Out of memory: %s panic_on_oom is enabled\n", 993 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); 994 } 995 996 static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 997 998 int register_oom_notifier(struct notifier_block *nb) 999 { 1000 return blocking_notifier_chain_register(&oom_notify_list, nb); 1001 } 1002 EXPORT_SYMBOL_GPL(register_oom_notifier); 1003 1004 int unregister_oom_notifier(struct notifier_block *nb) 1005 { 1006 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 1007 } 1008 EXPORT_SYMBOL_GPL(unregister_oom_notifier); 1009 1010 /** 1011 * out_of_memory - kill the "best" process when we run out of memory 1012 * @oc: pointer to struct oom_control 1013 * 1014 * If we run out of memory, we have the choice between either 1015 * killing a random task (bad), letting the system crash (worse) 1016 * OR try to be smart about which process to kill. Note that we 1017 * don't have to be perfect here, we just have to be good. 1018 */ 1019 bool out_of_memory(struct oom_control *oc) 1020 { 1021 unsigned long freed = 0; 1022 enum oom_constraint constraint = CONSTRAINT_NONE; 1023 1024 if (oom_killer_disabled) 1025 return false; 1026 1027 if (!is_memcg_oom(oc)) { 1028 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 1029 if (freed > 0) 1030 /* Got some memory back in the last second. */ 1031 return true; 1032 } 1033 1034 /* 1035 * If current has a pending SIGKILL or is exiting, then automatically 1036 * select it. The goal is to allow it to allocate so that it may 1037 * quickly exit and free its memory. 1038 */ 1039 if (task_will_free_mem(current)) { 1040 mark_oom_victim(current); 1041 wake_oom_reaper(current); 1042 return true; 1043 } 1044 1045 /* 1046 * The OOM killer does not compensate for IO-less reclaim. 1047 * pagefault_out_of_memory lost its gfp context so we have to 1048 * make sure exclude 0 mask - all other users should have at least 1049 * ___GFP_DIRECT_RECLAIM to get here. 1050 */ 1051 if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS)) 1052 return true; 1053 1054 /* 1055 * Check if there were limitations on the allocation (only relevant for 1056 * NUMA and memcg) that may require different handling. 1057 */ 1058 constraint = constrained_alloc(oc); 1059 if (constraint != CONSTRAINT_MEMORY_POLICY) 1060 oc->nodemask = NULL; 1061 check_panic_on_oom(oc, constraint); 1062 1063 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task && 1064 current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) && 1065 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) { 1066 get_task_struct(current); 1067 oc->chosen = current; 1068 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)"); 1069 return true; 1070 } 1071 1072 select_bad_process(oc); 1073 /* Found nothing?!?! Either we hang forever, or we panic. */ 1074 if (!oc->chosen && !is_sysrq_oom(oc) && !is_memcg_oom(oc)) { 1075 dump_header(oc, NULL); 1076 panic("Out of memory and no killable processes...\n"); 1077 } 1078 if (oc->chosen && oc->chosen != (void *)-1UL) { 1079 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" : 1080 "Memory cgroup out of memory"); 1081 /* 1082 * Give the killed process a good chance to exit before trying 1083 * to allocate memory again. 1084 */ 1085 schedule_timeout_killable(1); 1086 } 1087 return !!oc->chosen; 1088 } 1089 1090 /* 1091 * The pagefault handler calls here because it is out of memory, so kill a 1092 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom 1093 * killing is already in progress so do nothing. 1094 */ 1095 void pagefault_out_of_memory(void) 1096 { 1097 struct oom_control oc = { 1098 .zonelist = NULL, 1099 .nodemask = NULL, 1100 .memcg = NULL, 1101 .gfp_mask = 0, 1102 .order = 0, 1103 }; 1104 1105 if (mem_cgroup_oom_synchronize(true)) 1106 return; 1107 1108 if (!mutex_trylock(&oom_lock)) 1109 return; 1110 out_of_memory(&oc); 1111 mutex_unlock(&oom_lock); 1112 } 1113