xref: /openbmc/linux/mm/oom_kill.c (revision 643d1f7f)
1 /*
2  *  linux/mm/oom_kill.c
3  *
4  *  Copyright (C)  1998,2000  Rik van Riel
5  *	Thanks go out to Claus Fischer for some serious inspiration and
6  *	for goading me into coding this file...
7  *
8  *  The routines in this file are used to kill a process when
9  *  we're seriously out of memory. This gets called from __alloc_pages()
10  *  in mm/page_alloc.c when we really run out of memory.
11  *
12  *  Since we won't call these routines often (on a well-configured
13  *  machine) this file will double as a 'coding guide' and a signpost
14  *  for newbie kernel hackers. It features several pointers to major
15  *  kernel subsystems and hints as to where to find out what things do.
16  */
17 
18 #include <linux/oom.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/sched.h>
22 #include <linux/swap.h>
23 #include <linux/timex.h>
24 #include <linux/jiffies.h>
25 #include <linux/cpuset.h>
26 #include <linux/module.h>
27 #include <linux/notifier.h>
28 
29 int sysctl_panic_on_oom;
30 int sysctl_oom_kill_allocating_task;
31 static DEFINE_SPINLOCK(zone_scan_mutex);
32 /* #define DEBUG */
33 
34 /**
35  * badness - calculate a numeric value for how bad this task has been
36  * @p: task struct of which task we should calculate
37  * @uptime: current uptime in seconds
38  *
39  * The formula used is relatively simple and documented inline in the
40  * function. The main rationale is that we want to select a good task
41  * to kill when we run out of memory.
42  *
43  * Good in this context means that:
44  * 1) we lose the minimum amount of work done
45  * 2) we recover a large amount of memory
46  * 3) we don't kill anything innocent of eating tons of memory
47  * 4) we want to kill the minimum amount of processes (one)
48  * 5) we try to kill the process the user expects us to kill, this
49  *    algorithm has been meticulously tuned to meet the principle
50  *    of least surprise ... (be careful when you change it)
51  */
52 
53 unsigned long badness(struct task_struct *p, unsigned long uptime)
54 {
55 	unsigned long points, cpu_time, run_time, s;
56 	struct mm_struct *mm;
57 	struct task_struct *child;
58 
59 	task_lock(p);
60 	mm = p->mm;
61 	if (!mm) {
62 		task_unlock(p);
63 		return 0;
64 	}
65 
66 	/*
67 	 * The memory size of the process is the basis for the badness.
68 	 */
69 	points = mm->total_vm;
70 
71 	/*
72 	 * After this unlock we can no longer dereference local variable `mm'
73 	 */
74 	task_unlock(p);
75 
76 	/*
77 	 * swapoff can easily use up all memory, so kill those first.
78 	 */
79 	if (p->flags & PF_SWAPOFF)
80 		return ULONG_MAX;
81 
82 	/*
83 	 * Processes which fork a lot of child processes are likely
84 	 * a good choice. We add half the vmsize of the children if they
85 	 * have an own mm. This prevents forking servers to flood the
86 	 * machine with an endless amount of children. In case a single
87 	 * child is eating the vast majority of memory, adding only half
88 	 * to the parents will make the child our kill candidate of choice.
89 	 */
90 	list_for_each_entry(child, &p->children, sibling) {
91 		task_lock(child);
92 		if (child->mm != mm && child->mm)
93 			points += child->mm->total_vm/2 + 1;
94 		task_unlock(child);
95 	}
96 
97 	/*
98 	 * CPU time is in tens of seconds and run time is in thousands
99          * of seconds. There is no particular reason for this other than
100          * that it turned out to work very well in practice.
101 	 */
102 	cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
103 		>> (SHIFT_HZ + 3);
104 
105 	if (uptime >= p->start_time.tv_sec)
106 		run_time = (uptime - p->start_time.tv_sec) >> 10;
107 	else
108 		run_time = 0;
109 
110 	s = int_sqrt(cpu_time);
111 	if (s)
112 		points /= s;
113 	s = int_sqrt(int_sqrt(run_time));
114 	if (s)
115 		points /= s;
116 
117 	/*
118 	 * Niced processes are most likely less important, so double
119 	 * their badness points.
120 	 */
121 	if (task_nice(p) > 0)
122 		points *= 2;
123 
124 	/*
125 	 * Superuser processes are usually more important, so we make it
126 	 * less likely that we kill those.
127 	 */
128 	if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_ADMIN) ||
129 				p->uid == 0 || p->euid == 0)
130 		points /= 4;
131 
132 	/*
133 	 * We don't want to kill a process with direct hardware access.
134 	 * Not only could that mess up the hardware, but usually users
135 	 * tend to only have this flag set on applications they think
136 	 * of as important.
137 	 */
138 	if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO))
139 		points /= 4;
140 
141 	/*
142 	 * If p's nodes don't overlap ours, it may still help to kill p
143 	 * because p may have allocated or otherwise mapped memory on
144 	 * this node before. However it will be less likely.
145 	 */
146 	if (!cpuset_mems_allowed_intersects(current, p))
147 		points /= 8;
148 
149 	/*
150 	 * Adjust the score by oomkilladj.
151 	 */
152 	if (p->oomkilladj) {
153 		if (p->oomkilladj > 0) {
154 			if (!points)
155 				points = 1;
156 			points <<= p->oomkilladj;
157 		} else
158 			points >>= -(p->oomkilladj);
159 	}
160 
161 #ifdef DEBUG
162 	printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
163 	p->pid, p->comm, points);
164 #endif
165 	return points;
166 }
167 
168 /*
169  * Determine the type of allocation constraint.
170  */
171 static inline enum oom_constraint constrained_alloc(struct zonelist *zonelist,
172 						    gfp_t gfp_mask)
173 {
174 #ifdef CONFIG_NUMA
175 	struct zone **z;
176 	nodemask_t nodes = node_states[N_HIGH_MEMORY];
177 
178 	for (z = zonelist->zones; *z; z++)
179 		if (cpuset_zone_allowed_softwall(*z, gfp_mask))
180 			node_clear(zone_to_nid(*z), nodes);
181 		else
182 			return CONSTRAINT_CPUSET;
183 
184 	if (!nodes_empty(nodes))
185 		return CONSTRAINT_MEMORY_POLICY;
186 #endif
187 
188 	return CONSTRAINT_NONE;
189 }
190 
191 /*
192  * Simple selection loop. We chose the process with the highest
193  * number of 'points'. We expect the caller will lock the tasklist.
194  *
195  * (not docbooked, we don't want this one cluttering up the manual)
196  */
197 static struct task_struct *select_bad_process(unsigned long *ppoints)
198 {
199 	struct task_struct *g, *p;
200 	struct task_struct *chosen = NULL;
201 	struct timespec uptime;
202 	*ppoints = 0;
203 
204 	do_posix_clock_monotonic_gettime(&uptime);
205 	do_each_thread(g, p) {
206 		unsigned long points;
207 
208 		/*
209 		 * skip kernel threads and tasks which have already released
210 		 * their mm.
211 		 */
212 		if (!p->mm)
213 			continue;
214 		/* skip the init task */
215 		if (is_global_init(p))
216 			continue;
217 
218 		/*
219 		 * This task already has access to memory reserves and is
220 		 * being killed. Don't allow any other task access to the
221 		 * memory reserve.
222 		 *
223 		 * Note: this may have a chance of deadlock if it gets
224 		 * blocked waiting for another task which itself is waiting
225 		 * for memory. Is there a better alternative?
226 		 */
227 		if (test_tsk_thread_flag(p, TIF_MEMDIE))
228 			return ERR_PTR(-1UL);
229 
230 		/*
231 		 * This is in the process of releasing memory so wait for it
232 		 * to finish before killing some other task by mistake.
233 		 *
234 		 * However, if p is the current task, we allow the 'kill' to
235 		 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
236 		 * which will allow it to gain access to memory reserves in
237 		 * the process of exiting and releasing its resources.
238 		 * Otherwise we could get an easy OOM deadlock.
239 		 */
240 		if (p->flags & PF_EXITING) {
241 			if (p != current)
242 				return ERR_PTR(-1UL);
243 
244 			chosen = p;
245 			*ppoints = ULONG_MAX;
246 		}
247 
248 		if (p->oomkilladj == OOM_DISABLE)
249 			continue;
250 
251 		points = badness(p, uptime.tv_sec);
252 		if (points > *ppoints || !chosen) {
253 			chosen = p;
254 			*ppoints = points;
255 		}
256 	} while_each_thread(g, p);
257 
258 	return chosen;
259 }
260 
261 /**
262  * Send SIGKILL to the selected  process irrespective of  CAP_SYS_RAW_IO
263  * flag though it's unlikely that  we select a process with CAP_SYS_RAW_IO
264  * set.
265  */
266 static void __oom_kill_task(struct task_struct *p, int verbose)
267 {
268 	if (is_global_init(p)) {
269 		WARN_ON(1);
270 		printk(KERN_WARNING "tried to kill init!\n");
271 		return;
272 	}
273 
274 	if (!p->mm) {
275 		WARN_ON(1);
276 		printk(KERN_WARNING "tried to kill an mm-less task!\n");
277 		return;
278 	}
279 
280 	if (verbose)
281 		printk(KERN_ERR "Killed process %d (%s)\n",
282 				task_pid_nr(p), p->comm);
283 
284 	/*
285 	 * We give our sacrificial lamb high priority and access to
286 	 * all the memory it needs. That way it should be able to
287 	 * exit() and clear out its resources quickly...
288 	 */
289 	p->rt.time_slice = HZ;
290 	set_tsk_thread_flag(p, TIF_MEMDIE);
291 
292 	force_sig(SIGKILL, p);
293 }
294 
295 static int oom_kill_task(struct task_struct *p)
296 {
297 	struct mm_struct *mm;
298 	struct task_struct *g, *q;
299 
300 	mm = p->mm;
301 
302 	/* WARNING: mm may not be dereferenced since we did not obtain its
303 	 * value from get_task_mm(p).  This is OK since all we need to do is
304 	 * compare mm to q->mm below.
305 	 *
306 	 * Furthermore, even if mm contains a non-NULL value, p->mm may
307 	 * change to NULL at any time since we do not hold task_lock(p).
308 	 * However, this is of no concern to us.
309 	 */
310 
311 	if (mm == NULL)
312 		return 1;
313 
314 	/*
315 	 * Don't kill the process if any threads are set to OOM_DISABLE
316 	 */
317 	do_each_thread(g, q) {
318 		if (q->mm == mm && q->oomkilladj == OOM_DISABLE)
319 			return 1;
320 	} while_each_thread(g, q);
321 
322 	__oom_kill_task(p, 1);
323 
324 	/*
325 	 * kill all processes that share the ->mm (i.e. all threads),
326 	 * but are in a different thread group. Don't let them have access
327 	 * to memory reserves though, otherwise we might deplete all memory.
328 	 */
329 	do_each_thread(g, q) {
330 		if (q->mm == mm && !same_thread_group(q, p))
331 			force_sig(SIGKILL, q);
332 	} while_each_thread(g, q);
333 
334 	return 0;
335 }
336 
337 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
338 			    unsigned long points, const char *message)
339 {
340 	struct task_struct *c;
341 
342 	if (printk_ratelimit()) {
343 		printk(KERN_WARNING "%s invoked oom-killer: "
344 			"gfp_mask=0x%x, order=%d, oomkilladj=%d\n",
345 			current->comm, gfp_mask, order, current->oomkilladj);
346 		dump_stack();
347 		show_mem();
348 	}
349 
350 	/*
351 	 * If the task is already exiting, don't alarm the sysadmin or kill
352 	 * its children or threads, just set TIF_MEMDIE so it can die quickly
353 	 */
354 	if (p->flags & PF_EXITING) {
355 		__oom_kill_task(p, 0);
356 		return 0;
357 	}
358 
359 	printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
360 					message, task_pid_nr(p), p->comm, points);
361 
362 	/* Try to kill a child first */
363 	list_for_each_entry(c, &p->children, sibling) {
364 		if (c->mm == p->mm)
365 			continue;
366 		if (!oom_kill_task(c))
367 			return 0;
368 	}
369 	return oom_kill_task(p);
370 }
371 
372 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
373 
374 int register_oom_notifier(struct notifier_block *nb)
375 {
376 	return blocking_notifier_chain_register(&oom_notify_list, nb);
377 }
378 EXPORT_SYMBOL_GPL(register_oom_notifier);
379 
380 int unregister_oom_notifier(struct notifier_block *nb)
381 {
382 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
383 }
384 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
385 
386 /*
387  * Try to acquire the OOM killer lock for the zones in zonelist.  Returns zero
388  * if a parallel OOM killing is already taking place that includes a zone in
389  * the zonelist.  Otherwise, locks all zones in the zonelist and returns 1.
390  */
391 int try_set_zone_oom(struct zonelist *zonelist)
392 {
393 	struct zone **z;
394 	int ret = 1;
395 
396 	z = zonelist->zones;
397 
398 	spin_lock(&zone_scan_mutex);
399 	do {
400 		if (zone_is_oom_locked(*z)) {
401 			ret = 0;
402 			goto out;
403 		}
404 	} while (*(++z) != NULL);
405 
406 	/*
407 	 * Lock each zone in the zonelist under zone_scan_mutex so a parallel
408 	 * invocation of try_set_zone_oom() doesn't succeed when it shouldn't.
409 	 */
410 	z = zonelist->zones;
411 	do {
412 		zone_set_flag(*z, ZONE_OOM_LOCKED);
413 	} while (*(++z) != NULL);
414 out:
415 	spin_unlock(&zone_scan_mutex);
416 	return ret;
417 }
418 
419 /*
420  * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
421  * allocation attempts with zonelists containing them may now recall the OOM
422  * killer, if necessary.
423  */
424 void clear_zonelist_oom(struct zonelist *zonelist)
425 {
426 	struct zone **z;
427 
428 	z = zonelist->zones;
429 
430 	spin_lock(&zone_scan_mutex);
431 	do {
432 		zone_clear_flag(*z, ZONE_OOM_LOCKED);
433 	} while (*(++z) != NULL);
434 	spin_unlock(&zone_scan_mutex);
435 }
436 
437 /**
438  * out_of_memory - kill the "best" process when we run out of memory
439  *
440  * If we run out of memory, we have the choice between either
441  * killing a random task (bad), letting the system crash (worse)
442  * OR try to be smart about which process to kill. Note that we
443  * don't have to be perfect here, we just have to be good.
444  */
445 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
446 {
447 	struct task_struct *p;
448 	unsigned long points = 0;
449 	unsigned long freed = 0;
450 	enum oom_constraint constraint;
451 
452 	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
453 	if (freed > 0)
454 		/* Got some memory back in the last second. */
455 		return;
456 
457 	if (sysctl_panic_on_oom == 2)
458 		panic("out of memory. Compulsory panic_on_oom is selected.\n");
459 
460 	/*
461 	 * Check if there were limitations on the allocation (only relevant for
462 	 * NUMA) that may require different handling.
463 	 */
464 	constraint = constrained_alloc(zonelist, gfp_mask);
465 	read_lock(&tasklist_lock);
466 
467 	switch (constraint) {
468 	case CONSTRAINT_MEMORY_POLICY:
469 		oom_kill_process(current, gfp_mask, order, points,
470 				"No available memory (MPOL_BIND)");
471 		break;
472 
473 	case CONSTRAINT_NONE:
474 		if (sysctl_panic_on_oom)
475 			panic("out of memory. panic_on_oom is selected\n");
476 		/* Fall-through */
477 	case CONSTRAINT_CPUSET:
478 		if (sysctl_oom_kill_allocating_task) {
479 			oom_kill_process(current, gfp_mask, order, points,
480 					"Out of memory (oom_kill_allocating_task)");
481 			break;
482 		}
483 retry:
484 		/*
485 		 * Rambo mode: Shoot down a process and hope it solves whatever
486 		 * issues we may have.
487 		 */
488 		p = select_bad_process(&points);
489 
490 		if (PTR_ERR(p) == -1UL)
491 			goto out;
492 
493 		/* Found nothing?!?! Either we hang forever, or we panic. */
494 		if (!p) {
495 			read_unlock(&tasklist_lock);
496 			panic("Out of memory and no killable processes...\n");
497 		}
498 
499 		if (oom_kill_process(p, gfp_mask, order, points,
500 				     "Out of memory"))
501 			goto retry;
502 
503 		break;
504 	}
505 
506 out:
507 	read_unlock(&tasklist_lock);
508 
509 	/*
510 	 * Give "p" a good chance of killing itself before we
511 	 * retry to allocate memory unless "p" is current
512 	 */
513 	if (!test_thread_flag(TIF_MEMDIE))
514 		schedule_timeout_uninterruptible(1);
515 }
516