1 /* 2 * linux/mm/oom_kill.c 3 * 4 * Copyright (C) 1998,2000 Rik van Riel 5 * Thanks go out to Claus Fischer for some serious inspiration and 6 * for goading me into coding this file... 7 * Copyright (C) 2010 Google, Inc. 8 * Rewritten by David Rientjes 9 * 10 * The routines in this file are used to kill a process when 11 * we're seriously out of memory. This gets called from __alloc_pages() 12 * in mm/page_alloc.c when we really run out of memory. 13 * 14 * Since we won't call these routines often (on a well-configured 15 * machine) this file will double as a 'coding guide' and a signpost 16 * for newbie kernel hackers. It features several pointers to major 17 * kernel subsystems and hints as to where to find out what things do. 18 */ 19 20 #include <linux/oom.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/gfp.h> 24 #include <linux/sched.h> 25 #include <linux/swap.h> 26 #include <linux/timex.h> 27 #include <linux/jiffies.h> 28 #include <linux/cpuset.h> 29 #include <linux/export.h> 30 #include <linux/notifier.h> 31 #include <linux/memcontrol.h> 32 #include <linux/mempolicy.h> 33 #include <linux/security.h> 34 #include <linux/ptrace.h> 35 #include <linux/freezer.h> 36 #include <linux/ftrace.h> 37 #include <linux/ratelimit.h> 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/oom.h> 41 42 int sysctl_panic_on_oom; 43 int sysctl_oom_kill_allocating_task; 44 int sysctl_oom_dump_tasks = 1; 45 static DEFINE_SPINLOCK(zone_scan_lock); 46 47 /* 48 * compare_swap_oom_score_adj() - compare and swap current's oom_score_adj 49 * @old_val: old oom_score_adj for compare 50 * @new_val: new oom_score_adj for swap 51 * 52 * Sets the oom_score_adj value for current to @new_val iff its present value is 53 * @old_val. Usually used to reinstate a previous value to prevent racing with 54 * userspacing tuning the value in the interim. 55 */ 56 void compare_swap_oom_score_adj(int old_val, int new_val) 57 { 58 struct sighand_struct *sighand = current->sighand; 59 60 spin_lock_irq(&sighand->siglock); 61 if (current->signal->oom_score_adj == old_val) 62 current->signal->oom_score_adj = new_val; 63 trace_oom_score_adj_update(current); 64 spin_unlock_irq(&sighand->siglock); 65 } 66 67 /** 68 * test_set_oom_score_adj() - set current's oom_score_adj and return old value 69 * @new_val: new oom_score_adj value 70 * 71 * Sets the oom_score_adj value for current to @new_val with proper 72 * synchronization and returns the old value. Usually used to temporarily 73 * set a value, save the old value in the caller, and then reinstate it later. 74 */ 75 int test_set_oom_score_adj(int new_val) 76 { 77 struct sighand_struct *sighand = current->sighand; 78 int old_val; 79 80 spin_lock_irq(&sighand->siglock); 81 old_val = current->signal->oom_score_adj; 82 current->signal->oom_score_adj = new_val; 83 trace_oom_score_adj_update(current); 84 spin_unlock_irq(&sighand->siglock); 85 86 return old_val; 87 } 88 89 #ifdef CONFIG_NUMA 90 /** 91 * has_intersects_mems_allowed() - check task eligiblity for kill 92 * @tsk: task struct of which task to consider 93 * @mask: nodemask passed to page allocator for mempolicy ooms 94 * 95 * Task eligibility is determined by whether or not a candidate task, @tsk, 96 * shares the same mempolicy nodes as current if it is bound by such a policy 97 * and whether or not it has the same set of allowed cpuset nodes. 98 */ 99 static bool has_intersects_mems_allowed(struct task_struct *tsk, 100 const nodemask_t *mask) 101 { 102 struct task_struct *start = tsk; 103 104 do { 105 if (mask) { 106 /* 107 * If this is a mempolicy constrained oom, tsk's 108 * cpuset is irrelevant. Only return true if its 109 * mempolicy intersects current, otherwise it may be 110 * needlessly killed. 111 */ 112 if (mempolicy_nodemask_intersects(tsk, mask)) 113 return true; 114 } else { 115 /* 116 * This is not a mempolicy constrained oom, so only 117 * check the mems of tsk's cpuset. 118 */ 119 if (cpuset_mems_allowed_intersects(current, tsk)) 120 return true; 121 } 122 } while_each_thread(start, tsk); 123 124 return false; 125 } 126 #else 127 static bool has_intersects_mems_allowed(struct task_struct *tsk, 128 const nodemask_t *mask) 129 { 130 return true; 131 } 132 #endif /* CONFIG_NUMA */ 133 134 /* 135 * The process p may have detached its own ->mm while exiting or through 136 * use_mm(), but one or more of its subthreads may still have a valid 137 * pointer. Return p, or any of its subthreads with a valid ->mm, with 138 * task_lock() held. 139 */ 140 struct task_struct *find_lock_task_mm(struct task_struct *p) 141 { 142 struct task_struct *t = p; 143 144 do { 145 task_lock(t); 146 if (likely(t->mm)) 147 return t; 148 task_unlock(t); 149 } while_each_thread(p, t); 150 151 return NULL; 152 } 153 154 /* return true if the task is not adequate as candidate victim task. */ 155 static bool oom_unkillable_task(struct task_struct *p, 156 const struct mem_cgroup *memcg, const nodemask_t *nodemask) 157 { 158 if (is_global_init(p)) 159 return true; 160 if (p->flags & PF_KTHREAD) 161 return true; 162 163 /* When mem_cgroup_out_of_memory() and p is not member of the group */ 164 if (memcg && !task_in_mem_cgroup(p, memcg)) 165 return true; 166 167 /* p may not have freeable memory in nodemask */ 168 if (!has_intersects_mems_allowed(p, nodemask)) 169 return true; 170 171 return false; 172 } 173 174 /** 175 * oom_badness - heuristic function to determine which candidate task to kill 176 * @p: task struct of which task we should calculate 177 * @totalpages: total present RAM allowed for page allocation 178 * 179 * The heuristic for determining which task to kill is made to be as simple and 180 * predictable as possible. The goal is to return the highest value for the 181 * task consuming the most memory to avoid subsequent oom failures. 182 */ 183 unsigned int oom_badness(struct task_struct *p, struct mem_cgroup *memcg, 184 const nodemask_t *nodemask, unsigned long totalpages) 185 { 186 long points; 187 188 if (oom_unkillable_task(p, memcg, nodemask)) 189 return 0; 190 191 p = find_lock_task_mm(p); 192 if (!p) 193 return 0; 194 195 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) { 196 task_unlock(p); 197 return 0; 198 } 199 200 /* 201 * The memory controller may have a limit of 0 bytes, so avoid a divide 202 * by zero, if necessary. 203 */ 204 if (!totalpages) 205 totalpages = 1; 206 207 /* 208 * The baseline for the badness score is the proportion of RAM that each 209 * task's rss, pagetable and swap space use. 210 */ 211 points = get_mm_rss(p->mm) + p->mm->nr_ptes; 212 points += get_mm_counter(p->mm, MM_SWAPENTS); 213 214 points *= 1000; 215 points /= totalpages; 216 task_unlock(p); 217 218 /* 219 * Root processes get 3% bonus, just like the __vm_enough_memory() 220 * implementation used by LSMs. 221 */ 222 if (has_capability_noaudit(p, CAP_SYS_ADMIN)) 223 points -= 30; 224 225 /* 226 * /proc/pid/oom_score_adj ranges from -1000 to +1000 such that it may 227 * either completely disable oom killing or always prefer a certain 228 * task. 229 */ 230 points += p->signal->oom_score_adj; 231 232 /* 233 * Never return 0 for an eligible task that may be killed since it's 234 * possible that no single user task uses more than 0.1% of memory and 235 * no single admin tasks uses more than 3.0%. 236 */ 237 if (points <= 0) 238 return 1; 239 return (points < 1000) ? points : 1000; 240 } 241 242 /* 243 * Determine the type of allocation constraint. 244 */ 245 #ifdef CONFIG_NUMA 246 static enum oom_constraint constrained_alloc(struct zonelist *zonelist, 247 gfp_t gfp_mask, nodemask_t *nodemask, 248 unsigned long *totalpages) 249 { 250 struct zone *zone; 251 struct zoneref *z; 252 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 253 bool cpuset_limited = false; 254 int nid; 255 256 /* Default to all available memory */ 257 *totalpages = totalram_pages + total_swap_pages; 258 259 if (!zonelist) 260 return CONSTRAINT_NONE; 261 /* 262 * Reach here only when __GFP_NOFAIL is used. So, we should avoid 263 * to kill current.We have to random task kill in this case. 264 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. 265 */ 266 if (gfp_mask & __GFP_THISNODE) 267 return CONSTRAINT_NONE; 268 269 /* 270 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in 271 * the page allocator means a mempolicy is in effect. Cpuset policy 272 * is enforced in get_page_from_freelist(). 273 */ 274 if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask)) { 275 *totalpages = total_swap_pages; 276 for_each_node_mask(nid, *nodemask) 277 *totalpages += node_spanned_pages(nid); 278 return CONSTRAINT_MEMORY_POLICY; 279 } 280 281 /* Check this allocation failure is caused by cpuset's wall function */ 282 for_each_zone_zonelist_nodemask(zone, z, zonelist, 283 high_zoneidx, nodemask) 284 if (!cpuset_zone_allowed_softwall(zone, gfp_mask)) 285 cpuset_limited = true; 286 287 if (cpuset_limited) { 288 *totalpages = total_swap_pages; 289 for_each_node_mask(nid, cpuset_current_mems_allowed) 290 *totalpages += node_spanned_pages(nid); 291 return CONSTRAINT_CPUSET; 292 } 293 return CONSTRAINT_NONE; 294 } 295 #else 296 static enum oom_constraint constrained_alloc(struct zonelist *zonelist, 297 gfp_t gfp_mask, nodemask_t *nodemask, 298 unsigned long *totalpages) 299 { 300 *totalpages = totalram_pages + total_swap_pages; 301 return CONSTRAINT_NONE; 302 } 303 #endif 304 305 /* 306 * Simple selection loop. We chose the process with the highest 307 * number of 'points'. We expect the caller will lock the tasklist. 308 * 309 * (not docbooked, we don't want this one cluttering up the manual) 310 */ 311 static struct task_struct *select_bad_process(unsigned int *ppoints, 312 unsigned long totalpages, struct mem_cgroup *memcg, 313 const nodemask_t *nodemask, bool force_kill) 314 { 315 struct task_struct *g, *p; 316 struct task_struct *chosen = NULL; 317 *ppoints = 0; 318 319 do_each_thread(g, p) { 320 unsigned int points; 321 322 if (p->exit_state) 323 continue; 324 if (oom_unkillable_task(p, memcg, nodemask)) 325 continue; 326 327 /* 328 * This task already has access to memory reserves and is 329 * being killed. Don't allow any other task access to the 330 * memory reserve. 331 * 332 * Note: this may have a chance of deadlock if it gets 333 * blocked waiting for another task which itself is waiting 334 * for memory. Is there a better alternative? 335 */ 336 if (test_tsk_thread_flag(p, TIF_MEMDIE)) { 337 if (unlikely(frozen(p))) 338 __thaw_task(p); 339 if (!force_kill) 340 return ERR_PTR(-1UL); 341 } 342 if (!p->mm) 343 continue; 344 345 if (p->flags & PF_EXITING) { 346 /* 347 * If p is the current task and is in the process of 348 * releasing memory, we allow the "kill" to set 349 * TIF_MEMDIE, which will allow it to gain access to 350 * memory reserves. Otherwise, it may stall forever. 351 * 352 * The loop isn't broken here, however, in case other 353 * threads are found to have already been oom killed. 354 */ 355 if (p == current) { 356 chosen = p; 357 *ppoints = 1000; 358 } else if (!force_kill) { 359 /* 360 * If this task is not being ptraced on exit, 361 * then wait for it to finish before killing 362 * some other task unnecessarily. 363 */ 364 if (!(p->group_leader->ptrace & PT_TRACE_EXIT)) 365 return ERR_PTR(-1UL); 366 } 367 } 368 369 points = oom_badness(p, memcg, nodemask, totalpages); 370 if (points > *ppoints) { 371 chosen = p; 372 *ppoints = points; 373 } 374 } while_each_thread(g, p); 375 376 return chosen; 377 } 378 379 /** 380 * dump_tasks - dump current memory state of all system tasks 381 * @mem: current's memory controller, if constrained 382 * @nodemask: nodemask passed to page allocator for mempolicy ooms 383 * 384 * Dumps the current memory state of all eligible tasks. Tasks not in the same 385 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes 386 * are not shown. 387 * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj 388 * value, oom_score_adj value, and name. 389 * 390 * Call with tasklist_lock read-locked. 391 */ 392 static void dump_tasks(const struct mem_cgroup *memcg, const nodemask_t *nodemask) 393 { 394 struct task_struct *p; 395 struct task_struct *task; 396 397 pr_info("[ pid ] uid tgid total_vm rss cpu oom_adj oom_score_adj name\n"); 398 for_each_process(p) { 399 if (oom_unkillable_task(p, memcg, nodemask)) 400 continue; 401 402 task = find_lock_task_mm(p); 403 if (!task) { 404 /* 405 * This is a kthread or all of p's threads have already 406 * detached their mm's. There's no need to report 407 * them; they can't be oom killed anyway. 408 */ 409 continue; 410 } 411 412 pr_info("[%5d] %5d %5d %8lu %8lu %3u %3d %5d %s\n", 413 task->pid, task_uid(task), task->tgid, 414 task->mm->total_vm, get_mm_rss(task->mm), 415 task_cpu(task), task->signal->oom_adj, 416 task->signal->oom_score_adj, task->comm); 417 task_unlock(task); 418 } 419 } 420 421 static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order, 422 struct mem_cgroup *memcg, const nodemask_t *nodemask) 423 { 424 task_lock(current); 425 pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, " 426 "oom_adj=%d, oom_score_adj=%d\n", 427 current->comm, gfp_mask, order, current->signal->oom_adj, 428 current->signal->oom_score_adj); 429 cpuset_print_task_mems_allowed(current); 430 task_unlock(current); 431 dump_stack(); 432 mem_cgroup_print_oom_info(memcg, p); 433 show_mem(SHOW_MEM_FILTER_NODES); 434 if (sysctl_oom_dump_tasks) 435 dump_tasks(memcg, nodemask); 436 } 437 438 #define K(x) ((x) << (PAGE_SHIFT-10)) 439 static void oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, 440 unsigned int points, unsigned long totalpages, 441 struct mem_cgroup *memcg, nodemask_t *nodemask, 442 const char *message) 443 { 444 struct task_struct *victim = p; 445 struct task_struct *child; 446 struct task_struct *t = p; 447 struct mm_struct *mm; 448 unsigned int victim_points = 0; 449 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL, 450 DEFAULT_RATELIMIT_BURST); 451 452 /* 453 * If the task is already exiting, don't alarm the sysadmin or kill 454 * its children or threads, just set TIF_MEMDIE so it can die quickly 455 */ 456 if (p->flags & PF_EXITING) { 457 set_tsk_thread_flag(p, TIF_MEMDIE); 458 return; 459 } 460 461 if (__ratelimit(&oom_rs)) 462 dump_header(p, gfp_mask, order, memcg, nodemask); 463 464 task_lock(p); 465 pr_err("%s: Kill process %d (%s) score %d or sacrifice child\n", 466 message, task_pid_nr(p), p->comm, points); 467 task_unlock(p); 468 469 /* 470 * If any of p's children has a different mm and is eligible for kill, 471 * the one with the highest oom_badness() score is sacrificed for its 472 * parent. This attempts to lose the minimal amount of work done while 473 * still freeing memory. 474 */ 475 do { 476 list_for_each_entry(child, &t->children, sibling) { 477 unsigned int child_points; 478 479 if (child->mm == p->mm) 480 continue; 481 /* 482 * oom_badness() returns 0 if the thread is unkillable 483 */ 484 child_points = oom_badness(child, memcg, nodemask, 485 totalpages); 486 if (child_points > victim_points) { 487 victim = child; 488 victim_points = child_points; 489 } 490 } 491 } while_each_thread(p, t); 492 493 victim = find_lock_task_mm(victim); 494 if (!victim) 495 return; 496 497 /* mm cannot safely be dereferenced after task_unlock(victim) */ 498 mm = victim->mm; 499 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n", 500 task_pid_nr(victim), victim->comm, K(victim->mm->total_vm), 501 K(get_mm_counter(victim->mm, MM_ANONPAGES)), 502 K(get_mm_counter(victim->mm, MM_FILEPAGES))); 503 task_unlock(victim); 504 505 /* 506 * Kill all user processes sharing victim->mm in other thread groups, if 507 * any. They don't get access to memory reserves, though, to avoid 508 * depletion of all memory. This prevents mm->mmap_sem livelock when an 509 * oom killed thread cannot exit because it requires the semaphore and 510 * its contended by another thread trying to allocate memory itself. 511 * That thread will now get access to memory reserves since it has a 512 * pending fatal signal. 513 */ 514 for_each_process(p) 515 if (p->mm == mm && !same_thread_group(p, victim) && 516 !(p->flags & PF_KTHREAD)) { 517 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) 518 continue; 519 520 task_lock(p); /* Protect ->comm from prctl() */ 521 pr_err("Kill process %d (%s) sharing same memory\n", 522 task_pid_nr(p), p->comm); 523 task_unlock(p); 524 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true); 525 } 526 527 set_tsk_thread_flag(victim, TIF_MEMDIE); 528 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true); 529 } 530 #undef K 531 532 /* 533 * Determines whether the kernel must panic because of the panic_on_oom sysctl. 534 */ 535 static void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask, 536 int order, const nodemask_t *nodemask) 537 { 538 if (likely(!sysctl_panic_on_oom)) 539 return; 540 if (sysctl_panic_on_oom != 2) { 541 /* 542 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel 543 * does not panic for cpuset, mempolicy, or memcg allocation 544 * failures. 545 */ 546 if (constraint != CONSTRAINT_NONE) 547 return; 548 } 549 read_lock(&tasklist_lock); 550 dump_header(NULL, gfp_mask, order, NULL, nodemask); 551 read_unlock(&tasklist_lock); 552 panic("Out of memory: %s panic_on_oom is enabled\n", 553 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); 554 } 555 556 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 557 void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 558 int order) 559 { 560 unsigned long limit; 561 unsigned int points = 0; 562 struct task_struct *p; 563 564 /* 565 * If current has a pending SIGKILL, then automatically select it. The 566 * goal is to allow it to allocate so that it may quickly exit and free 567 * its memory. 568 */ 569 if (fatal_signal_pending(current)) { 570 set_thread_flag(TIF_MEMDIE); 571 return; 572 } 573 574 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); 575 limit = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT; 576 read_lock(&tasklist_lock); 577 p = select_bad_process(&points, limit, memcg, NULL, false); 578 if (p && PTR_ERR(p) != -1UL) 579 oom_kill_process(p, gfp_mask, order, points, limit, memcg, NULL, 580 "Memory cgroup out of memory"); 581 read_unlock(&tasklist_lock); 582 } 583 #endif 584 585 static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 586 587 int register_oom_notifier(struct notifier_block *nb) 588 { 589 return blocking_notifier_chain_register(&oom_notify_list, nb); 590 } 591 EXPORT_SYMBOL_GPL(register_oom_notifier); 592 593 int unregister_oom_notifier(struct notifier_block *nb) 594 { 595 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 596 } 597 EXPORT_SYMBOL_GPL(unregister_oom_notifier); 598 599 /* 600 * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero 601 * if a parallel OOM killing is already taking place that includes a zone in 602 * the zonelist. Otherwise, locks all zones in the zonelist and returns 1. 603 */ 604 int try_set_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask) 605 { 606 struct zoneref *z; 607 struct zone *zone; 608 int ret = 1; 609 610 spin_lock(&zone_scan_lock); 611 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 612 if (zone_is_oom_locked(zone)) { 613 ret = 0; 614 goto out; 615 } 616 } 617 618 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 619 /* 620 * Lock each zone in the zonelist under zone_scan_lock so a 621 * parallel invocation of try_set_zonelist_oom() doesn't succeed 622 * when it shouldn't. 623 */ 624 zone_set_flag(zone, ZONE_OOM_LOCKED); 625 } 626 627 out: 628 spin_unlock(&zone_scan_lock); 629 return ret; 630 } 631 632 /* 633 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed 634 * allocation attempts with zonelists containing them may now recall the OOM 635 * killer, if necessary. 636 */ 637 void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask) 638 { 639 struct zoneref *z; 640 struct zone *zone; 641 642 spin_lock(&zone_scan_lock); 643 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 644 zone_clear_flag(zone, ZONE_OOM_LOCKED); 645 } 646 spin_unlock(&zone_scan_lock); 647 } 648 649 /* 650 * Try to acquire the oom killer lock for all system zones. Returns zero if a 651 * parallel oom killing is taking place, otherwise locks all zones and returns 652 * non-zero. 653 */ 654 static int try_set_system_oom(void) 655 { 656 struct zone *zone; 657 int ret = 1; 658 659 spin_lock(&zone_scan_lock); 660 for_each_populated_zone(zone) 661 if (zone_is_oom_locked(zone)) { 662 ret = 0; 663 goto out; 664 } 665 for_each_populated_zone(zone) 666 zone_set_flag(zone, ZONE_OOM_LOCKED); 667 out: 668 spin_unlock(&zone_scan_lock); 669 return ret; 670 } 671 672 /* 673 * Clears ZONE_OOM_LOCKED for all system zones so that failed allocation 674 * attempts or page faults may now recall the oom killer, if necessary. 675 */ 676 static void clear_system_oom(void) 677 { 678 struct zone *zone; 679 680 spin_lock(&zone_scan_lock); 681 for_each_populated_zone(zone) 682 zone_clear_flag(zone, ZONE_OOM_LOCKED); 683 spin_unlock(&zone_scan_lock); 684 } 685 686 /** 687 * out_of_memory - kill the "best" process when we run out of memory 688 * @zonelist: zonelist pointer 689 * @gfp_mask: memory allocation flags 690 * @order: amount of memory being requested as a power of 2 691 * @nodemask: nodemask passed to page allocator 692 * @force_kill: true if a task must be killed, even if others are exiting 693 * 694 * If we run out of memory, we have the choice between either 695 * killing a random task (bad), letting the system crash (worse) 696 * OR try to be smart about which process to kill. Note that we 697 * don't have to be perfect here, we just have to be good. 698 */ 699 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, 700 int order, nodemask_t *nodemask, bool force_kill) 701 { 702 const nodemask_t *mpol_mask; 703 struct task_struct *p; 704 unsigned long totalpages; 705 unsigned long freed = 0; 706 unsigned int points; 707 enum oom_constraint constraint = CONSTRAINT_NONE; 708 int killed = 0; 709 710 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 711 if (freed > 0) 712 /* Got some memory back in the last second. */ 713 return; 714 715 /* 716 * If current has a pending SIGKILL, then automatically select it. The 717 * goal is to allow it to allocate so that it may quickly exit and free 718 * its memory. 719 */ 720 if (fatal_signal_pending(current)) { 721 set_thread_flag(TIF_MEMDIE); 722 return; 723 } 724 725 /* 726 * Check if there were limitations on the allocation (only relevant for 727 * NUMA) that may require different handling. 728 */ 729 constraint = constrained_alloc(zonelist, gfp_mask, nodemask, 730 &totalpages); 731 mpol_mask = (constraint == CONSTRAINT_MEMORY_POLICY) ? nodemask : NULL; 732 check_panic_on_oom(constraint, gfp_mask, order, mpol_mask); 733 734 read_lock(&tasklist_lock); 735 if (sysctl_oom_kill_allocating_task && 736 !oom_unkillable_task(current, NULL, nodemask) && 737 current->mm) { 738 oom_kill_process(current, gfp_mask, order, 0, totalpages, NULL, 739 nodemask, 740 "Out of memory (oom_kill_allocating_task)"); 741 goto out; 742 } 743 744 p = select_bad_process(&points, totalpages, NULL, mpol_mask, 745 force_kill); 746 /* Found nothing?!?! Either we hang forever, or we panic. */ 747 if (!p) { 748 dump_header(NULL, gfp_mask, order, NULL, mpol_mask); 749 read_unlock(&tasklist_lock); 750 panic("Out of memory and no killable processes...\n"); 751 } 752 if (PTR_ERR(p) != -1UL) { 753 oom_kill_process(p, gfp_mask, order, points, totalpages, NULL, 754 nodemask, "Out of memory"); 755 killed = 1; 756 } 757 out: 758 read_unlock(&tasklist_lock); 759 760 /* 761 * Give "p" a good chance of killing itself before we 762 * retry to allocate memory unless "p" is current 763 */ 764 if (killed && !test_thread_flag(TIF_MEMDIE)) 765 schedule_timeout_uninterruptible(1); 766 } 767 768 /* 769 * The pagefault handler calls here because it is out of memory, so kill a 770 * memory-hogging task. If a populated zone has ZONE_OOM_LOCKED set, a parallel 771 * oom killing is already in progress so do nothing. If a task is found with 772 * TIF_MEMDIE set, it has been killed so do nothing and allow it to exit. 773 */ 774 void pagefault_out_of_memory(void) 775 { 776 if (try_set_system_oom()) { 777 out_of_memory(NULL, 0, 0, NULL, false); 778 clear_system_oom(); 779 } 780 if (!test_thread_flag(TIF_MEMDIE)) 781 schedule_timeout_uninterruptible(1); 782 } 783