xref: /openbmc/linux/mm/oom_kill.c (revision 606d099c)
1 /*
2  *  linux/mm/oom_kill.c
3  *
4  *  Copyright (C)  1998,2000  Rik van Riel
5  *	Thanks go out to Claus Fischer for some serious inspiration and
6  *	for goading me into coding this file...
7  *
8  *  The routines in this file are used to kill a process when
9  *  we're seriously out of memory. This gets called from __alloc_pages()
10  *  in mm/page_alloc.c when we really run out of memory.
11  *
12  *  Since we won't call these routines often (on a well-configured
13  *  machine) this file will double as a 'coding guide' and a signpost
14  *  for newbie kernel hackers. It features several pointers to major
15  *  kernel subsystems and hints as to where to find out what things do.
16  */
17 
18 #include <linux/oom.h>
19 #include <linux/mm.h>
20 #include <linux/sched.h>
21 #include <linux/swap.h>
22 #include <linux/timex.h>
23 #include <linux/jiffies.h>
24 #include <linux/cpuset.h>
25 #include <linux/module.h>
26 #include <linux/notifier.h>
27 
28 int sysctl_panic_on_oom;
29 /* #define DEBUG */
30 
31 /**
32  * badness - calculate a numeric value for how bad this task has been
33  * @p: task struct of which task we should calculate
34  * @uptime: current uptime in seconds
35  *
36  * The formula used is relatively simple and documented inline in the
37  * function. The main rationale is that we want to select a good task
38  * to kill when we run out of memory.
39  *
40  * Good in this context means that:
41  * 1) we lose the minimum amount of work done
42  * 2) we recover a large amount of memory
43  * 3) we don't kill anything innocent of eating tons of memory
44  * 4) we want to kill the minimum amount of processes (one)
45  * 5) we try to kill the process the user expects us to kill, this
46  *    algorithm has been meticulously tuned to meet the principle
47  *    of least surprise ... (be careful when you change it)
48  */
49 
50 unsigned long badness(struct task_struct *p, unsigned long uptime)
51 {
52 	unsigned long points, cpu_time, run_time, s;
53 	struct mm_struct *mm;
54 	struct task_struct *child;
55 
56 	task_lock(p);
57 	mm = p->mm;
58 	if (!mm) {
59 		task_unlock(p);
60 		return 0;
61 	}
62 
63 	/*
64 	 * swapoff can easily use up all memory, so kill those first.
65 	 */
66 	if (p->flags & PF_SWAPOFF)
67 		return ULONG_MAX;
68 
69 	/*
70 	 * The memory size of the process is the basis for the badness.
71 	 */
72 	points = mm->total_vm;
73 
74 	/*
75 	 * After this unlock we can no longer dereference local variable `mm'
76 	 */
77 	task_unlock(p);
78 
79 	/*
80 	 * Processes which fork a lot of child processes are likely
81 	 * a good choice. We add half the vmsize of the children if they
82 	 * have an own mm. This prevents forking servers to flood the
83 	 * machine with an endless amount of children. In case a single
84 	 * child is eating the vast majority of memory, adding only half
85 	 * to the parents will make the child our kill candidate of choice.
86 	 */
87 	list_for_each_entry(child, &p->children, sibling) {
88 		task_lock(child);
89 		if (child->mm != mm && child->mm)
90 			points += child->mm->total_vm/2 + 1;
91 		task_unlock(child);
92 	}
93 
94 	/*
95 	 * CPU time is in tens of seconds and run time is in thousands
96          * of seconds. There is no particular reason for this other than
97          * that it turned out to work very well in practice.
98 	 */
99 	cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
100 		>> (SHIFT_HZ + 3);
101 
102 	if (uptime >= p->start_time.tv_sec)
103 		run_time = (uptime - p->start_time.tv_sec) >> 10;
104 	else
105 		run_time = 0;
106 
107 	s = int_sqrt(cpu_time);
108 	if (s)
109 		points /= s;
110 	s = int_sqrt(int_sqrt(run_time));
111 	if (s)
112 		points /= s;
113 
114 	/*
115 	 * Niced processes are most likely less important, so double
116 	 * their badness points.
117 	 */
118 	if (task_nice(p) > 0)
119 		points *= 2;
120 
121 	/*
122 	 * Superuser processes are usually more important, so we make it
123 	 * less likely that we kill those.
124 	 */
125 	if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_ADMIN) ||
126 				p->uid == 0 || p->euid == 0)
127 		points /= 4;
128 
129 	/*
130 	 * We don't want to kill a process with direct hardware access.
131 	 * Not only could that mess up the hardware, but usually users
132 	 * tend to only have this flag set on applications they think
133 	 * of as important.
134 	 */
135 	if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO))
136 		points /= 4;
137 
138 	/*
139 	 * If p's nodes don't overlap ours, it may still help to kill p
140 	 * because p may have allocated or otherwise mapped memory on
141 	 * this node before. However it will be less likely.
142 	 */
143 	if (!cpuset_excl_nodes_overlap(p))
144 		points /= 8;
145 
146 	/*
147 	 * Adjust the score by oomkilladj.
148 	 */
149 	if (p->oomkilladj) {
150 		if (p->oomkilladj > 0)
151 			points <<= p->oomkilladj;
152 		else
153 			points >>= -(p->oomkilladj);
154 	}
155 
156 #ifdef DEBUG
157 	printk(KERN_DEBUG "OOMkill: task %d (%s) got %d points\n",
158 	p->pid, p->comm, points);
159 #endif
160 	return points;
161 }
162 
163 /*
164  * Types of limitations to the nodes from which allocations may occur
165  */
166 #define CONSTRAINT_NONE 1
167 #define CONSTRAINT_MEMORY_POLICY 2
168 #define CONSTRAINT_CPUSET 3
169 
170 /*
171  * Determine the type of allocation constraint.
172  */
173 static inline int constrained_alloc(struct zonelist *zonelist, gfp_t gfp_mask)
174 {
175 #ifdef CONFIG_NUMA
176 	struct zone **z;
177 	nodemask_t nodes = node_online_map;
178 
179 	for (z = zonelist->zones; *z; z++)
180 		if (cpuset_zone_allowed(*z, gfp_mask))
181 			node_clear(zone_to_nid(*z), nodes);
182 		else
183 			return CONSTRAINT_CPUSET;
184 
185 	if (!nodes_empty(nodes))
186 		return CONSTRAINT_MEMORY_POLICY;
187 #endif
188 
189 	return CONSTRAINT_NONE;
190 }
191 
192 /*
193  * Simple selection loop. We chose the process with the highest
194  * number of 'points'. We expect the caller will lock the tasklist.
195  *
196  * (not docbooked, we don't want this one cluttering up the manual)
197  */
198 static struct task_struct *select_bad_process(unsigned long *ppoints)
199 {
200 	struct task_struct *g, *p;
201 	struct task_struct *chosen = NULL;
202 	struct timespec uptime;
203 	*ppoints = 0;
204 
205 	do_posix_clock_monotonic_gettime(&uptime);
206 	do_each_thread(g, p) {
207 		unsigned long points;
208 
209 		/*
210 		 * skip kernel threads and tasks which have already released
211 		 * their mm.
212 		 */
213 		if (!p->mm)
214 			continue;
215 		/* skip the init task */
216 		if (is_init(p))
217 			continue;
218 
219 		/*
220 		 * This task already has access to memory reserves and is
221 		 * being killed. Don't allow any other task access to the
222 		 * memory reserve.
223 		 *
224 		 * Note: this may have a chance of deadlock if it gets
225 		 * blocked waiting for another task which itself is waiting
226 		 * for memory. Is there a better alternative?
227 		 */
228 		if (test_tsk_thread_flag(p, TIF_MEMDIE))
229 			return ERR_PTR(-1UL);
230 
231 		/*
232 		 * This is in the process of releasing memory so wait for it
233 		 * to finish before killing some other task by mistake.
234 		 *
235 		 * However, if p is the current task, we allow the 'kill' to
236 		 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
237 		 * which will allow it to gain access to memory reserves in
238 		 * the process of exiting and releasing its resources.
239 		 * Otherwise we could get an easy OOM deadlock.
240 		 */
241 		if (p->flags & PF_EXITING) {
242 			if (p != current)
243 				return ERR_PTR(-1UL);
244 
245 			chosen = p;
246 			*ppoints = ULONG_MAX;
247 		}
248 
249 		if (p->oomkilladj == OOM_DISABLE)
250 			continue;
251 
252 		points = badness(p, uptime.tv_sec);
253 		if (points > *ppoints || !chosen) {
254 			chosen = p;
255 			*ppoints = points;
256 		}
257 	} while_each_thread(g, p);
258 
259 	return chosen;
260 }
261 
262 /**
263  * Send SIGKILL to the selected  process irrespective of  CAP_SYS_RAW_IO
264  * flag though it's unlikely that  we select a process with CAP_SYS_RAW_IO
265  * set.
266  */
267 static void __oom_kill_task(struct task_struct *p, int verbose)
268 {
269 	if (is_init(p)) {
270 		WARN_ON(1);
271 		printk(KERN_WARNING "tried to kill init!\n");
272 		return;
273 	}
274 
275 	if (!p->mm) {
276 		WARN_ON(1);
277 		printk(KERN_WARNING "tried to kill an mm-less task!\n");
278 		return;
279 	}
280 
281 	if (verbose)
282 		printk(KERN_ERR "Killed process %d (%s)\n", p->pid, p->comm);
283 
284 	/*
285 	 * We give our sacrificial lamb high priority and access to
286 	 * all the memory it needs. That way it should be able to
287 	 * exit() and clear out its resources quickly...
288 	 */
289 	p->time_slice = HZ;
290 	set_tsk_thread_flag(p, TIF_MEMDIE);
291 
292 	force_sig(SIGKILL, p);
293 }
294 
295 static int oom_kill_task(struct task_struct *p)
296 {
297 	struct mm_struct *mm;
298 	struct task_struct *g, *q;
299 
300 	mm = p->mm;
301 
302 	/* WARNING: mm may not be dereferenced since we did not obtain its
303 	 * value from get_task_mm(p).  This is OK since all we need to do is
304 	 * compare mm to q->mm below.
305 	 *
306 	 * Furthermore, even if mm contains a non-NULL value, p->mm may
307 	 * change to NULL at any time since we do not hold task_lock(p).
308 	 * However, this is of no concern to us.
309 	 */
310 
311 	if (mm == NULL)
312 		return 1;
313 
314 	/*
315 	 * Don't kill the process if any threads are set to OOM_DISABLE
316 	 */
317 	do_each_thread(g, q) {
318 		if (q->mm == mm && p->oomkilladj == OOM_DISABLE)
319 			return 1;
320 	} while_each_thread(g, q);
321 
322 	__oom_kill_task(p, 1);
323 
324 	/*
325 	 * kill all processes that share the ->mm (i.e. all threads),
326 	 * but are in a different thread group. Don't let them have access
327 	 * to memory reserves though, otherwise we might deplete all memory.
328 	 */
329 	do_each_thread(g, q) {
330 		if (q->mm == mm && q->tgid != p->tgid)
331 			force_sig(SIGKILL, p);
332 	} while_each_thread(g, q);
333 
334 	return 0;
335 }
336 
337 static int oom_kill_process(struct task_struct *p, unsigned long points,
338 		const char *message)
339 {
340 	struct task_struct *c;
341 	struct list_head *tsk;
342 
343 	/*
344 	 * If the task is already exiting, don't alarm the sysadmin or kill
345 	 * its children or threads, just set TIF_MEMDIE so it can die quickly
346 	 */
347 	if (p->flags & PF_EXITING) {
348 		__oom_kill_task(p, 0);
349 		return 0;
350 	}
351 
352 	printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
353 					message, p->pid, p->comm, points);
354 
355 	/* Try to kill a child first */
356 	list_for_each(tsk, &p->children) {
357 		c = list_entry(tsk, struct task_struct, sibling);
358 		if (c->mm == p->mm)
359 			continue;
360 		if (!oom_kill_task(c))
361 			return 0;
362 	}
363 	return oom_kill_task(p);
364 }
365 
366 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
367 
368 int register_oom_notifier(struct notifier_block *nb)
369 {
370 	return blocking_notifier_chain_register(&oom_notify_list, nb);
371 }
372 EXPORT_SYMBOL_GPL(register_oom_notifier);
373 
374 int unregister_oom_notifier(struct notifier_block *nb)
375 {
376 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
377 }
378 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
379 
380 /**
381  * out_of_memory - kill the "best" process when we run out of memory
382  *
383  * If we run out of memory, we have the choice between either
384  * killing a random task (bad), letting the system crash (worse)
385  * OR try to be smart about which process to kill. Note that we
386  * don't have to be perfect here, we just have to be good.
387  */
388 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
389 {
390 	struct task_struct *p;
391 	unsigned long points = 0;
392 	unsigned long freed = 0;
393 
394 	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
395 	if (freed > 0)
396 		/* Got some memory back in the last second. */
397 		return;
398 
399 	if (printk_ratelimit()) {
400 		printk(KERN_WARNING "%s invoked oom-killer: "
401 			"gfp_mask=0x%x, order=%d, oomkilladj=%d\n",
402 			current->comm, gfp_mask, order, current->oomkilladj);
403 		dump_stack();
404 		show_mem();
405 	}
406 
407 	cpuset_lock();
408 	read_lock(&tasklist_lock);
409 
410 	/*
411 	 * Check if there were limitations on the allocation (only relevant for
412 	 * NUMA) that may require different handling.
413 	 */
414 	switch (constrained_alloc(zonelist, gfp_mask)) {
415 	case CONSTRAINT_MEMORY_POLICY:
416 		oom_kill_process(current, points,
417 				"No available memory (MPOL_BIND)");
418 		break;
419 
420 	case CONSTRAINT_CPUSET:
421 		oom_kill_process(current, points,
422 				"No available memory in cpuset");
423 		break;
424 
425 	case CONSTRAINT_NONE:
426 		if (sysctl_panic_on_oom)
427 			panic("out of memory. panic_on_oom is selected\n");
428 retry:
429 		/*
430 		 * Rambo mode: Shoot down a process and hope it solves whatever
431 		 * issues we may have.
432 		 */
433 		p = select_bad_process(&points);
434 
435 		if (PTR_ERR(p) == -1UL)
436 			goto out;
437 
438 		/* Found nothing?!?! Either we hang forever, or we panic. */
439 		if (!p) {
440 			read_unlock(&tasklist_lock);
441 			cpuset_unlock();
442 			panic("Out of memory and no killable processes...\n");
443 		}
444 
445 		if (oom_kill_process(p, points, "Out of memory"))
446 			goto retry;
447 
448 		break;
449 	}
450 
451 out:
452 	read_unlock(&tasklist_lock);
453 	cpuset_unlock();
454 
455 	/*
456 	 * Give "p" a good chance of killing itself before we
457 	 * retry to allocate memory unless "p" is current
458 	 */
459 	if (!test_thread_flag(TIF_MEMDIE))
460 		schedule_timeout_uninterruptible(1);
461 }
462