1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/oom_kill.c 4 * 5 * Copyright (C) 1998,2000 Rik van Riel 6 * Thanks go out to Claus Fischer for some serious inspiration and 7 * for goading me into coding this file... 8 * Copyright (C) 2010 Google, Inc. 9 * Rewritten by David Rientjes 10 * 11 * The routines in this file are used to kill a process when 12 * we're seriously out of memory. This gets called from __alloc_pages() 13 * in mm/page_alloc.c when we really run out of memory. 14 * 15 * Since we won't call these routines often (on a well-configured 16 * machine) this file will double as a 'coding guide' and a signpost 17 * for newbie kernel hackers. It features several pointers to major 18 * kernel subsystems and hints as to where to find out what things do. 19 */ 20 21 #include <linux/oom.h> 22 #include <linux/mm.h> 23 #include <linux/err.h> 24 #include <linux/gfp.h> 25 #include <linux/sched.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/coredump.h> 28 #include <linux/sched/task.h> 29 #include <linux/sched/debug.h> 30 #include <linux/swap.h> 31 #include <linux/syscalls.h> 32 #include <linux/timex.h> 33 #include <linux/jiffies.h> 34 #include <linux/cpuset.h> 35 #include <linux/export.h> 36 #include <linux/notifier.h> 37 #include <linux/memcontrol.h> 38 #include <linux/mempolicy.h> 39 #include <linux/security.h> 40 #include <linux/ptrace.h> 41 #include <linux/freezer.h> 42 #include <linux/ftrace.h> 43 #include <linux/ratelimit.h> 44 #include <linux/kthread.h> 45 #include <linux/init.h> 46 #include <linux/mmu_notifier.h> 47 48 #include <asm/tlb.h> 49 #include "internal.h" 50 #include "slab.h" 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/oom.h> 54 55 static int sysctl_panic_on_oom; 56 static int sysctl_oom_kill_allocating_task; 57 static int sysctl_oom_dump_tasks = 1; 58 59 #ifdef CONFIG_SYSCTL 60 static struct ctl_table vm_oom_kill_table[] = { 61 { 62 .procname = "panic_on_oom", 63 .data = &sysctl_panic_on_oom, 64 .maxlen = sizeof(sysctl_panic_on_oom), 65 .mode = 0644, 66 .proc_handler = proc_dointvec_minmax, 67 .extra1 = SYSCTL_ZERO, 68 .extra2 = SYSCTL_TWO, 69 }, 70 { 71 .procname = "oom_kill_allocating_task", 72 .data = &sysctl_oom_kill_allocating_task, 73 .maxlen = sizeof(sysctl_oom_kill_allocating_task), 74 .mode = 0644, 75 .proc_handler = proc_dointvec, 76 }, 77 { 78 .procname = "oom_dump_tasks", 79 .data = &sysctl_oom_dump_tasks, 80 .maxlen = sizeof(sysctl_oom_dump_tasks), 81 .mode = 0644, 82 .proc_handler = proc_dointvec, 83 }, 84 {} 85 }; 86 #endif 87 88 /* 89 * Serializes oom killer invocations (out_of_memory()) from all contexts to 90 * prevent from over eager oom killing (e.g. when the oom killer is invoked 91 * from different domains). 92 * 93 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled 94 * and mark_oom_victim 95 */ 96 DEFINE_MUTEX(oom_lock); 97 /* Serializes oom_score_adj and oom_score_adj_min updates */ 98 DEFINE_MUTEX(oom_adj_mutex); 99 100 static inline bool is_memcg_oom(struct oom_control *oc) 101 { 102 return oc->memcg != NULL; 103 } 104 105 #ifdef CONFIG_NUMA 106 /** 107 * oom_cpuset_eligible() - check task eligibility for kill 108 * @start: task struct of which task to consider 109 * @oc: pointer to struct oom_control 110 * 111 * Task eligibility is determined by whether or not a candidate task, @tsk, 112 * shares the same mempolicy nodes as current if it is bound by such a policy 113 * and whether or not it has the same set of allowed cpuset nodes. 114 * 115 * This function is assuming oom-killer context and 'current' has triggered 116 * the oom-killer. 117 */ 118 static bool oom_cpuset_eligible(struct task_struct *start, 119 struct oom_control *oc) 120 { 121 struct task_struct *tsk; 122 bool ret = false; 123 const nodemask_t *mask = oc->nodemask; 124 125 rcu_read_lock(); 126 for_each_thread(start, tsk) { 127 if (mask) { 128 /* 129 * If this is a mempolicy constrained oom, tsk's 130 * cpuset is irrelevant. Only return true if its 131 * mempolicy intersects current, otherwise it may be 132 * needlessly killed. 133 */ 134 ret = mempolicy_in_oom_domain(tsk, mask); 135 } else { 136 /* 137 * This is not a mempolicy constrained oom, so only 138 * check the mems of tsk's cpuset. 139 */ 140 ret = cpuset_mems_allowed_intersects(current, tsk); 141 } 142 if (ret) 143 break; 144 } 145 rcu_read_unlock(); 146 147 return ret; 148 } 149 #else 150 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc) 151 { 152 return true; 153 } 154 #endif /* CONFIG_NUMA */ 155 156 /* 157 * The process p may have detached its own ->mm while exiting or through 158 * kthread_use_mm(), but one or more of its subthreads may still have a valid 159 * pointer. Return p, or any of its subthreads with a valid ->mm, with 160 * task_lock() held. 161 */ 162 struct task_struct *find_lock_task_mm(struct task_struct *p) 163 { 164 struct task_struct *t; 165 166 rcu_read_lock(); 167 168 for_each_thread(p, t) { 169 task_lock(t); 170 if (likely(t->mm)) 171 goto found; 172 task_unlock(t); 173 } 174 t = NULL; 175 found: 176 rcu_read_unlock(); 177 178 return t; 179 } 180 181 /* 182 * order == -1 means the oom kill is required by sysrq, otherwise only 183 * for display purposes. 184 */ 185 static inline bool is_sysrq_oom(struct oom_control *oc) 186 { 187 return oc->order == -1; 188 } 189 190 /* return true if the task is not adequate as candidate victim task. */ 191 static bool oom_unkillable_task(struct task_struct *p) 192 { 193 if (is_global_init(p)) 194 return true; 195 if (p->flags & PF_KTHREAD) 196 return true; 197 return false; 198 } 199 200 /* 201 * Check whether unreclaimable slab amount is greater than 202 * all user memory(LRU pages). 203 * dump_unreclaimable_slab() could help in the case that 204 * oom due to too much unreclaimable slab used by kernel. 205 */ 206 static bool should_dump_unreclaim_slab(void) 207 { 208 unsigned long nr_lru; 209 210 nr_lru = global_node_page_state(NR_ACTIVE_ANON) + 211 global_node_page_state(NR_INACTIVE_ANON) + 212 global_node_page_state(NR_ACTIVE_FILE) + 213 global_node_page_state(NR_INACTIVE_FILE) + 214 global_node_page_state(NR_ISOLATED_ANON) + 215 global_node_page_state(NR_ISOLATED_FILE) + 216 global_node_page_state(NR_UNEVICTABLE); 217 218 return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru); 219 } 220 221 /** 222 * oom_badness - heuristic function to determine which candidate task to kill 223 * @p: task struct of which task we should calculate 224 * @totalpages: total present RAM allowed for page allocation 225 * 226 * The heuristic for determining which task to kill is made to be as simple and 227 * predictable as possible. The goal is to return the highest value for the 228 * task consuming the most memory to avoid subsequent oom failures. 229 */ 230 long oom_badness(struct task_struct *p, unsigned long totalpages) 231 { 232 long points; 233 long adj; 234 235 if (oom_unkillable_task(p)) 236 return LONG_MIN; 237 238 p = find_lock_task_mm(p); 239 if (!p) 240 return LONG_MIN; 241 242 /* 243 * Do not even consider tasks which are explicitly marked oom 244 * unkillable or have been already oom reaped or the are in 245 * the middle of vfork 246 */ 247 adj = (long)p->signal->oom_score_adj; 248 if (adj == OOM_SCORE_ADJ_MIN || 249 test_bit(MMF_OOM_SKIP, &p->mm->flags) || 250 in_vfork(p)) { 251 task_unlock(p); 252 return LONG_MIN; 253 } 254 255 /* 256 * The baseline for the badness score is the proportion of RAM that each 257 * task's rss, pagetable and swap space use. 258 */ 259 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) + 260 mm_pgtables_bytes(p->mm) / PAGE_SIZE; 261 task_unlock(p); 262 263 /* Normalize to oom_score_adj units */ 264 adj *= totalpages / 1000; 265 points += adj; 266 267 return points; 268 } 269 270 static const char * const oom_constraint_text[] = { 271 [CONSTRAINT_NONE] = "CONSTRAINT_NONE", 272 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET", 273 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY", 274 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG", 275 }; 276 277 /* 278 * Determine the type of allocation constraint. 279 */ 280 static enum oom_constraint constrained_alloc(struct oom_control *oc) 281 { 282 struct zone *zone; 283 struct zoneref *z; 284 enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask); 285 bool cpuset_limited = false; 286 int nid; 287 288 if (is_memcg_oom(oc)) { 289 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1; 290 return CONSTRAINT_MEMCG; 291 } 292 293 /* Default to all available memory */ 294 oc->totalpages = totalram_pages() + total_swap_pages; 295 296 if (!IS_ENABLED(CONFIG_NUMA)) 297 return CONSTRAINT_NONE; 298 299 if (!oc->zonelist) 300 return CONSTRAINT_NONE; 301 /* 302 * Reach here only when __GFP_NOFAIL is used. So, we should avoid 303 * to kill current.We have to random task kill in this case. 304 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. 305 */ 306 if (oc->gfp_mask & __GFP_THISNODE) 307 return CONSTRAINT_NONE; 308 309 /* 310 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in 311 * the page allocator means a mempolicy is in effect. Cpuset policy 312 * is enforced in get_page_from_freelist(). 313 */ 314 if (oc->nodemask && 315 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) { 316 oc->totalpages = total_swap_pages; 317 for_each_node_mask(nid, *oc->nodemask) 318 oc->totalpages += node_present_pages(nid); 319 return CONSTRAINT_MEMORY_POLICY; 320 } 321 322 /* Check this allocation failure is caused by cpuset's wall function */ 323 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist, 324 highest_zoneidx, oc->nodemask) 325 if (!cpuset_zone_allowed(zone, oc->gfp_mask)) 326 cpuset_limited = true; 327 328 if (cpuset_limited) { 329 oc->totalpages = total_swap_pages; 330 for_each_node_mask(nid, cpuset_current_mems_allowed) 331 oc->totalpages += node_present_pages(nid); 332 return CONSTRAINT_CPUSET; 333 } 334 return CONSTRAINT_NONE; 335 } 336 337 static int oom_evaluate_task(struct task_struct *task, void *arg) 338 { 339 struct oom_control *oc = arg; 340 long points; 341 342 if (oom_unkillable_task(task)) 343 goto next; 344 345 /* p may not have freeable memory in nodemask */ 346 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc)) 347 goto next; 348 349 /* 350 * This task already has access to memory reserves and is being killed. 351 * Don't allow any other task to have access to the reserves unless 352 * the task has MMF_OOM_SKIP because chances that it would release 353 * any memory is quite low. 354 */ 355 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) { 356 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags)) 357 goto next; 358 goto abort; 359 } 360 361 /* 362 * If task is allocating a lot of memory and has been marked to be 363 * killed first if it triggers an oom, then select it. 364 */ 365 if (oom_task_origin(task)) { 366 points = LONG_MAX; 367 goto select; 368 } 369 370 points = oom_badness(task, oc->totalpages); 371 if (points == LONG_MIN || points < oc->chosen_points) 372 goto next; 373 374 select: 375 if (oc->chosen) 376 put_task_struct(oc->chosen); 377 get_task_struct(task); 378 oc->chosen = task; 379 oc->chosen_points = points; 380 next: 381 return 0; 382 abort: 383 if (oc->chosen) 384 put_task_struct(oc->chosen); 385 oc->chosen = (void *)-1UL; 386 return 1; 387 } 388 389 /* 390 * Simple selection loop. We choose the process with the highest number of 391 * 'points'. In case scan was aborted, oc->chosen is set to -1. 392 */ 393 static void select_bad_process(struct oom_control *oc) 394 { 395 oc->chosen_points = LONG_MIN; 396 397 if (is_memcg_oom(oc)) 398 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc); 399 else { 400 struct task_struct *p; 401 402 rcu_read_lock(); 403 for_each_process(p) 404 if (oom_evaluate_task(p, oc)) 405 break; 406 rcu_read_unlock(); 407 } 408 } 409 410 static int dump_task(struct task_struct *p, void *arg) 411 { 412 struct oom_control *oc = arg; 413 struct task_struct *task; 414 415 if (oom_unkillable_task(p)) 416 return 0; 417 418 /* p may not have freeable memory in nodemask */ 419 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc)) 420 return 0; 421 422 task = find_lock_task_mm(p); 423 if (!task) { 424 /* 425 * All of p's threads have already detached their mm's. There's 426 * no need to report them; they can't be oom killed anyway. 427 */ 428 return 0; 429 } 430 431 pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu %5hd %s\n", 432 task->pid, from_kuid(&init_user_ns, task_uid(task)), 433 task->tgid, task->mm->total_vm, get_mm_rss(task->mm), 434 mm_pgtables_bytes(task->mm), 435 get_mm_counter(task->mm, MM_SWAPENTS), 436 task->signal->oom_score_adj, task->comm); 437 task_unlock(task); 438 439 return 0; 440 } 441 442 /** 443 * dump_tasks - dump current memory state of all system tasks 444 * @oc: pointer to struct oom_control 445 * 446 * Dumps the current memory state of all eligible tasks. Tasks not in the same 447 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes 448 * are not shown. 449 * State information includes task's pid, uid, tgid, vm size, rss, 450 * pgtables_bytes, swapents, oom_score_adj value, and name. 451 */ 452 static void dump_tasks(struct oom_control *oc) 453 { 454 pr_info("Tasks state (memory values in pages):\n"); 455 pr_info("[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name\n"); 456 457 if (is_memcg_oom(oc)) 458 mem_cgroup_scan_tasks(oc->memcg, dump_task, oc); 459 else { 460 struct task_struct *p; 461 462 rcu_read_lock(); 463 for_each_process(p) 464 dump_task(p, oc); 465 rcu_read_unlock(); 466 } 467 } 468 469 static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim) 470 { 471 /* one line summary of the oom killer context. */ 472 pr_info("oom-kill:constraint=%s,nodemask=%*pbl", 473 oom_constraint_text[oc->constraint], 474 nodemask_pr_args(oc->nodemask)); 475 cpuset_print_current_mems_allowed(); 476 mem_cgroup_print_oom_context(oc->memcg, victim); 477 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid, 478 from_kuid(&init_user_ns, task_uid(victim))); 479 } 480 481 static void dump_header(struct oom_control *oc, struct task_struct *p) 482 { 483 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n", 484 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order, 485 current->signal->oom_score_adj); 486 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order) 487 pr_warn("COMPACTION is disabled!!!\n"); 488 489 dump_stack(); 490 if (is_memcg_oom(oc)) 491 mem_cgroup_print_oom_meminfo(oc->memcg); 492 else { 493 show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask); 494 if (should_dump_unreclaim_slab()) 495 dump_unreclaimable_slab(); 496 } 497 if (sysctl_oom_dump_tasks) 498 dump_tasks(oc); 499 if (p) 500 dump_oom_summary(oc, p); 501 } 502 503 /* 504 * Number of OOM victims in flight 505 */ 506 static atomic_t oom_victims = ATOMIC_INIT(0); 507 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait); 508 509 static bool oom_killer_disabled __read_mostly; 510 511 #define K(x) ((x) << (PAGE_SHIFT-10)) 512 513 /* 514 * task->mm can be NULL if the task is the exited group leader. So to 515 * determine whether the task is using a particular mm, we examine all the 516 * task's threads: if one of those is using this mm then this task was also 517 * using it. 518 */ 519 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm) 520 { 521 struct task_struct *t; 522 523 for_each_thread(p, t) { 524 struct mm_struct *t_mm = READ_ONCE(t->mm); 525 if (t_mm) 526 return t_mm == mm; 527 } 528 return false; 529 } 530 531 #ifdef CONFIG_MMU 532 /* 533 * OOM Reaper kernel thread which tries to reap the memory used by the OOM 534 * victim (if that is possible) to help the OOM killer to move on. 535 */ 536 static struct task_struct *oom_reaper_th; 537 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait); 538 static struct task_struct *oom_reaper_list; 539 static DEFINE_SPINLOCK(oom_reaper_lock); 540 541 bool __oom_reap_task_mm(struct mm_struct *mm) 542 { 543 struct vm_area_struct *vma; 544 bool ret = true; 545 546 /* 547 * Tell all users of get_user/copy_from_user etc... that the content 548 * is no longer stable. No barriers really needed because unmapping 549 * should imply barriers already and the reader would hit a page fault 550 * if it stumbled over a reaped memory. 551 */ 552 set_bit(MMF_UNSTABLE, &mm->flags); 553 554 for (vma = mm->mmap ; vma; vma = vma->vm_next) { 555 if (vma->vm_flags & (VM_HUGETLB|VM_PFNMAP)) 556 continue; 557 558 /* 559 * Only anonymous pages have a good chance to be dropped 560 * without additional steps which we cannot afford as we 561 * are OOM already. 562 * 563 * We do not even care about fs backed pages because all 564 * which are reclaimable have already been reclaimed and 565 * we do not want to block exit_mmap by keeping mm ref 566 * count elevated without a good reason. 567 */ 568 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) { 569 struct mmu_notifier_range range; 570 struct mmu_gather tlb; 571 572 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, 573 vma, mm, vma->vm_start, 574 vma->vm_end); 575 tlb_gather_mmu(&tlb, mm); 576 if (mmu_notifier_invalidate_range_start_nonblock(&range)) { 577 tlb_finish_mmu(&tlb); 578 ret = false; 579 continue; 580 } 581 unmap_page_range(&tlb, vma, range.start, range.end, NULL); 582 mmu_notifier_invalidate_range_end(&range); 583 tlb_finish_mmu(&tlb); 584 } 585 } 586 587 return ret; 588 } 589 590 /* 591 * Reaps the address space of the give task. 592 * 593 * Returns true on success and false if none or part of the address space 594 * has been reclaimed and the caller should retry later. 595 */ 596 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm) 597 { 598 bool ret = true; 599 600 if (!mmap_read_trylock(mm)) { 601 trace_skip_task_reaping(tsk->pid); 602 return false; 603 } 604 605 /* 606 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't 607 * work on the mm anymore. The check for MMF_OOM_SKIP must run 608 * under mmap_lock for reading because it serializes against the 609 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap(). 610 */ 611 if (test_bit(MMF_OOM_SKIP, &mm->flags)) { 612 trace_skip_task_reaping(tsk->pid); 613 goto out_unlock; 614 } 615 616 trace_start_task_reaping(tsk->pid); 617 618 /* failed to reap part of the address space. Try again later */ 619 ret = __oom_reap_task_mm(mm); 620 if (!ret) 621 goto out_finish; 622 623 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n", 624 task_pid_nr(tsk), tsk->comm, 625 K(get_mm_counter(mm, MM_ANONPAGES)), 626 K(get_mm_counter(mm, MM_FILEPAGES)), 627 K(get_mm_counter(mm, MM_SHMEMPAGES))); 628 out_finish: 629 trace_finish_task_reaping(tsk->pid); 630 out_unlock: 631 mmap_read_unlock(mm); 632 633 return ret; 634 } 635 636 #define MAX_OOM_REAP_RETRIES 10 637 static void oom_reap_task(struct task_struct *tsk) 638 { 639 int attempts = 0; 640 struct mm_struct *mm = tsk->signal->oom_mm; 641 642 /* Retry the mmap_read_trylock(mm) a few times */ 643 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm)) 644 schedule_timeout_idle(HZ/10); 645 646 if (attempts <= MAX_OOM_REAP_RETRIES || 647 test_bit(MMF_OOM_SKIP, &mm->flags)) 648 goto done; 649 650 pr_info("oom_reaper: unable to reap pid:%d (%s)\n", 651 task_pid_nr(tsk), tsk->comm); 652 sched_show_task(tsk); 653 debug_show_all_locks(); 654 655 done: 656 tsk->oom_reaper_list = NULL; 657 658 /* 659 * Hide this mm from OOM killer because it has been either reaped or 660 * somebody can't call mmap_write_unlock(mm). 661 */ 662 set_bit(MMF_OOM_SKIP, &mm->flags); 663 664 /* Drop a reference taken by queue_oom_reaper */ 665 put_task_struct(tsk); 666 } 667 668 static int oom_reaper(void *unused) 669 { 670 set_freezable(); 671 672 while (true) { 673 struct task_struct *tsk = NULL; 674 675 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL); 676 spin_lock_irq(&oom_reaper_lock); 677 if (oom_reaper_list != NULL) { 678 tsk = oom_reaper_list; 679 oom_reaper_list = tsk->oom_reaper_list; 680 } 681 spin_unlock_irq(&oom_reaper_lock); 682 683 if (tsk) 684 oom_reap_task(tsk); 685 } 686 687 return 0; 688 } 689 690 static void wake_oom_reaper(struct timer_list *timer) 691 { 692 struct task_struct *tsk = container_of(timer, struct task_struct, 693 oom_reaper_timer); 694 struct mm_struct *mm = tsk->signal->oom_mm; 695 unsigned long flags; 696 697 /* The victim managed to terminate on its own - see exit_mmap */ 698 if (test_bit(MMF_OOM_SKIP, &mm->flags)) { 699 put_task_struct(tsk); 700 return; 701 } 702 703 spin_lock_irqsave(&oom_reaper_lock, flags); 704 tsk->oom_reaper_list = oom_reaper_list; 705 oom_reaper_list = tsk; 706 spin_unlock_irqrestore(&oom_reaper_lock, flags); 707 trace_wake_reaper(tsk->pid); 708 wake_up(&oom_reaper_wait); 709 } 710 711 /* 712 * Give the OOM victim time to exit naturally before invoking the oom_reaping. 713 * The timers timeout is arbitrary... the longer it is, the longer the worst 714 * case scenario for the OOM can take. If it is too small, the oom_reaper can 715 * get in the way and release resources needed by the process exit path. 716 * e.g. The futex robust list can sit in Anon|Private memory that gets reaped 717 * before the exit path is able to wake the futex waiters. 718 */ 719 #define OOM_REAPER_DELAY (2*HZ) 720 static void queue_oom_reaper(struct task_struct *tsk) 721 { 722 /* mm is already queued? */ 723 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags)) 724 return; 725 726 get_task_struct(tsk); 727 timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0); 728 tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY; 729 add_timer(&tsk->oom_reaper_timer); 730 } 731 732 static int __init oom_init(void) 733 { 734 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper"); 735 #ifdef CONFIG_SYSCTL 736 register_sysctl_init("vm", vm_oom_kill_table); 737 #endif 738 return 0; 739 } 740 subsys_initcall(oom_init) 741 #else 742 static inline void queue_oom_reaper(struct task_struct *tsk) 743 { 744 } 745 #endif /* CONFIG_MMU */ 746 747 /** 748 * mark_oom_victim - mark the given task as OOM victim 749 * @tsk: task to mark 750 * 751 * Has to be called with oom_lock held and never after 752 * oom has been disabled already. 753 * 754 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either 755 * under task_lock or operate on the current). 756 */ 757 static void mark_oom_victim(struct task_struct *tsk) 758 { 759 struct mm_struct *mm = tsk->mm; 760 761 WARN_ON(oom_killer_disabled); 762 /* OOM killer might race with memcg OOM */ 763 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE)) 764 return; 765 766 /* oom_mm is bound to the signal struct life time. */ 767 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) { 768 mmgrab(tsk->signal->oom_mm); 769 set_bit(MMF_OOM_VICTIM, &mm->flags); 770 } 771 772 /* 773 * Make sure that the task is woken up from uninterruptible sleep 774 * if it is frozen because OOM killer wouldn't be able to free 775 * any memory and livelock. freezing_slow_path will tell the freezer 776 * that TIF_MEMDIE tasks should be ignored. 777 */ 778 __thaw_task(tsk); 779 atomic_inc(&oom_victims); 780 trace_mark_victim(tsk->pid); 781 } 782 783 /** 784 * exit_oom_victim - note the exit of an OOM victim 785 */ 786 void exit_oom_victim(void) 787 { 788 clear_thread_flag(TIF_MEMDIE); 789 790 if (!atomic_dec_return(&oom_victims)) 791 wake_up_all(&oom_victims_wait); 792 } 793 794 /** 795 * oom_killer_enable - enable OOM killer 796 */ 797 void oom_killer_enable(void) 798 { 799 oom_killer_disabled = false; 800 pr_info("OOM killer enabled.\n"); 801 } 802 803 /** 804 * oom_killer_disable - disable OOM killer 805 * @timeout: maximum timeout to wait for oom victims in jiffies 806 * 807 * Forces all page allocations to fail rather than trigger OOM killer. 808 * Will block and wait until all OOM victims are killed or the given 809 * timeout expires. 810 * 811 * The function cannot be called when there are runnable user tasks because 812 * the userspace would see unexpected allocation failures as a result. Any 813 * new usage of this function should be consulted with MM people. 814 * 815 * Returns true if successful and false if the OOM killer cannot be 816 * disabled. 817 */ 818 bool oom_killer_disable(signed long timeout) 819 { 820 signed long ret; 821 822 /* 823 * Make sure to not race with an ongoing OOM killer. Check that the 824 * current is not killed (possibly due to sharing the victim's memory). 825 */ 826 if (mutex_lock_killable(&oom_lock)) 827 return false; 828 oom_killer_disabled = true; 829 mutex_unlock(&oom_lock); 830 831 ret = wait_event_interruptible_timeout(oom_victims_wait, 832 !atomic_read(&oom_victims), timeout); 833 if (ret <= 0) { 834 oom_killer_enable(); 835 return false; 836 } 837 pr_info("OOM killer disabled.\n"); 838 839 return true; 840 } 841 842 static inline bool __task_will_free_mem(struct task_struct *task) 843 { 844 struct signal_struct *sig = task->signal; 845 846 /* 847 * A coredumping process may sleep for an extended period in 848 * coredump_task_exit(), so the oom killer cannot assume that 849 * the process will promptly exit and release memory. 850 */ 851 if (sig->core_state) 852 return false; 853 854 if (sig->flags & SIGNAL_GROUP_EXIT) 855 return true; 856 857 if (thread_group_empty(task) && (task->flags & PF_EXITING)) 858 return true; 859 860 return false; 861 } 862 863 /* 864 * Checks whether the given task is dying or exiting and likely to 865 * release its address space. This means that all threads and processes 866 * sharing the same mm have to be killed or exiting. 867 * Caller has to make sure that task->mm is stable (hold task_lock or 868 * it operates on the current). 869 */ 870 static bool task_will_free_mem(struct task_struct *task) 871 { 872 struct mm_struct *mm = task->mm; 873 struct task_struct *p; 874 bool ret = true; 875 876 /* 877 * Skip tasks without mm because it might have passed its exit_mm and 878 * exit_oom_victim. oom_reaper could have rescued that but do not rely 879 * on that for now. We can consider find_lock_task_mm in future. 880 */ 881 if (!mm) 882 return false; 883 884 if (!__task_will_free_mem(task)) 885 return false; 886 887 /* 888 * This task has already been drained by the oom reaper so there are 889 * only small chances it will free some more 890 */ 891 if (test_bit(MMF_OOM_SKIP, &mm->flags)) 892 return false; 893 894 if (atomic_read(&mm->mm_users) <= 1) 895 return true; 896 897 /* 898 * Make sure that all tasks which share the mm with the given tasks 899 * are dying as well to make sure that a) nobody pins its mm and 900 * b) the task is also reapable by the oom reaper. 901 */ 902 rcu_read_lock(); 903 for_each_process(p) { 904 if (!process_shares_mm(p, mm)) 905 continue; 906 if (same_thread_group(task, p)) 907 continue; 908 ret = __task_will_free_mem(p); 909 if (!ret) 910 break; 911 } 912 rcu_read_unlock(); 913 914 return ret; 915 } 916 917 static void __oom_kill_process(struct task_struct *victim, const char *message) 918 { 919 struct task_struct *p; 920 struct mm_struct *mm; 921 bool can_oom_reap = true; 922 923 p = find_lock_task_mm(victim); 924 if (!p) { 925 pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n", 926 message, task_pid_nr(victim), victim->comm); 927 put_task_struct(victim); 928 return; 929 } else if (victim != p) { 930 get_task_struct(p); 931 put_task_struct(victim); 932 victim = p; 933 } 934 935 /* Get a reference to safely compare mm after task_unlock(victim) */ 936 mm = victim->mm; 937 mmgrab(mm); 938 939 /* Raise event before sending signal: task reaper must see this */ 940 count_vm_event(OOM_KILL); 941 memcg_memory_event_mm(mm, MEMCG_OOM_KILL); 942 943 /* 944 * We should send SIGKILL before granting access to memory reserves 945 * in order to prevent the OOM victim from depleting the memory 946 * reserves from the user space under its control. 947 */ 948 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID); 949 mark_oom_victim(victim); 950 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n", 951 message, task_pid_nr(victim), victim->comm, K(mm->total_vm), 952 K(get_mm_counter(mm, MM_ANONPAGES)), 953 K(get_mm_counter(mm, MM_FILEPAGES)), 954 K(get_mm_counter(mm, MM_SHMEMPAGES)), 955 from_kuid(&init_user_ns, task_uid(victim)), 956 mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj); 957 task_unlock(victim); 958 959 /* 960 * Kill all user processes sharing victim->mm in other thread groups, if 961 * any. They don't get access to memory reserves, though, to avoid 962 * depletion of all memory. This prevents mm->mmap_lock livelock when an 963 * oom killed thread cannot exit because it requires the semaphore and 964 * its contended by another thread trying to allocate memory itself. 965 * That thread will now get access to memory reserves since it has a 966 * pending fatal signal. 967 */ 968 rcu_read_lock(); 969 for_each_process(p) { 970 if (!process_shares_mm(p, mm)) 971 continue; 972 if (same_thread_group(p, victim)) 973 continue; 974 if (is_global_init(p)) { 975 can_oom_reap = false; 976 set_bit(MMF_OOM_SKIP, &mm->flags); 977 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n", 978 task_pid_nr(victim), victim->comm, 979 task_pid_nr(p), p->comm); 980 continue; 981 } 982 /* 983 * No kthread_use_mm() user needs to read from the userspace so 984 * we are ok to reap it. 985 */ 986 if (unlikely(p->flags & PF_KTHREAD)) 987 continue; 988 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID); 989 } 990 rcu_read_unlock(); 991 992 if (can_oom_reap) 993 queue_oom_reaper(victim); 994 995 mmdrop(mm); 996 put_task_struct(victim); 997 } 998 #undef K 999 1000 /* 1001 * Kill provided task unless it's secured by setting 1002 * oom_score_adj to OOM_SCORE_ADJ_MIN. 1003 */ 1004 static int oom_kill_memcg_member(struct task_struct *task, void *message) 1005 { 1006 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN && 1007 !is_global_init(task)) { 1008 get_task_struct(task); 1009 __oom_kill_process(task, message); 1010 } 1011 return 0; 1012 } 1013 1014 static void oom_kill_process(struct oom_control *oc, const char *message) 1015 { 1016 struct task_struct *victim = oc->chosen; 1017 struct mem_cgroup *oom_group; 1018 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1019 DEFAULT_RATELIMIT_BURST); 1020 1021 /* 1022 * If the task is already exiting, don't alarm the sysadmin or kill 1023 * its children or threads, just give it access to memory reserves 1024 * so it can die quickly 1025 */ 1026 task_lock(victim); 1027 if (task_will_free_mem(victim)) { 1028 mark_oom_victim(victim); 1029 queue_oom_reaper(victim); 1030 task_unlock(victim); 1031 put_task_struct(victim); 1032 return; 1033 } 1034 task_unlock(victim); 1035 1036 if (__ratelimit(&oom_rs)) 1037 dump_header(oc, victim); 1038 1039 /* 1040 * Do we need to kill the entire memory cgroup? 1041 * Or even one of the ancestor memory cgroups? 1042 * Check this out before killing the victim task. 1043 */ 1044 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg); 1045 1046 __oom_kill_process(victim, message); 1047 1048 /* 1049 * If necessary, kill all tasks in the selected memory cgroup. 1050 */ 1051 if (oom_group) { 1052 memcg_memory_event(oom_group, MEMCG_OOM_GROUP_KILL); 1053 mem_cgroup_print_oom_group(oom_group); 1054 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member, 1055 (void *)message); 1056 mem_cgroup_put(oom_group); 1057 } 1058 } 1059 1060 /* 1061 * Determines whether the kernel must panic because of the panic_on_oom sysctl. 1062 */ 1063 static void check_panic_on_oom(struct oom_control *oc) 1064 { 1065 if (likely(!sysctl_panic_on_oom)) 1066 return; 1067 if (sysctl_panic_on_oom != 2) { 1068 /* 1069 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel 1070 * does not panic for cpuset, mempolicy, or memcg allocation 1071 * failures. 1072 */ 1073 if (oc->constraint != CONSTRAINT_NONE) 1074 return; 1075 } 1076 /* Do not panic for oom kills triggered by sysrq */ 1077 if (is_sysrq_oom(oc)) 1078 return; 1079 dump_header(oc, NULL); 1080 panic("Out of memory: %s panic_on_oom is enabled\n", 1081 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); 1082 } 1083 1084 static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 1085 1086 int register_oom_notifier(struct notifier_block *nb) 1087 { 1088 return blocking_notifier_chain_register(&oom_notify_list, nb); 1089 } 1090 EXPORT_SYMBOL_GPL(register_oom_notifier); 1091 1092 int unregister_oom_notifier(struct notifier_block *nb) 1093 { 1094 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 1095 } 1096 EXPORT_SYMBOL_GPL(unregister_oom_notifier); 1097 1098 /** 1099 * out_of_memory - kill the "best" process when we run out of memory 1100 * @oc: pointer to struct oom_control 1101 * 1102 * If we run out of memory, we have the choice between either 1103 * killing a random task (bad), letting the system crash (worse) 1104 * OR try to be smart about which process to kill. Note that we 1105 * don't have to be perfect here, we just have to be good. 1106 */ 1107 bool out_of_memory(struct oom_control *oc) 1108 { 1109 unsigned long freed = 0; 1110 1111 if (oom_killer_disabled) 1112 return false; 1113 1114 if (!is_memcg_oom(oc)) { 1115 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 1116 if (freed > 0 && !is_sysrq_oom(oc)) 1117 /* Got some memory back in the last second. */ 1118 return true; 1119 } 1120 1121 /* 1122 * If current has a pending SIGKILL or is exiting, then automatically 1123 * select it. The goal is to allow it to allocate so that it may 1124 * quickly exit and free its memory. 1125 */ 1126 if (task_will_free_mem(current)) { 1127 mark_oom_victim(current); 1128 queue_oom_reaper(current); 1129 return true; 1130 } 1131 1132 /* 1133 * The OOM killer does not compensate for IO-less reclaim. 1134 * pagefault_out_of_memory lost its gfp context so we have to 1135 * make sure exclude 0 mask - all other users should have at least 1136 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to 1137 * invoke the OOM killer even if it is a GFP_NOFS allocation. 1138 */ 1139 if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc)) 1140 return true; 1141 1142 /* 1143 * Check if there were limitations on the allocation (only relevant for 1144 * NUMA and memcg) that may require different handling. 1145 */ 1146 oc->constraint = constrained_alloc(oc); 1147 if (oc->constraint != CONSTRAINT_MEMORY_POLICY) 1148 oc->nodemask = NULL; 1149 check_panic_on_oom(oc); 1150 1151 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task && 1152 current->mm && !oom_unkillable_task(current) && 1153 oom_cpuset_eligible(current, oc) && 1154 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) { 1155 get_task_struct(current); 1156 oc->chosen = current; 1157 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)"); 1158 return true; 1159 } 1160 1161 select_bad_process(oc); 1162 /* Found nothing?!?! */ 1163 if (!oc->chosen) { 1164 dump_header(oc, NULL); 1165 pr_warn("Out of memory and no killable processes...\n"); 1166 /* 1167 * If we got here due to an actual allocation at the 1168 * system level, we cannot survive this and will enter 1169 * an endless loop in the allocator. Bail out now. 1170 */ 1171 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc)) 1172 panic("System is deadlocked on memory\n"); 1173 } 1174 if (oc->chosen && oc->chosen != (void *)-1UL) 1175 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" : 1176 "Memory cgroup out of memory"); 1177 return !!oc->chosen; 1178 } 1179 1180 /* 1181 * The pagefault handler calls here because some allocation has failed. We have 1182 * to take care of the memcg OOM here because this is the only safe context without 1183 * any locks held but let the oom killer triggered from the allocation context care 1184 * about the global OOM. 1185 */ 1186 void pagefault_out_of_memory(void) 1187 { 1188 static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL, 1189 DEFAULT_RATELIMIT_BURST); 1190 1191 if (mem_cgroup_oom_synchronize(true)) 1192 return; 1193 1194 if (fatal_signal_pending(current)) 1195 return; 1196 1197 if (__ratelimit(&pfoom_rs)) 1198 pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n"); 1199 } 1200 1201 SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags) 1202 { 1203 #ifdef CONFIG_MMU 1204 struct mm_struct *mm = NULL; 1205 struct task_struct *task; 1206 struct task_struct *p; 1207 unsigned int f_flags; 1208 bool reap = false; 1209 long ret = 0; 1210 1211 if (flags) 1212 return -EINVAL; 1213 1214 task = pidfd_get_task(pidfd, &f_flags); 1215 if (IS_ERR(task)) 1216 return PTR_ERR(task); 1217 1218 /* 1219 * Make sure to choose a thread which still has a reference to mm 1220 * during the group exit 1221 */ 1222 p = find_lock_task_mm(task); 1223 if (!p) { 1224 ret = -ESRCH; 1225 goto put_task; 1226 } 1227 1228 mm = p->mm; 1229 mmgrab(mm); 1230 1231 if (task_will_free_mem(p)) 1232 reap = true; 1233 else { 1234 /* Error only if the work has not been done already */ 1235 if (!test_bit(MMF_OOM_SKIP, &mm->flags)) 1236 ret = -EINVAL; 1237 } 1238 task_unlock(p); 1239 1240 if (!reap) 1241 goto drop_mm; 1242 1243 if (mmap_read_lock_killable(mm)) { 1244 ret = -EINTR; 1245 goto drop_mm; 1246 } 1247 /* 1248 * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure 1249 * possible change in exit_mmap is seen 1250 */ 1251 if (!test_bit(MMF_OOM_SKIP, &mm->flags) && !__oom_reap_task_mm(mm)) 1252 ret = -EAGAIN; 1253 mmap_read_unlock(mm); 1254 1255 drop_mm: 1256 mmdrop(mm); 1257 put_task: 1258 put_task_struct(task); 1259 return ret; 1260 #else 1261 return -ENOSYS; 1262 #endif /* CONFIG_MMU */ 1263 } 1264