1 /* 2 * linux/mm/oom_kill.c 3 * 4 * Copyright (C) 1998,2000 Rik van Riel 5 * Thanks go out to Claus Fischer for some serious inspiration and 6 * for goading me into coding this file... 7 * 8 * The routines in this file are used to kill a process when 9 * we're seriously out of memory. This gets called from __alloc_pages() 10 * in mm/page_alloc.c when we really run out of memory. 11 * 12 * Since we won't call these routines often (on a well-configured 13 * machine) this file will double as a 'coding guide' and a signpost 14 * for newbie kernel hackers. It features several pointers to major 15 * kernel subsystems and hints as to where to find out what things do. 16 */ 17 18 #include <linux/oom.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/sched.h> 22 #include <linux/swap.h> 23 #include <linux/timex.h> 24 #include <linux/jiffies.h> 25 #include <linux/cpuset.h> 26 #include <linux/module.h> 27 #include <linux/notifier.h> 28 #include <linux/memcontrol.h> 29 30 int sysctl_panic_on_oom; 31 int sysctl_oom_kill_allocating_task; 32 int sysctl_oom_dump_tasks; 33 static DEFINE_SPINLOCK(zone_scan_mutex); 34 /* #define DEBUG */ 35 36 /** 37 * badness - calculate a numeric value for how bad this task has been 38 * @p: task struct of which task we should calculate 39 * @uptime: current uptime in seconds 40 * @mem: target memory controller 41 * 42 * The formula used is relatively simple and documented inline in the 43 * function. The main rationale is that we want to select a good task 44 * to kill when we run out of memory. 45 * 46 * Good in this context means that: 47 * 1) we lose the minimum amount of work done 48 * 2) we recover a large amount of memory 49 * 3) we don't kill anything innocent of eating tons of memory 50 * 4) we want to kill the minimum amount of processes (one) 51 * 5) we try to kill the process the user expects us to kill, this 52 * algorithm has been meticulously tuned to meet the principle 53 * of least surprise ... (be careful when you change it) 54 */ 55 56 unsigned long badness(struct task_struct *p, unsigned long uptime) 57 { 58 unsigned long points, cpu_time, run_time, s; 59 struct mm_struct *mm; 60 struct task_struct *child; 61 62 task_lock(p); 63 mm = p->mm; 64 if (!mm) { 65 task_unlock(p); 66 return 0; 67 } 68 69 /* 70 * The memory size of the process is the basis for the badness. 71 */ 72 points = mm->total_vm; 73 74 /* 75 * After this unlock we can no longer dereference local variable `mm' 76 */ 77 task_unlock(p); 78 79 /* 80 * swapoff can easily use up all memory, so kill those first. 81 */ 82 if (p->flags & PF_SWAPOFF) 83 return ULONG_MAX; 84 85 /* 86 * Processes which fork a lot of child processes are likely 87 * a good choice. We add half the vmsize of the children if they 88 * have an own mm. This prevents forking servers to flood the 89 * machine with an endless amount of children. In case a single 90 * child is eating the vast majority of memory, adding only half 91 * to the parents will make the child our kill candidate of choice. 92 */ 93 list_for_each_entry(child, &p->children, sibling) { 94 task_lock(child); 95 if (child->mm != mm && child->mm) 96 points += child->mm->total_vm/2 + 1; 97 task_unlock(child); 98 } 99 100 /* 101 * CPU time is in tens of seconds and run time is in thousands 102 * of seconds. There is no particular reason for this other than 103 * that it turned out to work very well in practice. 104 */ 105 cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime)) 106 >> (SHIFT_HZ + 3); 107 108 if (uptime >= p->start_time.tv_sec) 109 run_time = (uptime - p->start_time.tv_sec) >> 10; 110 else 111 run_time = 0; 112 113 s = int_sqrt(cpu_time); 114 if (s) 115 points /= s; 116 s = int_sqrt(int_sqrt(run_time)); 117 if (s) 118 points /= s; 119 120 /* 121 * Niced processes are most likely less important, so double 122 * their badness points. 123 */ 124 if (task_nice(p) > 0) 125 points *= 2; 126 127 /* 128 * Superuser processes are usually more important, so we make it 129 * less likely that we kill those. 130 */ 131 if (__capable(p, CAP_SYS_ADMIN) || __capable(p, CAP_SYS_RESOURCE)) 132 points /= 4; 133 134 /* 135 * We don't want to kill a process with direct hardware access. 136 * Not only could that mess up the hardware, but usually users 137 * tend to only have this flag set on applications they think 138 * of as important. 139 */ 140 if (__capable(p, CAP_SYS_RAWIO)) 141 points /= 4; 142 143 /* 144 * If p's nodes don't overlap ours, it may still help to kill p 145 * because p may have allocated or otherwise mapped memory on 146 * this node before. However it will be less likely. 147 */ 148 if (!cpuset_mems_allowed_intersects(current, p)) 149 points /= 8; 150 151 /* 152 * Adjust the score by oomkilladj. 153 */ 154 if (p->oomkilladj) { 155 if (p->oomkilladj > 0) { 156 if (!points) 157 points = 1; 158 points <<= p->oomkilladj; 159 } else 160 points >>= -(p->oomkilladj); 161 } 162 163 #ifdef DEBUG 164 printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n", 165 p->pid, p->comm, points); 166 #endif 167 return points; 168 } 169 170 /* 171 * Determine the type of allocation constraint. 172 */ 173 static inline enum oom_constraint constrained_alloc(struct zonelist *zonelist, 174 gfp_t gfp_mask) 175 { 176 #ifdef CONFIG_NUMA 177 struct zone *zone; 178 struct zoneref *z; 179 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 180 nodemask_t nodes = node_states[N_HIGH_MEMORY]; 181 182 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 183 if (cpuset_zone_allowed_softwall(zone, gfp_mask)) 184 node_clear(zone_to_nid(zone), nodes); 185 else 186 return CONSTRAINT_CPUSET; 187 188 if (!nodes_empty(nodes)) 189 return CONSTRAINT_MEMORY_POLICY; 190 #endif 191 192 return CONSTRAINT_NONE; 193 } 194 195 /* 196 * Simple selection loop. We chose the process with the highest 197 * number of 'points'. We expect the caller will lock the tasklist. 198 * 199 * (not docbooked, we don't want this one cluttering up the manual) 200 */ 201 static struct task_struct *select_bad_process(unsigned long *ppoints, 202 struct mem_cgroup *mem) 203 { 204 struct task_struct *g, *p; 205 struct task_struct *chosen = NULL; 206 struct timespec uptime; 207 *ppoints = 0; 208 209 do_posix_clock_monotonic_gettime(&uptime); 210 do_each_thread(g, p) { 211 unsigned long points; 212 213 /* 214 * skip kernel threads and tasks which have already released 215 * their mm. 216 */ 217 if (!p->mm) 218 continue; 219 /* skip the init task */ 220 if (is_global_init(p)) 221 continue; 222 if (mem && !task_in_mem_cgroup(p, mem)) 223 continue; 224 225 /* 226 * This task already has access to memory reserves and is 227 * being killed. Don't allow any other task access to the 228 * memory reserve. 229 * 230 * Note: this may have a chance of deadlock if it gets 231 * blocked waiting for another task which itself is waiting 232 * for memory. Is there a better alternative? 233 */ 234 if (test_tsk_thread_flag(p, TIF_MEMDIE)) 235 return ERR_PTR(-1UL); 236 237 /* 238 * This is in the process of releasing memory so wait for it 239 * to finish before killing some other task by mistake. 240 * 241 * However, if p is the current task, we allow the 'kill' to 242 * go ahead if it is exiting: this will simply set TIF_MEMDIE, 243 * which will allow it to gain access to memory reserves in 244 * the process of exiting and releasing its resources. 245 * Otherwise we could get an easy OOM deadlock. 246 */ 247 if (p->flags & PF_EXITING) { 248 if (p != current) 249 return ERR_PTR(-1UL); 250 251 chosen = p; 252 *ppoints = ULONG_MAX; 253 } 254 255 if (p->oomkilladj == OOM_DISABLE) 256 continue; 257 258 points = badness(p, uptime.tv_sec); 259 if (points > *ppoints || !chosen) { 260 chosen = p; 261 *ppoints = points; 262 } 263 } while_each_thread(g, p); 264 265 return chosen; 266 } 267 268 /** 269 * dump_tasks - dump current memory state of all system tasks 270 * @mem: target memory controller 271 * 272 * Dumps the current memory state of all system tasks, excluding kernel threads. 273 * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj 274 * score, and name. 275 * 276 * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are 277 * shown. 278 * 279 * Call with tasklist_lock read-locked. 280 */ 281 static void dump_tasks(const struct mem_cgroup *mem) 282 { 283 struct task_struct *g, *p; 284 285 printk(KERN_INFO "[ pid ] uid tgid total_vm rss cpu oom_adj " 286 "name\n"); 287 do_each_thread(g, p) { 288 /* 289 * total_vm and rss sizes do not exist for tasks with a 290 * detached mm so there's no need to report them. 291 */ 292 if (!p->mm) 293 continue; 294 if (mem && !task_in_mem_cgroup(p, mem)) 295 continue; 296 297 task_lock(p); 298 printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3d %3d %s\n", 299 p->pid, p->uid, p->tgid, p->mm->total_vm, 300 get_mm_rss(p->mm), (int)task_cpu(p), p->oomkilladj, 301 p->comm); 302 task_unlock(p); 303 } while_each_thread(g, p); 304 } 305 306 /* 307 * Send SIGKILL to the selected process irrespective of CAP_SYS_RAW_IO 308 * flag though it's unlikely that we select a process with CAP_SYS_RAW_IO 309 * set. 310 */ 311 static void __oom_kill_task(struct task_struct *p, int verbose) 312 { 313 if (is_global_init(p)) { 314 WARN_ON(1); 315 printk(KERN_WARNING "tried to kill init!\n"); 316 return; 317 } 318 319 if (!p->mm) { 320 WARN_ON(1); 321 printk(KERN_WARNING "tried to kill an mm-less task!\n"); 322 return; 323 } 324 325 if (verbose) 326 printk(KERN_ERR "Killed process %d (%s)\n", 327 task_pid_nr(p), p->comm); 328 329 /* 330 * We give our sacrificial lamb high priority and access to 331 * all the memory it needs. That way it should be able to 332 * exit() and clear out its resources quickly... 333 */ 334 p->rt.time_slice = HZ; 335 set_tsk_thread_flag(p, TIF_MEMDIE); 336 337 force_sig(SIGKILL, p); 338 } 339 340 static int oom_kill_task(struct task_struct *p) 341 { 342 struct mm_struct *mm; 343 struct task_struct *g, *q; 344 345 mm = p->mm; 346 347 /* WARNING: mm may not be dereferenced since we did not obtain its 348 * value from get_task_mm(p). This is OK since all we need to do is 349 * compare mm to q->mm below. 350 * 351 * Furthermore, even if mm contains a non-NULL value, p->mm may 352 * change to NULL at any time since we do not hold task_lock(p). 353 * However, this is of no concern to us. 354 */ 355 356 if (mm == NULL) 357 return 1; 358 359 /* 360 * Don't kill the process if any threads are set to OOM_DISABLE 361 */ 362 do_each_thread(g, q) { 363 if (q->mm == mm && q->oomkilladj == OOM_DISABLE) 364 return 1; 365 } while_each_thread(g, q); 366 367 __oom_kill_task(p, 1); 368 369 /* 370 * kill all processes that share the ->mm (i.e. all threads), 371 * but are in a different thread group. Don't let them have access 372 * to memory reserves though, otherwise we might deplete all memory. 373 */ 374 do_each_thread(g, q) { 375 if (q->mm == mm && !same_thread_group(q, p)) 376 force_sig(SIGKILL, q); 377 } while_each_thread(g, q); 378 379 return 0; 380 } 381 382 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, 383 unsigned long points, struct mem_cgroup *mem, 384 const char *message) 385 { 386 struct task_struct *c; 387 388 if (printk_ratelimit()) { 389 printk(KERN_WARNING "%s invoked oom-killer: " 390 "gfp_mask=0x%x, order=%d, oomkilladj=%d\n", 391 current->comm, gfp_mask, order, current->oomkilladj); 392 dump_stack(); 393 show_mem(); 394 if (sysctl_oom_dump_tasks) 395 dump_tasks(mem); 396 } 397 398 /* 399 * If the task is already exiting, don't alarm the sysadmin or kill 400 * its children or threads, just set TIF_MEMDIE so it can die quickly 401 */ 402 if (p->flags & PF_EXITING) { 403 __oom_kill_task(p, 0); 404 return 0; 405 } 406 407 printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n", 408 message, task_pid_nr(p), p->comm, points); 409 410 /* Try to kill a child first */ 411 list_for_each_entry(c, &p->children, sibling) { 412 if (c->mm == p->mm) 413 continue; 414 if (!oom_kill_task(c)) 415 return 0; 416 } 417 return oom_kill_task(p); 418 } 419 420 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 421 void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask) 422 { 423 unsigned long points = 0; 424 struct task_struct *p; 425 426 cgroup_lock(); 427 read_lock(&tasklist_lock); 428 retry: 429 p = select_bad_process(&points, mem); 430 if (PTR_ERR(p) == -1UL) 431 goto out; 432 433 if (!p) 434 p = current; 435 436 if (oom_kill_process(p, gfp_mask, 0, points, mem, 437 "Memory cgroup out of memory")) 438 goto retry; 439 out: 440 read_unlock(&tasklist_lock); 441 cgroup_unlock(); 442 } 443 #endif 444 445 static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 446 447 int register_oom_notifier(struct notifier_block *nb) 448 { 449 return blocking_notifier_chain_register(&oom_notify_list, nb); 450 } 451 EXPORT_SYMBOL_GPL(register_oom_notifier); 452 453 int unregister_oom_notifier(struct notifier_block *nb) 454 { 455 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 456 } 457 EXPORT_SYMBOL_GPL(unregister_oom_notifier); 458 459 /* 460 * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero 461 * if a parallel OOM killing is already taking place that includes a zone in 462 * the zonelist. Otherwise, locks all zones in the zonelist and returns 1. 463 */ 464 int try_set_zone_oom(struct zonelist *zonelist, gfp_t gfp_mask) 465 { 466 struct zoneref *z; 467 struct zone *zone; 468 int ret = 1; 469 470 spin_lock(&zone_scan_mutex); 471 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 472 if (zone_is_oom_locked(zone)) { 473 ret = 0; 474 goto out; 475 } 476 } 477 478 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 479 /* 480 * Lock each zone in the zonelist under zone_scan_mutex so a 481 * parallel invocation of try_set_zone_oom() doesn't succeed 482 * when it shouldn't. 483 */ 484 zone_set_flag(zone, ZONE_OOM_LOCKED); 485 } 486 487 out: 488 spin_unlock(&zone_scan_mutex); 489 return ret; 490 } 491 492 /* 493 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed 494 * allocation attempts with zonelists containing them may now recall the OOM 495 * killer, if necessary. 496 */ 497 void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask) 498 { 499 struct zoneref *z; 500 struct zone *zone; 501 502 spin_lock(&zone_scan_mutex); 503 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 504 zone_clear_flag(zone, ZONE_OOM_LOCKED); 505 } 506 spin_unlock(&zone_scan_mutex); 507 } 508 509 /** 510 * out_of_memory - kill the "best" process when we run out of memory 511 * @zonelist: zonelist pointer 512 * @gfp_mask: memory allocation flags 513 * @order: amount of memory being requested as a power of 2 514 * 515 * If we run out of memory, we have the choice between either 516 * killing a random task (bad), letting the system crash (worse) 517 * OR try to be smart about which process to kill. Note that we 518 * don't have to be perfect here, we just have to be good. 519 */ 520 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order) 521 { 522 struct task_struct *p; 523 unsigned long points = 0; 524 unsigned long freed = 0; 525 enum oom_constraint constraint; 526 527 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 528 if (freed > 0) 529 /* Got some memory back in the last second. */ 530 return; 531 532 if (sysctl_panic_on_oom == 2) 533 panic("out of memory. Compulsory panic_on_oom is selected.\n"); 534 535 /* 536 * Check if there were limitations on the allocation (only relevant for 537 * NUMA) that may require different handling. 538 */ 539 constraint = constrained_alloc(zonelist, gfp_mask); 540 read_lock(&tasklist_lock); 541 542 switch (constraint) { 543 case CONSTRAINT_MEMORY_POLICY: 544 oom_kill_process(current, gfp_mask, order, points, NULL, 545 "No available memory (MPOL_BIND)"); 546 break; 547 548 case CONSTRAINT_NONE: 549 if (sysctl_panic_on_oom) 550 panic("out of memory. panic_on_oom is selected\n"); 551 /* Fall-through */ 552 case CONSTRAINT_CPUSET: 553 if (sysctl_oom_kill_allocating_task) { 554 oom_kill_process(current, gfp_mask, order, points, NULL, 555 "Out of memory (oom_kill_allocating_task)"); 556 break; 557 } 558 retry: 559 /* 560 * Rambo mode: Shoot down a process and hope it solves whatever 561 * issues we may have. 562 */ 563 p = select_bad_process(&points, NULL); 564 565 if (PTR_ERR(p) == -1UL) 566 goto out; 567 568 /* Found nothing?!?! Either we hang forever, or we panic. */ 569 if (!p) { 570 read_unlock(&tasklist_lock); 571 panic("Out of memory and no killable processes...\n"); 572 } 573 574 if (oom_kill_process(p, gfp_mask, order, points, NULL, 575 "Out of memory")) 576 goto retry; 577 578 break; 579 } 580 581 out: 582 read_unlock(&tasklist_lock); 583 584 /* 585 * Give "p" a good chance of killing itself before we 586 * retry to allocate memory unless "p" is current 587 */ 588 if (!test_thread_flag(TIF_MEMDIE)) 589 schedule_timeout_uninterruptible(1); 590 } 591