1 /* 2 * linux/mm/oom_kill.c 3 * 4 * Copyright (C) 1998,2000 Rik van Riel 5 * Thanks go out to Claus Fischer for some serious inspiration and 6 * for goading me into coding this file... 7 * Copyright (C) 2010 Google, Inc. 8 * Rewritten by David Rientjes 9 * 10 * The routines in this file are used to kill a process when 11 * we're seriously out of memory. This gets called from __alloc_pages() 12 * in mm/page_alloc.c when we really run out of memory. 13 * 14 * Since we won't call these routines often (on a well-configured 15 * machine) this file will double as a 'coding guide' and a signpost 16 * for newbie kernel hackers. It features several pointers to major 17 * kernel subsystems and hints as to where to find out what things do. 18 */ 19 20 #include <linux/oom.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/gfp.h> 24 #include <linux/sched.h> 25 #include <linux/swap.h> 26 #include <linux/timex.h> 27 #include <linux/jiffies.h> 28 #include <linux/cpuset.h> 29 #include <linux/export.h> 30 #include <linux/notifier.h> 31 #include <linux/memcontrol.h> 32 #include <linux/mempolicy.h> 33 #include <linux/security.h> 34 #include <linux/ptrace.h> 35 #include <linux/freezer.h> 36 #include <linux/ftrace.h> 37 #include <linux/ratelimit.h> 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/oom.h> 41 42 int sysctl_panic_on_oom; 43 int sysctl_oom_kill_allocating_task; 44 int sysctl_oom_dump_tasks = 1; 45 static DEFINE_SPINLOCK(zone_scan_lock); 46 47 #ifdef CONFIG_NUMA 48 /** 49 * has_intersects_mems_allowed() - check task eligiblity for kill 50 * @start: task struct of which task to consider 51 * @mask: nodemask passed to page allocator for mempolicy ooms 52 * 53 * Task eligibility is determined by whether or not a candidate task, @tsk, 54 * shares the same mempolicy nodes as current if it is bound by such a policy 55 * and whether or not it has the same set of allowed cpuset nodes. 56 */ 57 static bool has_intersects_mems_allowed(struct task_struct *start, 58 const nodemask_t *mask) 59 { 60 struct task_struct *tsk; 61 bool ret = false; 62 63 rcu_read_lock(); 64 for_each_thread(start, tsk) { 65 if (mask) { 66 /* 67 * If this is a mempolicy constrained oom, tsk's 68 * cpuset is irrelevant. Only return true if its 69 * mempolicy intersects current, otherwise it may be 70 * needlessly killed. 71 */ 72 ret = mempolicy_nodemask_intersects(tsk, mask); 73 } else { 74 /* 75 * This is not a mempolicy constrained oom, so only 76 * check the mems of tsk's cpuset. 77 */ 78 ret = cpuset_mems_allowed_intersects(current, tsk); 79 } 80 if (ret) 81 break; 82 } 83 rcu_read_unlock(); 84 85 return ret; 86 } 87 #else 88 static bool has_intersects_mems_allowed(struct task_struct *tsk, 89 const nodemask_t *mask) 90 { 91 return true; 92 } 93 #endif /* CONFIG_NUMA */ 94 95 /* 96 * The process p may have detached its own ->mm while exiting or through 97 * use_mm(), but one or more of its subthreads may still have a valid 98 * pointer. Return p, or any of its subthreads with a valid ->mm, with 99 * task_lock() held. 100 */ 101 struct task_struct *find_lock_task_mm(struct task_struct *p) 102 { 103 struct task_struct *t; 104 105 rcu_read_lock(); 106 107 for_each_thread(p, t) { 108 task_lock(t); 109 if (likely(t->mm)) 110 goto found; 111 task_unlock(t); 112 } 113 t = NULL; 114 found: 115 rcu_read_unlock(); 116 117 return t; 118 } 119 120 /* return true if the task is not adequate as candidate victim task. */ 121 static bool oom_unkillable_task(struct task_struct *p, 122 const struct mem_cgroup *memcg, const nodemask_t *nodemask) 123 { 124 if (is_global_init(p)) 125 return true; 126 if (p->flags & PF_KTHREAD) 127 return true; 128 129 /* When mem_cgroup_out_of_memory() and p is not member of the group */ 130 if (memcg && !task_in_mem_cgroup(p, memcg)) 131 return true; 132 133 /* p may not have freeable memory in nodemask */ 134 if (!has_intersects_mems_allowed(p, nodemask)) 135 return true; 136 137 return false; 138 } 139 140 /** 141 * oom_badness - heuristic function to determine which candidate task to kill 142 * @p: task struct of which task we should calculate 143 * @totalpages: total present RAM allowed for page allocation 144 * 145 * The heuristic for determining which task to kill is made to be as simple and 146 * predictable as possible. The goal is to return the highest value for the 147 * task consuming the most memory to avoid subsequent oom failures. 148 */ 149 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg, 150 const nodemask_t *nodemask, unsigned long totalpages) 151 { 152 long points; 153 long adj; 154 155 if (oom_unkillable_task(p, memcg, nodemask)) 156 return 0; 157 158 p = find_lock_task_mm(p); 159 if (!p) 160 return 0; 161 162 adj = (long)p->signal->oom_score_adj; 163 if (adj == OOM_SCORE_ADJ_MIN) { 164 task_unlock(p); 165 return 0; 166 } 167 168 /* 169 * The baseline for the badness score is the proportion of RAM that each 170 * task's rss, pagetable and swap space use. 171 */ 172 points = get_mm_rss(p->mm) + atomic_long_read(&p->mm->nr_ptes) + 173 get_mm_counter(p->mm, MM_SWAPENTS); 174 task_unlock(p); 175 176 /* 177 * Root processes get 3% bonus, just like the __vm_enough_memory() 178 * implementation used by LSMs. 179 */ 180 if (has_capability_noaudit(p, CAP_SYS_ADMIN)) 181 points -= (points * 3) / 100; 182 183 /* Normalize to oom_score_adj units */ 184 adj *= totalpages / 1000; 185 points += adj; 186 187 /* 188 * Never return 0 for an eligible task regardless of the root bonus and 189 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here). 190 */ 191 return points > 0 ? points : 1; 192 } 193 194 /* 195 * Determine the type of allocation constraint. 196 */ 197 #ifdef CONFIG_NUMA 198 static enum oom_constraint constrained_alloc(struct zonelist *zonelist, 199 gfp_t gfp_mask, nodemask_t *nodemask, 200 unsigned long *totalpages) 201 { 202 struct zone *zone; 203 struct zoneref *z; 204 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 205 bool cpuset_limited = false; 206 int nid; 207 208 /* Default to all available memory */ 209 *totalpages = totalram_pages + total_swap_pages; 210 211 if (!zonelist) 212 return CONSTRAINT_NONE; 213 /* 214 * Reach here only when __GFP_NOFAIL is used. So, we should avoid 215 * to kill current.We have to random task kill in this case. 216 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. 217 */ 218 if (gfp_mask & __GFP_THISNODE) 219 return CONSTRAINT_NONE; 220 221 /* 222 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in 223 * the page allocator means a mempolicy is in effect. Cpuset policy 224 * is enforced in get_page_from_freelist(). 225 */ 226 if (nodemask && !nodes_subset(node_states[N_MEMORY], *nodemask)) { 227 *totalpages = total_swap_pages; 228 for_each_node_mask(nid, *nodemask) 229 *totalpages += node_spanned_pages(nid); 230 return CONSTRAINT_MEMORY_POLICY; 231 } 232 233 /* Check this allocation failure is caused by cpuset's wall function */ 234 for_each_zone_zonelist_nodemask(zone, z, zonelist, 235 high_zoneidx, nodemask) 236 if (!cpuset_zone_allowed_softwall(zone, gfp_mask)) 237 cpuset_limited = true; 238 239 if (cpuset_limited) { 240 *totalpages = total_swap_pages; 241 for_each_node_mask(nid, cpuset_current_mems_allowed) 242 *totalpages += node_spanned_pages(nid); 243 return CONSTRAINT_CPUSET; 244 } 245 return CONSTRAINT_NONE; 246 } 247 #else 248 static enum oom_constraint constrained_alloc(struct zonelist *zonelist, 249 gfp_t gfp_mask, nodemask_t *nodemask, 250 unsigned long *totalpages) 251 { 252 *totalpages = totalram_pages + total_swap_pages; 253 return CONSTRAINT_NONE; 254 } 255 #endif 256 257 enum oom_scan_t oom_scan_process_thread(struct task_struct *task, 258 unsigned long totalpages, const nodemask_t *nodemask, 259 bool force_kill) 260 { 261 if (task->exit_state) 262 return OOM_SCAN_CONTINUE; 263 if (oom_unkillable_task(task, NULL, nodemask)) 264 return OOM_SCAN_CONTINUE; 265 266 /* 267 * This task already has access to memory reserves and is being killed. 268 * Don't allow any other task to have access to the reserves. 269 */ 270 if (test_tsk_thread_flag(task, TIF_MEMDIE)) { 271 if (unlikely(frozen(task))) 272 __thaw_task(task); 273 if (!force_kill) 274 return OOM_SCAN_ABORT; 275 } 276 if (!task->mm) 277 return OOM_SCAN_CONTINUE; 278 279 /* 280 * If task is allocating a lot of memory and has been marked to be 281 * killed first if it triggers an oom, then select it. 282 */ 283 if (oom_task_origin(task)) 284 return OOM_SCAN_SELECT; 285 286 if (task->flags & PF_EXITING && !force_kill) { 287 /* 288 * If this task is not being ptraced on exit, then wait for it 289 * to finish before killing some other task unnecessarily. 290 */ 291 if (!(task->group_leader->ptrace & PT_TRACE_EXIT)) 292 return OOM_SCAN_ABORT; 293 } 294 return OOM_SCAN_OK; 295 } 296 297 /* 298 * Simple selection loop. We chose the process with the highest 299 * number of 'points'. Returns -1 on scan abort. 300 * 301 * (not docbooked, we don't want this one cluttering up the manual) 302 */ 303 static struct task_struct *select_bad_process(unsigned int *ppoints, 304 unsigned long totalpages, const nodemask_t *nodemask, 305 bool force_kill) 306 { 307 struct task_struct *g, *p; 308 struct task_struct *chosen = NULL; 309 unsigned long chosen_points = 0; 310 311 rcu_read_lock(); 312 for_each_process_thread(g, p) { 313 unsigned int points; 314 315 switch (oom_scan_process_thread(p, totalpages, nodemask, 316 force_kill)) { 317 case OOM_SCAN_SELECT: 318 chosen = p; 319 chosen_points = ULONG_MAX; 320 /* fall through */ 321 case OOM_SCAN_CONTINUE: 322 continue; 323 case OOM_SCAN_ABORT: 324 rcu_read_unlock(); 325 return (struct task_struct *)(-1UL); 326 case OOM_SCAN_OK: 327 break; 328 }; 329 points = oom_badness(p, NULL, nodemask, totalpages); 330 if (!points || points < chosen_points) 331 continue; 332 /* Prefer thread group leaders for display purposes */ 333 if (points == chosen_points && thread_group_leader(chosen)) 334 continue; 335 336 chosen = p; 337 chosen_points = points; 338 } 339 if (chosen) 340 get_task_struct(chosen); 341 rcu_read_unlock(); 342 343 *ppoints = chosen_points * 1000 / totalpages; 344 return chosen; 345 } 346 347 /** 348 * dump_tasks - dump current memory state of all system tasks 349 * @memcg: current's memory controller, if constrained 350 * @nodemask: nodemask passed to page allocator for mempolicy ooms 351 * 352 * Dumps the current memory state of all eligible tasks. Tasks not in the same 353 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes 354 * are not shown. 355 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes, 356 * swapents, oom_score_adj value, and name. 357 */ 358 static void dump_tasks(const struct mem_cgroup *memcg, const nodemask_t *nodemask) 359 { 360 struct task_struct *p; 361 struct task_struct *task; 362 363 pr_info("[ pid ] uid tgid total_vm rss nr_ptes swapents oom_score_adj name\n"); 364 rcu_read_lock(); 365 for_each_process(p) { 366 if (oom_unkillable_task(p, memcg, nodemask)) 367 continue; 368 369 task = find_lock_task_mm(p); 370 if (!task) { 371 /* 372 * This is a kthread or all of p's threads have already 373 * detached their mm's. There's no need to report 374 * them; they can't be oom killed anyway. 375 */ 376 continue; 377 } 378 379 pr_info("[%5d] %5d %5d %8lu %8lu %7ld %8lu %5hd %s\n", 380 task->pid, from_kuid(&init_user_ns, task_uid(task)), 381 task->tgid, task->mm->total_vm, get_mm_rss(task->mm), 382 atomic_long_read(&task->mm->nr_ptes), 383 get_mm_counter(task->mm, MM_SWAPENTS), 384 task->signal->oom_score_adj, task->comm); 385 task_unlock(task); 386 } 387 rcu_read_unlock(); 388 } 389 390 static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order, 391 struct mem_cgroup *memcg, const nodemask_t *nodemask) 392 { 393 task_lock(current); 394 pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, " 395 "oom_score_adj=%hd\n", 396 current->comm, gfp_mask, order, 397 current->signal->oom_score_adj); 398 cpuset_print_task_mems_allowed(current); 399 task_unlock(current); 400 dump_stack(); 401 if (memcg) 402 mem_cgroup_print_oom_info(memcg, p); 403 else 404 show_mem(SHOW_MEM_FILTER_NODES); 405 if (sysctl_oom_dump_tasks) 406 dump_tasks(memcg, nodemask); 407 } 408 409 #define K(x) ((x) << (PAGE_SHIFT-10)) 410 /* 411 * Must be called while holding a reference to p, which will be released upon 412 * returning. 413 */ 414 void oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, 415 unsigned int points, unsigned long totalpages, 416 struct mem_cgroup *memcg, nodemask_t *nodemask, 417 const char *message) 418 { 419 struct task_struct *victim = p; 420 struct task_struct *child; 421 struct task_struct *t; 422 struct mm_struct *mm; 423 unsigned int victim_points = 0; 424 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL, 425 DEFAULT_RATELIMIT_BURST); 426 427 /* 428 * If the task is already exiting, don't alarm the sysadmin or kill 429 * its children or threads, just set TIF_MEMDIE so it can die quickly 430 */ 431 if (p->flags & PF_EXITING) { 432 set_tsk_thread_flag(p, TIF_MEMDIE); 433 put_task_struct(p); 434 return; 435 } 436 437 if (__ratelimit(&oom_rs)) 438 dump_header(p, gfp_mask, order, memcg, nodemask); 439 440 task_lock(p); 441 pr_err("%s: Kill process %d (%s) score %d or sacrifice child\n", 442 message, task_pid_nr(p), p->comm, points); 443 task_unlock(p); 444 445 /* 446 * If any of p's children has a different mm and is eligible for kill, 447 * the one with the highest oom_badness() score is sacrificed for its 448 * parent. This attempts to lose the minimal amount of work done while 449 * still freeing memory. 450 */ 451 read_lock(&tasklist_lock); 452 for_each_thread(p, t) { 453 list_for_each_entry(child, &t->children, sibling) { 454 unsigned int child_points; 455 456 if (child->mm == p->mm) 457 continue; 458 /* 459 * oom_badness() returns 0 if the thread is unkillable 460 */ 461 child_points = oom_badness(child, memcg, nodemask, 462 totalpages); 463 if (child_points > victim_points) { 464 put_task_struct(victim); 465 victim = child; 466 victim_points = child_points; 467 get_task_struct(victim); 468 } 469 } 470 } 471 read_unlock(&tasklist_lock); 472 473 p = find_lock_task_mm(victim); 474 if (!p) { 475 put_task_struct(victim); 476 return; 477 } else if (victim != p) { 478 get_task_struct(p); 479 put_task_struct(victim); 480 victim = p; 481 } 482 483 /* mm cannot safely be dereferenced after task_unlock(victim) */ 484 mm = victim->mm; 485 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n", 486 task_pid_nr(victim), victim->comm, K(victim->mm->total_vm), 487 K(get_mm_counter(victim->mm, MM_ANONPAGES)), 488 K(get_mm_counter(victim->mm, MM_FILEPAGES))); 489 task_unlock(victim); 490 491 /* 492 * Kill all user processes sharing victim->mm in other thread groups, if 493 * any. They don't get access to memory reserves, though, to avoid 494 * depletion of all memory. This prevents mm->mmap_sem livelock when an 495 * oom killed thread cannot exit because it requires the semaphore and 496 * its contended by another thread trying to allocate memory itself. 497 * That thread will now get access to memory reserves since it has a 498 * pending fatal signal. 499 */ 500 rcu_read_lock(); 501 for_each_process(p) 502 if (p->mm == mm && !same_thread_group(p, victim) && 503 !(p->flags & PF_KTHREAD)) { 504 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) 505 continue; 506 507 task_lock(p); /* Protect ->comm from prctl() */ 508 pr_err("Kill process %d (%s) sharing same memory\n", 509 task_pid_nr(p), p->comm); 510 task_unlock(p); 511 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true); 512 } 513 rcu_read_unlock(); 514 515 set_tsk_thread_flag(victim, TIF_MEMDIE); 516 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true); 517 put_task_struct(victim); 518 } 519 #undef K 520 521 /* 522 * Determines whether the kernel must panic because of the panic_on_oom sysctl. 523 */ 524 void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask, 525 int order, const nodemask_t *nodemask) 526 { 527 if (likely(!sysctl_panic_on_oom)) 528 return; 529 if (sysctl_panic_on_oom != 2) { 530 /* 531 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel 532 * does not panic for cpuset, mempolicy, or memcg allocation 533 * failures. 534 */ 535 if (constraint != CONSTRAINT_NONE) 536 return; 537 } 538 dump_header(NULL, gfp_mask, order, NULL, nodemask); 539 panic("Out of memory: %s panic_on_oom is enabled\n", 540 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); 541 } 542 543 static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 544 545 int register_oom_notifier(struct notifier_block *nb) 546 { 547 return blocking_notifier_chain_register(&oom_notify_list, nb); 548 } 549 EXPORT_SYMBOL_GPL(register_oom_notifier); 550 551 int unregister_oom_notifier(struct notifier_block *nb) 552 { 553 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 554 } 555 EXPORT_SYMBOL_GPL(unregister_oom_notifier); 556 557 /* 558 * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero 559 * if a parallel OOM killing is already taking place that includes a zone in 560 * the zonelist. Otherwise, locks all zones in the zonelist and returns 1. 561 */ 562 int try_set_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask) 563 { 564 struct zoneref *z; 565 struct zone *zone; 566 int ret = 1; 567 568 spin_lock(&zone_scan_lock); 569 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 570 if (zone_is_oom_locked(zone)) { 571 ret = 0; 572 goto out; 573 } 574 } 575 576 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 577 /* 578 * Lock each zone in the zonelist under zone_scan_lock so a 579 * parallel invocation of try_set_zonelist_oom() doesn't succeed 580 * when it shouldn't. 581 */ 582 zone_set_flag(zone, ZONE_OOM_LOCKED); 583 } 584 585 out: 586 spin_unlock(&zone_scan_lock); 587 return ret; 588 } 589 590 /* 591 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed 592 * allocation attempts with zonelists containing them may now recall the OOM 593 * killer, if necessary. 594 */ 595 void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask) 596 { 597 struct zoneref *z; 598 struct zone *zone; 599 600 spin_lock(&zone_scan_lock); 601 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 602 zone_clear_flag(zone, ZONE_OOM_LOCKED); 603 } 604 spin_unlock(&zone_scan_lock); 605 } 606 607 /** 608 * out_of_memory - kill the "best" process when we run out of memory 609 * @zonelist: zonelist pointer 610 * @gfp_mask: memory allocation flags 611 * @order: amount of memory being requested as a power of 2 612 * @nodemask: nodemask passed to page allocator 613 * @force_kill: true if a task must be killed, even if others are exiting 614 * 615 * If we run out of memory, we have the choice between either 616 * killing a random task (bad), letting the system crash (worse) 617 * OR try to be smart about which process to kill. Note that we 618 * don't have to be perfect here, we just have to be good. 619 */ 620 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, 621 int order, nodemask_t *nodemask, bool force_kill) 622 { 623 const nodemask_t *mpol_mask; 624 struct task_struct *p; 625 unsigned long totalpages; 626 unsigned long freed = 0; 627 unsigned int uninitialized_var(points); 628 enum oom_constraint constraint = CONSTRAINT_NONE; 629 int killed = 0; 630 631 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 632 if (freed > 0) 633 /* Got some memory back in the last second. */ 634 return; 635 636 /* 637 * If current has a pending SIGKILL or is exiting, then automatically 638 * select it. The goal is to allow it to allocate so that it may 639 * quickly exit and free its memory. 640 */ 641 if (fatal_signal_pending(current) || current->flags & PF_EXITING) { 642 set_thread_flag(TIF_MEMDIE); 643 return; 644 } 645 646 /* 647 * Check if there were limitations on the allocation (only relevant for 648 * NUMA) that may require different handling. 649 */ 650 constraint = constrained_alloc(zonelist, gfp_mask, nodemask, 651 &totalpages); 652 mpol_mask = (constraint == CONSTRAINT_MEMORY_POLICY) ? nodemask : NULL; 653 check_panic_on_oom(constraint, gfp_mask, order, mpol_mask); 654 655 if (sysctl_oom_kill_allocating_task && current->mm && 656 !oom_unkillable_task(current, NULL, nodemask) && 657 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) { 658 get_task_struct(current); 659 oom_kill_process(current, gfp_mask, order, 0, totalpages, NULL, 660 nodemask, 661 "Out of memory (oom_kill_allocating_task)"); 662 goto out; 663 } 664 665 p = select_bad_process(&points, totalpages, mpol_mask, force_kill); 666 /* Found nothing?!?! Either we hang forever, or we panic. */ 667 if (!p) { 668 dump_header(NULL, gfp_mask, order, NULL, mpol_mask); 669 panic("Out of memory and no killable processes...\n"); 670 } 671 if (p != (void *)-1UL) { 672 oom_kill_process(p, gfp_mask, order, points, totalpages, NULL, 673 nodemask, "Out of memory"); 674 killed = 1; 675 } 676 out: 677 /* 678 * Give the killed threads a good chance of exiting before trying to 679 * allocate memory again. 680 */ 681 if (killed) 682 schedule_timeout_killable(1); 683 } 684 685 /* 686 * The pagefault handler calls here because it is out of memory, so kill a 687 * memory-hogging task. If any populated zone has ZONE_OOM_LOCKED set, a 688 * parallel oom killing is already in progress so do nothing. 689 */ 690 void pagefault_out_of_memory(void) 691 { 692 struct zonelist *zonelist; 693 694 if (mem_cgroup_oom_synchronize(true)) 695 return; 696 697 zonelist = node_zonelist(first_online_node, GFP_KERNEL); 698 if (try_set_zonelist_oom(zonelist, GFP_KERNEL)) { 699 out_of_memory(NULL, 0, 0, NULL, false); 700 clear_zonelist_oom(zonelist, GFP_KERNEL); 701 } 702 } 703