xref: /openbmc/linux/mm/oom_kill.c (revision 3a598264)
1 /*
2  *  linux/mm/oom_kill.c
3  *
4  *  Copyright (C)  1998,2000  Rik van Riel
5  *	Thanks go out to Claus Fischer for some serious inspiration and
6  *	for goading me into coding this file...
7  *
8  *  The routines in this file are used to kill a process when
9  *  we're seriously out of memory. This gets called from __alloc_pages()
10  *  in mm/page_alloc.c when we really run out of memory.
11  *
12  *  Since we won't call these routines often (on a well-configured
13  *  machine) this file will double as a 'coding guide' and a signpost
14  *  for newbie kernel hackers. It features several pointers to major
15  *  kernel subsystems and hints as to where to find out what things do.
16  */
17 
18 #include <linux/oom.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/gfp.h>
22 #include <linux/sched.h>
23 #include <linux/swap.h>
24 #include <linux/timex.h>
25 #include <linux/jiffies.h>
26 #include <linux/cpuset.h>
27 #include <linux/module.h>
28 #include <linux/notifier.h>
29 #include <linux/memcontrol.h>
30 #include <linux/security.h>
31 
32 int sysctl_panic_on_oom;
33 int sysctl_oom_kill_allocating_task;
34 int sysctl_oom_dump_tasks;
35 static DEFINE_SPINLOCK(zone_scan_lock);
36 /* #define DEBUG */
37 
38 /*
39  * Is all threads of the target process nodes overlap ours?
40  */
41 static int has_intersects_mems_allowed(struct task_struct *tsk)
42 {
43 	struct task_struct *t;
44 
45 	t = tsk;
46 	do {
47 		if (cpuset_mems_allowed_intersects(current, t))
48 			return 1;
49 		t = next_thread(t);
50 	} while (t != tsk);
51 
52 	return 0;
53 }
54 
55 /**
56  * badness - calculate a numeric value for how bad this task has been
57  * @p: task struct of which task we should calculate
58  * @uptime: current uptime in seconds
59  *
60  * The formula used is relatively simple and documented inline in the
61  * function. The main rationale is that we want to select a good task
62  * to kill when we run out of memory.
63  *
64  * Good in this context means that:
65  * 1) we lose the minimum amount of work done
66  * 2) we recover a large amount of memory
67  * 3) we don't kill anything innocent of eating tons of memory
68  * 4) we want to kill the minimum amount of processes (one)
69  * 5) we try to kill the process the user expects us to kill, this
70  *    algorithm has been meticulously tuned to meet the principle
71  *    of least surprise ... (be careful when you change it)
72  */
73 
74 unsigned long badness(struct task_struct *p, unsigned long uptime)
75 {
76 	unsigned long points, cpu_time, run_time;
77 	struct mm_struct *mm;
78 	struct task_struct *child;
79 	int oom_adj = p->signal->oom_adj;
80 	struct task_cputime task_time;
81 	unsigned long utime;
82 	unsigned long stime;
83 
84 	if (oom_adj == OOM_DISABLE)
85 		return 0;
86 
87 	task_lock(p);
88 	mm = p->mm;
89 	if (!mm) {
90 		task_unlock(p);
91 		return 0;
92 	}
93 
94 	/*
95 	 * The memory size of the process is the basis for the badness.
96 	 */
97 	points = mm->total_vm;
98 
99 	/*
100 	 * After this unlock we can no longer dereference local variable `mm'
101 	 */
102 	task_unlock(p);
103 
104 	/*
105 	 * swapoff can easily use up all memory, so kill those first.
106 	 */
107 	if (p->flags & PF_OOM_ORIGIN)
108 		return ULONG_MAX;
109 
110 	/*
111 	 * Processes which fork a lot of child processes are likely
112 	 * a good choice. We add half the vmsize of the children if they
113 	 * have an own mm. This prevents forking servers to flood the
114 	 * machine with an endless amount of children. In case a single
115 	 * child is eating the vast majority of memory, adding only half
116 	 * to the parents will make the child our kill candidate of choice.
117 	 */
118 	list_for_each_entry(child, &p->children, sibling) {
119 		task_lock(child);
120 		if (child->mm != mm && child->mm)
121 			points += child->mm->total_vm/2 + 1;
122 		task_unlock(child);
123 	}
124 
125 	/*
126 	 * CPU time is in tens of seconds and run time is in thousands
127          * of seconds. There is no particular reason for this other than
128          * that it turned out to work very well in practice.
129 	 */
130 	thread_group_cputime(p, &task_time);
131 	utime = cputime_to_jiffies(task_time.utime);
132 	stime = cputime_to_jiffies(task_time.stime);
133 	cpu_time = (utime + stime) >> (SHIFT_HZ + 3);
134 
135 
136 	if (uptime >= p->start_time.tv_sec)
137 		run_time = (uptime - p->start_time.tv_sec) >> 10;
138 	else
139 		run_time = 0;
140 
141 	if (cpu_time)
142 		points /= int_sqrt(cpu_time);
143 	if (run_time)
144 		points /= int_sqrt(int_sqrt(run_time));
145 
146 	/*
147 	 * Niced processes are most likely less important, so double
148 	 * their badness points.
149 	 */
150 	if (task_nice(p) > 0)
151 		points *= 2;
152 
153 	/*
154 	 * Superuser processes are usually more important, so we make it
155 	 * less likely that we kill those.
156 	 */
157 	if (has_capability_noaudit(p, CAP_SYS_ADMIN) ||
158 	    has_capability_noaudit(p, CAP_SYS_RESOURCE))
159 		points /= 4;
160 
161 	/*
162 	 * We don't want to kill a process with direct hardware access.
163 	 * Not only could that mess up the hardware, but usually users
164 	 * tend to only have this flag set on applications they think
165 	 * of as important.
166 	 */
167 	if (has_capability_noaudit(p, CAP_SYS_RAWIO))
168 		points /= 4;
169 
170 	/*
171 	 * If p's nodes don't overlap ours, it may still help to kill p
172 	 * because p may have allocated or otherwise mapped memory on
173 	 * this node before. However it will be less likely.
174 	 */
175 	if (!has_intersects_mems_allowed(p))
176 		points /= 8;
177 
178 	/*
179 	 * Adjust the score by oom_adj.
180 	 */
181 	if (oom_adj) {
182 		if (oom_adj > 0) {
183 			if (!points)
184 				points = 1;
185 			points <<= oom_adj;
186 		} else
187 			points >>= -(oom_adj);
188 	}
189 
190 #ifdef DEBUG
191 	printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
192 	p->pid, p->comm, points);
193 #endif
194 	return points;
195 }
196 
197 /*
198  * Determine the type of allocation constraint.
199  */
200 #ifdef CONFIG_NUMA
201 static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
202 				    gfp_t gfp_mask, nodemask_t *nodemask)
203 {
204 	struct zone *zone;
205 	struct zoneref *z;
206 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
207 
208 	/*
209 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
210 	 * to kill current.We have to random task kill in this case.
211 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
212 	 */
213 	if (gfp_mask & __GFP_THISNODE)
214 		return CONSTRAINT_NONE;
215 
216 	/*
217 	 * The nodemask here is a nodemask passed to alloc_pages(). Now,
218 	 * cpuset doesn't use this nodemask for its hardwall/softwall/hierarchy
219 	 * feature. mempolicy is an only user of nodemask here.
220 	 * check mempolicy's nodemask contains all N_HIGH_MEMORY
221 	 */
222 	if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask))
223 		return CONSTRAINT_MEMORY_POLICY;
224 
225 	/* Check this allocation failure is caused by cpuset's wall function */
226 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
227 			high_zoneidx, nodemask)
228 		if (!cpuset_zone_allowed_softwall(zone, gfp_mask))
229 			return CONSTRAINT_CPUSET;
230 
231 	return CONSTRAINT_NONE;
232 }
233 #else
234 static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
235 				gfp_t gfp_mask, nodemask_t *nodemask)
236 {
237 	return CONSTRAINT_NONE;
238 }
239 #endif
240 
241 /*
242  * Simple selection loop. We chose the process with the highest
243  * number of 'points'. We expect the caller will lock the tasklist.
244  *
245  * (not docbooked, we don't want this one cluttering up the manual)
246  */
247 static struct task_struct *select_bad_process(unsigned long *ppoints,
248 						struct mem_cgroup *mem)
249 {
250 	struct task_struct *p;
251 	struct task_struct *chosen = NULL;
252 	struct timespec uptime;
253 	*ppoints = 0;
254 
255 	do_posix_clock_monotonic_gettime(&uptime);
256 	for_each_process(p) {
257 		unsigned long points;
258 
259 		/*
260 		 * skip kernel threads and tasks which have already released
261 		 * their mm.
262 		 */
263 		if (!p->mm)
264 			continue;
265 		/* skip the init task */
266 		if (is_global_init(p))
267 			continue;
268 		if (mem && !task_in_mem_cgroup(p, mem))
269 			continue;
270 
271 		/*
272 		 * This task already has access to memory reserves and is
273 		 * being killed. Don't allow any other task access to the
274 		 * memory reserve.
275 		 *
276 		 * Note: this may have a chance of deadlock if it gets
277 		 * blocked waiting for another task which itself is waiting
278 		 * for memory. Is there a better alternative?
279 		 */
280 		if (test_tsk_thread_flag(p, TIF_MEMDIE))
281 			return ERR_PTR(-1UL);
282 
283 		/*
284 		 * This is in the process of releasing memory so wait for it
285 		 * to finish before killing some other task by mistake.
286 		 *
287 		 * However, if p is the current task, we allow the 'kill' to
288 		 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
289 		 * which will allow it to gain access to memory reserves in
290 		 * the process of exiting and releasing its resources.
291 		 * Otherwise we could get an easy OOM deadlock.
292 		 */
293 		if (p->flags & PF_EXITING) {
294 			if (p != current)
295 				return ERR_PTR(-1UL);
296 
297 			chosen = p;
298 			*ppoints = ULONG_MAX;
299 		}
300 
301 		if (p->signal->oom_adj == OOM_DISABLE)
302 			continue;
303 
304 		points = badness(p, uptime.tv_sec);
305 		if (points > *ppoints || !chosen) {
306 			chosen = p;
307 			*ppoints = points;
308 		}
309 	}
310 
311 	return chosen;
312 }
313 
314 /**
315  * dump_tasks - dump current memory state of all system tasks
316  * @mem: target memory controller
317  *
318  * Dumps the current memory state of all system tasks, excluding kernel threads.
319  * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
320  * score, and name.
321  *
322  * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are
323  * shown.
324  *
325  * Call with tasklist_lock read-locked.
326  */
327 static void dump_tasks(const struct mem_cgroup *mem)
328 {
329 	struct task_struct *g, *p;
330 
331 	printk(KERN_INFO "[ pid ]   uid  tgid total_vm      rss cpu oom_adj "
332 	       "name\n");
333 	do_each_thread(g, p) {
334 		struct mm_struct *mm;
335 
336 		if (mem && !task_in_mem_cgroup(p, mem))
337 			continue;
338 		if (!thread_group_leader(p))
339 			continue;
340 
341 		task_lock(p);
342 		mm = p->mm;
343 		if (!mm) {
344 			/*
345 			 * total_vm and rss sizes do not exist for tasks with no
346 			 * mm so there's no need to report them; they can't be
347 			 * oom killed anyway.
348 			 */
349 			task_unlock(p);
350 			continue;
351 		}
352 		printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3d     %3d %s\n",
353 		       p->pid, __task_cred(p)->uid, p->tgid, mm->total_vm,
354 		       get_mm_rss(mm), (int)task_cpu(p), p->signal->oom_adj,
355 		       p->comm);
356 		task_unlock(p);
357 	} while_each_thread(g, p);
358 }
359 
360 static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order,
361 							struct mem_cgroup *mem)
362 {
363 	pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, "
364 		"oom_adj=%d\n",
365 		current->comm, gfp_mask, order, current->signal->oom_adj);
366 	task_lock(current);
367 	cpuset_print_task_mems_allowed(current);
368 	task_unlock(current);
369 	dump_stack();
370 	mem_cgroup_print_oom_info(mem, p);
371 	show_mem();
372 	if (sysctl_oom_dump_tasks)
373 		dump_tasks(mem);
374 }
375 
376 #define K(x) ((x) << (PAGE_SHIFT-10))
377 
378 /*
379  * Send SIGKILL to the selected  process irrespective of  CAP_SYS_RAW_IO
380  * flag though it's unlikely that  we select a process with CAP_SYS_RAW_IO
381  * set.
382  */
383 static void __oom_kill_task(struct task_struct *p, int verbose)
384 {
385 	if (is_global_init(p)) {
386 		WARN_ON(1);
387 		printk(KERN_WARNING "tried to kill init!\n");
388 		return;
389 	}
390 
391 	task_lock(p);
392 	if (!p->mm) {
393 		WARN_ON(1);
394 		printk(KERN_WARNING "tried to kill an mm-less task %d (%s)!\n",
395 			task_pid_nr(p), p->comm);
396 		task_unlock(p);
397 		return;
398 	}
399 
400 	if (verbose)
401 		printk(KERN_ERR "Killed process %d (%s) "
402 		       "vsz:%lukB, anon-rss:%lukB, file-rss:%lukB\n",
403 		       task_pid_nr(p), p->comm,
404 		       K(p->mm->total_vm),
405 		       K(get_mm_counter(p->mm, MM_ANONPAGES)),
406 		       K(get_mm_counter(p->mm, MM_FILEPAGES)));
407 	task_unlock(p);
408 
409 	/*
410 	 * We give our sacrificial lamb high priority and access to
411 	 * all the memory it needs. That way it should be able to
412 	 * exit() and clear out its resources quickly...
413 	 */
414 	p->rt.time_slice = HZ;
415 	set_tsk_thread_flag(p, TIF_MEMDIE);
416 
417 	force_sig(SIGKILL, p);
418 }
419 
420 static int oom_kill_task(struct task_struct *p)
421 {
422 	/* WARNING: mm may not be dereferenced since we did not obtain its
423 	 * value from get_task_mm(p).  This is OK since all we need to do is
424 	 * compare mm to q->mm below.
425 	 *
426 	 * Furthermore, even if mm contains a non-NULL value, p->mm may
427 	 * change to NULL at any time since we do not hold task_lock(p).
428 	 * However, this is of no concern to us.
429 	 */
430 	if (!p->mm || p->signal->oom_adj == OOM_DISABLE)
431 		return 1;
432 
433 	__oom_kill_task(p, 1);
434 
435 	return 0;
436 }
437 
438 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
439 			    unsigned long points, struct mem_cgroup *mem,
440 			    const char *message)
441 {
442 	struct task_struct *c;
443 
444 	if (printk_ratelimit())
445 		dump_header(p, gfp_mask, order, mem);
446 
447 	/*
448 	 * If the task is already exiting, don't alarm the sysadmin or kill
449 	 * its children or threads, just set TIF_MEMDIE so it can die quickly
450 	 */
451 	if (p->flags & PF_EXITING) {
452 		__oom_kill_task(p, 0);
453 		return 0;
454 	}
455 
456 	printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
457 					message, task_pid_nr(p), p->comm, points);
458 
459 	/* Try to kill a child first */
460 	list_for_each_entry(c, &p->children, sibling) {
461 		if (c->mm == p->mm)
462 			continue;
463 		if (mem && !task_in_mem_cgroup(c, mem))
464 			continue;
465 		if (!oom_kill_task(c))
466 			return 0;
467 	}
468 	return oom_kill_task(p);
469 }
470 
471 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
472 void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
473 {
474 	unsigned long points = 0;
475 	struct task_struct *p;
476 
477 	if (sysctl_panic_on_oom == 2)
478 		panic("out of memory(memcg). panic_on_oom is selected.\n");
479 	read_lock(&tasklist_lock);
480 retry:
481 	p = select_bad_process(&points, mem);
482 	if (!p || PTR_ERR(p) == -1UL)
483 		goto out;
484 
485 	if (oom_kill_process(p, gfp_mask, 0, points, mem,
486 				"Memory cgroup out of memory"))
487 		goto retry;
488 out:
489 	read_unlock(&tasklist_lock);
490 }
491 #endif
492 
493 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
494 
495 int register_oom_notifier(struct notifier_block *nb)
496 {
497 	return blocking_notifier_chain_register(&oom_notify_list, nb);
498 }
499 EXPORT_SYMBOL_GPL(register_oom_notifier);
500 
501 int unregister_oom_notifier(struct notifier_block *nb)
502 {
503 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
504 }
505 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
506 
507 /*
508  * Try to acquire the OOM killer lock for the zones in zonelist.  Returns zero
509  * if a parallel OOM killing is already taking place that includes a zone in
510  * the zonelist.  Otherwise, locks all zones in the zonelist and returns 1.
511  */
512 int try_set_zone_oom(struct zonelist *zonelist, gfp_t gfp_mask)
513 {
514 	struct zoneref *z;
515 	struct zone *zone;
516 	int ret = 1;
517 
518 	spin_lock(&zone_scan_lock);
519 	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
520 		if (zone_is_oom_locked(zone)) {
521 			ret = 0;
522 			goto out;
523 		}
524 	}
525 
526 	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
527 		/*
528 		 * Lock each zone in the zonelist under zone_scan_lock so a
529 		 * parallel invocation of try_set_zone_oom() doesn't succeed
530 		 * when it shouldn't.
531 		 */
532 		zone_set_flag(zone, ZONE_OOM_LOCKED);
533 	}
534 
535 out:
536 	spin_unlock(&zone_scan_lock);
537 	return ret;
538 }
539 
540 /*
541  * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
542  * allocation attempts with zonelists containing them may now recall the OOM
543  * killer, if necessary.
544  */
545 void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
546 {
547 	struct zoneref *z;
548 	struct zone *zone;
549 
550 	spin_lock(&zone_scan_lock);
551 	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
552 		zone_clear_flag(zone, ZONE_OOM_LOCKED);
553 	}
554 	spin_unlock(&zone_scan_lock);
555 }
556 
557 /*
558  * Must be called with tasklist_lock held for read.
559  */
560 static void __out_of_memory(gfp_t gfp_mask, int order)
561 {
562 	struct task_struct *p;
563 	unsigned long points;
564 
565 	if (sysctl_oom_kill_allocating_task)
566 		if (!oom_kill_process(current, gfp_mask, order, 0, NULL,
567 				"Out of memory (oom_kill_allocating_task)"))
568 			return;
569 retry:
570 	/*
571 	 * Rambo mode: Shoot down a process and hope it solves whatever
572 	 * issues we may have.
573 	 */
574 	p = select_bad_process(&points, NULL);
575 
576 	if (PTR_ERR(p) == -1UL)
577 		return;
578 
579 	/* Found nothing?!?! Either we hang forever, or we panic. */
580 	if (!p) {
581 		read_unlock(&tasklist_lock);
582 		dump_header(NULL, gfp_mask, order, NULL);
583 		panic("Out of memory and no killable processes...\n");
584 	}
585 
586 	if (oom_kill_process(p, gfp_mask, order, points, NULL,
587 			     "Out of memory"))
588 		goto retry;
589 }
590 
591 /*
592  * pagefault handler calls into here because it is out of memory but
593  * doesn't know exactly how or why.
594  */
595 void pagefault_out_of_memory(void)
596 {
597 	unsigned long freed = 0;
598 
599 	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
600 	if (freed > 0)
601 		/* Got some memory back in the last second. */
602 		return;
603 
604 	if (sysctl_panic_on_oom)
605 		panic("out of memory from page fault. panic_on_oom is selected.\n");
606 
607 	read_lock(&tasklist_lock);
608 	__out_of_memory(0, 0); /* unknown gfp_mask and order */
609 	read_unlock(&tasklist_lock);
610 
611 	/*
612 	 * Give "p" a good chance of killing itself before we
613 	 * retry to allocate memory.
614 	 */
615 	if (!test_thread_flag(TIF_MEMDIE))
616 		schedule_timeout_uninterruptible(1);
617 }
618 
619 /**
620  * out_of_memory - kill the "best" process when we run out of memory
621  * @zonelist: zonelist pointer
622  * @gfp_mask: memory allocation flags
623  * @order: amount of memory being requested as a power of 2
624  *
625  * If we run out of memory, we have the choice between either
626  * killing a random task (bad), letting the system crash (worse)
627  * OR try to be smart about which process to kill. Note that we
628  * don't have to be perfect here, we just have to be good.
629  */
630 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask,
631 		int order, nodemask_t *nodemask)
632 {
633 	unsigned long freed = 0;
634 	enum oom_constraint constraint;
635 
636 	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
637 	if (freed > 0)
638 		/* Got some memory back in the last second. */
639 		return;
640 
641 	if (sysctl_panic_on_oom == 2) {
642 		dump_header(NULL, gfp_mask, order, NULL);
643 		panic("out of memory. Compulsory panic_on_oom is selected.\n");
644 	}
645 
646 	/*
647 	 * Check if there were limitations on the allocation (only relevant for
648 	 * NUMA) that may require different handling.
649 	 */
650 	constraint = constrained_alloc(zonelist, gfp_mask, nodemask);
651 	read_lock(&tasklist_lock);
652 
653 	switch (constraint) {
654 	case CONSTRAINT_MEMORY_POLICY:
655 		oom_kill_process(current, gfp_mask, order, 0, NULL,
656 				"No available memory (MPOL_BIND)");
657 		break;
658 
659 	case CONSTRAINT_NONE:
660 		if (sysctl_panic_on_oom) {
661 			dump_header(NULL, gfp_mask, order, NULL);
662 			panic("out of memory. panic_on_oom is selected\n");
663 		}
664 		/* Fall-through */
665 	case CONSTRAINT_CPUSET:
666 		__out_of_memory(gfp_mask, order);
667 		break;
668 	}
669 
670 	read_unlock(&tasklist_lock);
671 
672 	/*
673 	 * Give "p" a good chance of killing itself before we
674 	 * retry to allocate memory unless "p" is current
675 	 */
676 	if (!test_thread_flag(TIF_MEMDIE))
677 		schedule_timeout_uninterruptible(1);
678 }
679