1 /* 2 * linux/mm/oom_kill.c 3 * 4 * Copyright (C) 1998,2000 Rik van Riel 5 * Thanks go out to Claus Fischer for some serious inspiration and 6 * for goading me into coding this file... 7 * Copyright (C) 2010 Google, Inc. 8 * Rewritten by David Rientjes 9 * 10 * The routines in this file are used to kill a process when 11 * we're seriously out of memory. This gets called from __alloc_pages() 12 * in mm/page_alloc.c when we really run out of memory. 13 * 14 * Since we won't call these routines often (on a well-configured 15 * machine) this file will double as a 'coding guide' and a signpost 16 * for newbie kernel hackers. It features several pointers to major 17 * kernel subsystems and hints as to where to find out what things do. 18 */ 19 20 #include <linux/oom.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/gfp.h> 24 #include <linux/sched.h> 25 #include <linux/sched/mm.h> 26 #include <linux/sched/coredump.h> 27 #include <linux/sched/task.h> 28 #include <linux/swap.h> 29 #include <linux/timex.h> 30 #include <linux/jiffies.h> 31 #include <linux/cpuset.h> 32 #include <linux/export.h> 33 #include <linux/notifier.h> 34 #include <linux/memcontrol.h> 35 #include <linux/mempolicy.h> 36 #include <linux/security.h> 37 #include <linux/ptrace.h> 38 #include <linux/freezer.h> 39 #include <linux/ftrace.h> 40 #include <linux/ratelimit.h> 41 #include <linux/kthread.h> 42 #include <linux/init.h> 43 44 #include <asm/tlb.h> 45 #include "internal.h" 46 47 #define CREATE_TRACE_POINTS 48 #include <trace/events/oom.h> 49 50 int sysctl_panic_on_oom; 51 int sysctl_oom_kill_allocating_task; 52 int sysctl_oom_dump_tasks = 1; 53 54 DEFINE_MUTEX(oom_lock); 55 56 #ifdef CONFIG_NUMA 57 /** 58 * has_intersects_mems_allowed() - check task eligiblity for kill 59 * @start: task struct of which task to consider 60 * @mask: nodemask passed to page allocator for mempolicy ooms 61 * 62 * Task eligibility is determined by whether or not a candidate task, @tsk, 63 * shares the same mempolicy nodes as current if it is bound by such a policy 64 * and whether or not it has the same set of allowed cpuset nodes. 65 */ 66 static bool has_intersects_mems_allowed(struct task_struct *start, 67 const nodemask_t *mask) 68 { 69 struct task_struct *tsk; 70 bool ret = false; 71 72 rcu_read_lock(); 73 for_each_thread(start, tsk) { 74 if (mask) { 75 /* 76 * If this is a mempolicy constrained oom, tsk's 77 * cpuset is irrelevant. Only return true if its 78 * mempolicy intersects current, otherwise it may be 79 * needlessly killed. 80 */ 81 ret = mempolicy_nodemask_intersects(tsk, mask); 82 } else { 83 /* 84 * This is not a mempolicy constrained oom, so only 85 * check the mems of tsk's cpuset. 86 */ 87 ret = cpuset_mems_allowed_intersects(current, tsk); 88 } 89 if (ret) 90 break; 91 } 92 rcu_read_unlock(); 93 94 return ret; 95 } 96 #else 97 static bool has_intersects_mems_allowed(struct task_struct *tsk, 98 const nodemask_t *mask) 99 { 100 return true; 101 } 102 #endif /* CONFIG_NUMA */ 103 104 /* 105 * The process p may have detached its own ->mm while exiting or through 106 * use_mm(), but one or more of its subthreads may still have a valid 107 * pointer. Return p, or any of its subthreads with a valid ->mm, with 108 * task_lock() held. 109 */ 110 struct task_struct *find_lock_task_mm(struct task_struct *p) 111 { 112 struct task_struct *t; 113 114 rcu_read_lock(); 115 116 for_each_thread(p, t) { 117 task_lock(t); 118 if (likely(t->mm)) 119 goto found; 120 task_unlock(t); 121 } 122 t = NULL; 123 found: 124 rcu_read_unlock(); 125 126 return t; 127 } 128 129 /* 130 * order == -1 means the oom kill is required by sysrq, otherwise only 131 * for display purposes. 132 */ 133 static inline bool is_sysrq_oom(struct oom_control *oc) 134 { 135 return oc->order == -1; 136 } 137 138 static inline bool is_memcg_oom(struct oom_control *oc) 139 { 140 return oc->memcg != NULL; 141 } 142 143 /* return true if the task is not adequate as candidate victim task. */ 144 static bool oom_unkillable_task(struct task_struct *p, 145 struct mem_cgroup *memcg, const nodemask_t *nodemask) 146 { 147 if (is_global_init(p)) 148 return true; 149 if (p->flags & PF_KTHREAD) 150 return true; 151 152 /* When mem_cgroup_out_of_memory() and p is not member of the group */ 153 if (memcg && !task_in_mem_cgroup(p, memcg)) 154 return true; 155 156 /* p may not have freeable memory in nodemask */ 157 if (!has_intersects_mems_allowed(p, nodemask)) 158 return true; 159 160 return false; 161 } 162 163 /** 164 * oom_badness - heuristic function to determine which candidate task to kill 165 * @p: task struct of which task we should calculate 166 * @totalpages: total present RAM allowed for page allocation 167 * 168 * The heuristic for determining which task to kill is made to be as simple and 169 * predictable as possible. The goal is to return the highest value for the 170 * task consuming the most memory to avoid subsequent oom failures. 171 */ 172 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg, 173 const nodemask_t *nodemask, unsigned long totalpages) 174 { 175 long points; 176 long adj; 177 178 if (oom_unkillable_task(p, memcg, nodemask)) 179 return 0; 180 181 p = find_lock_task_mm(p); 182 if (!p) 183 return 0; 184 185 /* 186 * Do not even consider tasks which are explicitly marked oom 187 * unkillable or have been already oom reaped or the are in 188 * the middle of vfork 189 */ 190 adj = (long)p->signal->oom_score_adj; 191 if (adj == OOM_SCORE_ADJ_MIN || 192 test_bit(MMF_OOM_SKIP, &p->mm->flags) || 193 in_vfork(p)) { 194 task_unlock(p); 195 return 0; 196 } 197 198 /* 199 * The baseline for the badness score is the proportion of RAM that each 200 * task's rss, pagetable and swap space use. 201 */ 202 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) + 203 atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm); 204 task_unlock(p); 205 206 /* 207 * Root processes get 3% bonus, just like the __vm_enough_memory() 208 * implementation used by LSMs. 209 */ 210 if (has_capability_noaudit(p, CAP_SYS_ADMIN)) 211 points -= (points * 3) / 100; 212 213 /* Normalize to oom_score_adj units */ 214 adj *= totalpages / 1000; 215 points += adj; 216 217 /* 218 * Never return 0 for an eligible task regardless of the root bonus and 219 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here). 220 */ 221 return points > 0 ? points : 1; 222 } 223 224 enum oom_constraint { 225 CONSTRAINT_NONE, 226 CONSTRAINT_CPUSET, 227 CONSTRAINT_MEMORY_POLICY, 228 CONSTRAINT_MEMCG, 229 }; 230 231 /* 232 * Determine the type of allocation constraint. 233 */ 234 static enum oom_constraint constrained_alloc(struct oom_control *oc) 235 { 236 struct zone *zone; 237 struct zoneref *z; 238 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask); 239 bool cpuset_limited = false; 240 int nid; 241 242 if (is_memcg_oom(oc)) { 243 oc->totalpages = mem_cgroup_get_limit(oc->memcg) ?: 1; 244 return CONSTRAINT_MEMCG; 245 } 246 247 /* Default to all available memory */ 248 oc->totalpages = totalram_pages + total_swap_pages; 249 250 if (!IS_ENABLED(CONFIG_NUMA)) 251 return CONSTRAINT_NONE; 252 253 if (!oc->zonelist) 254 return CONSTRAINT_NONE; 255 /* 256 * Reach here only when __GFP_NOFAIL is used. So, we should avoid 257 * to kill current.We have to random task kill in this case. 258 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. 259 */ 260 if (oc->gfp_mask & __GFP_THISNODE) 261 return CONSTRAINT_NONE; 262 263 /* 264 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in 265 * the page allocator means a mempolicy is in effect. Cpuset policy 266 * is enforced in get_page_from_freelist(). 267 */ 268 if (oc->nodemask && 269 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) { 270 oc->totalpages = total_swap_pages; 271 for_each_node_mask(nid, *oc->nodemask) 272 oc->totalpages += node_spanned_pages(nid); 273 return CONSTRAINT_MEMORY_POLICY; 274 } 275 276 /* Check this allocation failure is caused by cpuset's wall function */ 277 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist, 278 high_zoneidx, oc->nodemask) 279 if (!cpuset_zone_allowed(zone, oc->gfp_mask)) 280 cpuset_limited = true; 281 282 if (cpuset_limited) { 283 oc->totalpages = total_swap_pages; 284 for_each_node_mask(nid, cpuset_current_mems_allowed) 285 oc->totalpages += node_spanned_pages(nid); 286 return CONSTRAINT_CPUSET; 287 } 288 return CONSTRAINT_NONE; 289 } 290 291 static int oom_evaluate_task(struct task_struct *task, void *arg) 292 { 293 struct oom_control *oc = arg; 294 unsigned long points; 295 296 if (oom_unkillable_task(task, NULL, oc->nodemask)) 297 goto next; 298 299 /* 300 * This task already has access to memory reserves and is being killed. 301 * Don't allow any other task to have access to the reserves unless 302 * the task has MMF_OOM_SKIP because chances that it would release 303 * any memory is quite low. 304 */ 305 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) { 306 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags)) 307 goto next; 308 goto abort; 309 } 310 311 /* 312 * If task is allocating a lot of memory and has been marked to be 313 * killed first if it triggers an oom, then select it. 314 */ 315 if (oom_task_origin(task)) { 316 points = ULONG_MAX; 317 goto select; 318 } 319 320 points = oom_badness(task, NULL, oc->nodemask, oc->totalpages); 321 if (!points || points < oc->chosen_points) 322 goto next; 323 324 /* Prefer thread group leaders for display purposes */ 325 if (points == oc->chosen_points && thread_group_leader(oc->chosen)) 326 goto next; 327 select: 328 if (oc->chosen) 329 put_task_struct(oc->chosen); 330 get_task_struct(task); 331 oc->chosen = task; 332 oc->chosen_points = points; 333 next: 334 return 0; 335 abort: 336 if (oc->chosen) 337 put_task_struct(oc->chosen); 338 oc->chosen = (void *)-1UL; 339 return 1; 340 } 341 342 /* 343 * Simple selection loop. We choose the process with the highest number of 344 * 'points'. In case scan was aborted, oc->chosen is set to -1. 345 */ 346 static void select_bad_process(struct oom_control *oc) 347 { 348 if (is_memcg_oom(oc)) 349 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc); 350 else { 351 struct task_struct *p; 352 353 rcu_read_lock(); 354 for_each_process(p) 355 if (oom_evaluate_task(p, oc)) 356 break; 357 rcu_read_unlock(); 358 } 359 360 oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages; 361 } 362 363 /** 364 * dump_tasks - dump current memory state of all system tasks 365 * @memcg: current's memory controller, if constrained 366 * @nodemask: nodemask passed to page allocator for mempolicy ooms 367 * 368 * Dumps the current memory state of all eligible tasks. Tasks not in the same 369 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes 370 * are not shown. 371 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes, 372 * swapents, oom_score_adj value, and name. 373 */ 374 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask) 375 { 376 struct task_struct *p; 377 struct task_struct *task; 378 379 pr_info("[ pid ] uid tgid total_vm rss nr_ptes nr_pmds swapents oom_score_adj name\n"); 380 rcu_read_lock(); 381 for_each_process(p) { 382 if (oom_unkillable_task(p, memcg, nodemask)) 383 continue; 384 385 task = find_lock_task_mm(p); 386 if (!task) { 387 /* 388 * This is a kthread or all of p's threads have already 389 * detached their mm's. There's no need to report 390 * them; they can't be oom killed anyway. 391 */ 392 continue; 393 } 394 395 pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu %5hd %s\n", 396 task->pid, from_kuid(&init_user_ns, task_uid(task)), 397 task->tgid, task->mm->total_vm, get_mm_rss(task->mm), 398 atomic_long_read(&task->mm->nr_ptes), 399 mm_nr_pmds(task->mm), 400 get_mm_counter(task->mm, MM_SWAPENTS), 401 task->signal->oom_score_adj, task->comm); 402 task_unlock(task); 403 } 404 rcu_read_unlock(); 405 } 406 407 static void dump_header(struct oom_control *oc, struct task_struct *p) 408 { 409 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), nodemask=", 410 current->comm, oc->gfp_mask, &oc->gfp_mask); 411 if (oc->nodemask) 412 pr_cont("%*pbl", nodemask_pr_args(oc->nodemask)); 413 else 414 pr_cont("(null)"); 415 pr_cont(", order=%d, oom_score_adj=%hd\n", 416 oc->order, current->signal->oom_score_adj); 417 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order) 418 pr_warn("COMPACTION is disabled!!!\n"); 419 420 cpuset_print_current_mems_allowed(); 421 dump_stack(); 422 if (oc->memcg) 423 mem_cgroup_print_oom_info(oc->memcg, p); 424 else 425 show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask); 426 if (sysctl_oom_dump_tasks) 427 dump_tasks(oc->memcg, oc->nodemask); 428 } 429 430 /* 431 * Number of OOM victims in flight 432 */ 433 static atomic_t oom_victims = ATOMIC_INIT(0); 434 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait); 435 436 static bool oom_killer_disabled __read_mostly; 437 438 #define K(x) ((x) << (PAGE_SHIFT-10)) 439 440 /* 441 * task->mm can be NULL if the task is the exited group leader. So to 442 * determine whether the task is using a particular mm, we examine all the 443 * task's threads: if one of those is using this mm then this task was also 444 * using it. 445 */ 446 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm) 447 { 448 struct task_struct *t; 449 450 for_each_thread(p, t) { 451 struct mm_struct *t_mm = READ_ONCE(t->mm); 452 if (t_mm) 453 return t_mm == mm; 454 } 455 return false; 456 } 457 458 459 #ifdef CONFIG_MMU 460 /* 461 * OOM Reaper kernel thread which tries to reap the memory used by the OOM 462 * victim (if that is possible) to help the OOM killer to move on. 463 */ 464 static struct task_struct *oom_reaper_th; 465 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait); 466 static struct task_struct *oom_reaper_list; 467 static DEFINE_SPINLOCK(oom_reaper_lock); 468 469 static bool __oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm) 470 { 471 struct mmu_gather tlb; 472 struct vm_area_struct *vma; 473 bool ret = true; 474 475 /* 476 * We have to make sure to not race with the victim exit path 477 * and cause premature new oom victim selection: 478 * __oom_reap_task_mm exit_mm 479 * mmget_not_zero 480 * mmput 481 * atomic_dec_and_test 482 * exit_oom_victim 483 * [...] 484 * out_of_memory 485 * select_bad_process 486 * # no TIF_MEMDIE task selects new victim 487 * unmap_page_range # frees some memory 488 */ 489 mutex_lock(&oom_lock); 490 491 if (!down_read_trylock(&mm->mmap_sem)) { 492 ret = false; 493 goto unlock_oom; 494 } 495 496 /* 497 * increase mm_users only after we know we will reap something so 498 * that the mmput_async is called only when we have reaped something 499 * and delayed __mmput doesn't matter that much 500 */ 501 if (!mmget_not_zero(mm)) { 502 up_read(&mm->mmap_sem); 503 goto unlock_oom; 504 } 505 506 /* 507 * Tell all users of get_user/copy_from_user etc... that the content 508 * is no longer stable. No barriers really needed because unmapping 509 * should imply barriers already and the reader would hit a page fault 510 * if it stumbled over a reaped memory. 511 */ 512 set_bit(MMF_UNSTABLE, &mm->flags); 513 514 tlb_gather_mmu(&tlb, mm, 0, -1); 515 for (vma = mm->mmap ; vma; vma = vma->vm_next) { 516 if (!can_madv_dontneed_vma(vma)) 517 continue; 518 519 /* 520 * Only anonymous pages have a good chance to be dropped 521 * without additional steps which we cannot afford as we 522 * are OOM already. 523 * 524 * We do not even care about fs backed pages because all 525 * which are reclaimable have already been reclaimed and 526 * we do not want to block exit_mmap by keeping mm ref 527 * count elevated without a good reason. 528 */ 529 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) 530 unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end, 531 NULL); 532 } 533 tlb_finish_mmu(&tlb, 0, -1); 534 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n", 535 task_pid_nr(tsk), tsk->comm, 536 K(get_mm_counter(mm, MM_ANONPAGES)), 537 K(get_mm_counter(mm, MM_FILEPAGES)), 538 K(get_mm_counter(mm, MM_SHMEMPAGES))); 539 up_read(&mm->mmap_sem); 540 541 /* 542 * Drop our reference but make sure the mmput slow path is called from a 543 * different context because we shouldn't risk we get stuck there and 544 * put the oom_reaper out of the way. 545 */ 546 mmput_async(mm); 547 unlock_oom: 548 mutex_unlock(&oom_lock); 549 return ret; 550 } 551 552 #define MAX_OOM_REAP_RETRIES 10 553 static void oom_reap_task(struct task_struct *tsk) 554 { 555 int attempts = 0; 556 struct mm_struct *mm = tsk->signal->oom_mm; 557 558 /* Retry the down_read_trylock(mmap_sem) a few times */ 559 while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task_mm(tsk, mm)) 560 schedule_timeout_idle(HZ/10); 561 562 if (attempts <= MAX_OOM_REAP_RETRIES) 563 goto done; 564 565 566 pr_info("oom_reaper: unable to reap pid:%d (%s)\n", 567 task_pid_nr(tsk), tsk->comm); 568 debug_show_all_locks(); 569 570 done: 571 tsk->oom_reaper_list = NULL; 572 573 /* 574 * Hide this mm from OOM killer because it has been either reaped or 575 * somebody can't call up_write(mmap_sem). 576 */ 577 set_bit(MMF_OOM_SKIP, &mm->flags); 578 579 /* Drop a reference taken by wake_oom_reaper */ 580 put_task_struct(tsk); 581 } 582 583 static int oom_reaper(void *unused) 584 { 585 while (true) { 586 struct task_struct *tsk = NULL; 587 588 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL); 589 spin_lock(&oom_reaper_lock); 590 if (oom_reaper_list != NULL) { 591 tsk = oom_reaper_list; 592 oom_reaper_list = tsk->oom_reaper_list; 593 } 594 spin_unlock(&oom_reaper_lock); 595 596 if (tsk) 597 oom_reap_task(tsk); 598 } 599 600 return 0; 601 } 602 603 static void wake_oom_reaper(struct task_struct *tsk) 604 { 605 if (!oom_reaper_th) 606 return; 607 608 /* tsk is already queued? */ 609 if (tsk == oom_reaper_list || tsk->oom_reaper_list) 610 return; 611 612 get_task_struct(tsk); 613 614 spin_lock(&oom_reaper_lock); 615 tsk->oom_reaper_list = oom_reaper_list; 616 oom_reaper_list = tsk; 617 spin_unlock(&oom_reaper_lock); 618 wake_up(&oom_reaper_wait); 619 } 620 621 static int __init oom_init(void) 622 { 623 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper"); 624 if (IS_ERR(oom_reaper_th)) { 625 pr_err("Unable to start OOM reaper %ld. Continuing regardless\n", 626 PTR_ERR(oom_reaper_th)); 627 oom_reaper_th = NULL; 628 } 629 return 0; 630 } 631 subsys_initcall(oom_init) 632 #else 633 static inline void wake_oom_reaper(struct task_struct *tsk) 634 { 635 } 636 #endif /* CONFIG_MMU */ 637 638 /** 639 * mark_oom_victim - mark the given task as OOM victim 640 * @tsk: task to mark 641 * 642 * Has to be called with oom_lock held and never after 643 * oom has been disabled already. 644 * 645 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either 646 * under task_lock or operate on the current). 647 */ 648 static void mark_oom_victim(struct task_struct *tsk) 649 { 650 struct mm_struct *mm = tsk->mm; 651 652 WARN_ON(oom_killer_disabled); 653 /* OOM killer might race with memcg OOM */ 654 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE)) 655 return; 656 657 /* oom_mm is bound to the signal struct life time. */ 658 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) 659 mmgrab(tsk->signal->oom_mm); 660 661 /* 662 * Make sure that the task is woken up from uninterruptible sleep 663 * if it is frozen because OOM killer wouldn't be able to free 664 * any memory and livelock. freezing_slow_path will tell the freezer 665 * that TIF_MEMDIE tasks should be ignored. 666 */ 667 __thaw_task(tsk); 668 atomic_inc(&oom_victims); 669 } 670 671 /** 672 * exit_oom_victim - note the exit of an OOM victim 673 */ 674 void exit_oom_victim(void) 675 { 676 clear_thread_flag(TIF_MEMDIE); 677 678 if (!atomic_dec_return(&oom_victims)) 679 wake_up_all(&oom_victims_wait); 680 } 681 682 /** 683 * oom_killer_enable - enable OOM killer 684 */ 685 void oom_killer_enable(void) 686 { 687 oom_killer_disabled = false; 688 } 689 690 /** 691 * oom_killer_disable - disable OOM killer 692 * @timeout: maximum timeout to wait for oom victims in jiffies 693 * 694 * Forces all page allocations to fail rather than trigger OOM killer. 695 * Will block and wait until all OOM victims are killed or the given 696 * timeout expires. 697 * 698 * The function cannot be called when there are runnable user tasks because 699 * the userspace would see unexpected allocation failures as a result. Any 700 * new usage of this function should be consulted with MM people. 701 * 702 * Returns true if successful and false if the OOM killer cannot be 703 * disabled. 704 */ 705 bool oom_killer_disable(signed long timeout) 706 { 707 signed long ret; 708 709 /* 710 * Make sure to not race with an ongoing OOM killer. Check that the 711 * current is not killed (possibly due to sharing the victim's memory). 712 */ 713 if (mutex_lock_killable(&oom_lock)) 714 return false; 715 oom_killer_disabled = true; 716 mutex_unlock(&oom_lock); 717 718 ret = wait_event_interruptible_timeout(oom_victims_wait, 719 !atomic_read(&oom_victims), timeout); 720 if (ret <= 0) { 721 oom_killer_enable(); 722 return false; 723 } 724 725 return true; 726 } 727 728 static inline bool __task_will_free_mem(struct task_struct *task) 729 { 730 struct signal_struct *sig = task->signal; 731 732 /* 733 * A coredumping process may sleep for an extended period in exit_mm(), 734 * so the oom killer cannot assume that the process will promptly exit 735 * and release memory. 736 */ 737 if (sig->flags & SIGNAL_GROUP_COREDUMP) 738 return false; 739 740 if (sig->flags & SIGNAL_GROUP_EXIT) 741 return true; 742 743 if (thread_group_empty(task) && (task->flags & PF_EXITING)) 744 return true; 745 746 return false; 747 } 748 749 /* 750 * Checks whether the given task is dying or exiting and likely to 751 * release its address space. This means that all threads and processes 752 * sharing the same mm have to be killed or exiting. 753 * Caller has to make sure that task->mm is stable (hold task_lock or 754 * it operates on the current). 755 */ 756 static bool task_will_free_mem(struct task_struct *task) 757 { 758 struct mm_struct *mm = task->mm; 759 struct task_struct *p; 760 bool ret = true; 761 762 /* 763 * Skip tasks without mm because it might have passed its exit_mm and 764 * exit_oom_victim. oom_reaper could have rescued that but do not rely 765 * on that for now. We can consider find_lock_task_mm in future. 766 */ 767 if (!mm) 768 return false; 769 770 if (!__task_will_free_mem(task)) 771 return false; 772 773 /* 774 * This task has already been drained by the oom reaper so there are 775 * only small chances it will free some more 776 */ 777 if (test_bit(MMF_OOM_SKIP, &mm->flags)) 778 return false; 779 780 if (atomic_read(&mm->mm_users) <= 1) 781 return true; 782 783 /* 784 * Make sure that all tasks which share the mm with the given tasks 785 * are dying as well to make sure that a) nobody pins its mm and 786 * b) the task is also reapable by the oom reaper. 787 */ 788 rcu_read_lock(); 789 for_each_process(p) { 790 if (!process_shares_mm(p, mm)) 791 continue; 792 if (same_thread_group(task, p)) 793 continue; 794 ret = __task_will_free_mem(p); 795 if (!ret) 796 break; 797 } 798 rcu_read_unlock(); 799 800 return ret; 801 } 802 803 static void oom_kill_process(struct oom_control *oc, const char *message) 804 { 805 struct task_struct *p = oc->chosen; 806 unsigned int points = oc->chosen_points; 807 struct task_struct *victim = p; 808 struct task_struct *child; 809 struct task_struct *t; 810 struct mm_struct *mm; 811 unsigned int victim_points = 0; 812 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL, 813 DEFAULT_RATELIMIT_BURST); 814 bool can_oom_reap = true; 815 816 /* 817 * If the task is already exiting, don't alarm the sysadmin or kill 818 * its children or threads, just set TIF_MEMDIE so it can die quickly 819 */ 820 task_lock(p); 821 if (task_will_free_mem(p)) { 822 mark_oom_victim(p); 823 wake_oom_reaper(p); 824 task_unlock(p); 825 put_task_struct(p); 826 return; 827 } 828 task_unlock(p); 829 830 if (__ratelimit(&oom_rs)) 831 dump_header(oc, p); 832 833 pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n", 834 message, task_pid_nr(p), p->comm, points); 835 836 /* 837 * If any of p's children has a different mm and is eligible for kill, 838 * the one with the highest oom_badness() score is sacrificed for its 839 * parent. This attempts to lose the minimal amount of work done while 840 * still freeing memory. 841 */ 842 read_lock(&tasklist_lock); 843 for_each_thread(p, t) { 844 list_for_each_entry(child, &t->children, sibling) { 845 unsigned int child_points; 846 847 if (process_shares_mm(child, p->mm)) 848 continue; 849 /* 850 * oom_badness() returns 0 if the thread is unkillable 851 */ 852 child_points = oom_badness(child, 853 oc->memcg, oc->nodemask, oc->totalpages); 854 if (child_points > victim_points) { 855 put_task_struct(victim); 856 victim = child; 857 victim_points = child_points; 858 get_task_struct(victim); 859 } 860 } 861 } 862 read_unlock(&tasklist_lock); 863 864 p = find_lock_task_mm(victim); 865 if (!p) { 866 put_task_struct(victim); 867 return; 868 } else if (victim != p) { 869 get_task_struct(p); 870 put_task_struct(victim); 871 victim = p; 872 } 873 874 /* Get a reference to safely compare mm after task_unlock(victim) */ 875 mm = victim->mm; 876 mmgrab(mm); 877 /* 878 * We should send SIGKILL before setting TIF_MEMDIE in order to prevent 879 * the OOM victim from depleting the memory reserves from the user 880 * space under its control. 881 */ 882 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true); 883 mark_oom_victim(victim); 884 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n", 885 task_pid_nr(victim), victim->comm, K(victim->mm->total_vm), 886 K(get_mm_counter(victim->mm, MM_ANONPAGES)), 887 K(get_mm_counter(victim->mm, MM_FILEPAGES)), 888 K(get_mm_counter(victim->mm, MM_SHMEMPAGES))); 889 task_unlock(victim); 890 891 /* 892 * Kill all user processes sharing victim->mm in other thread groups, if 893 * any. They don't get access to memory reserves, though, to avoid 894 * depletion of all memory. This prevents mm->mmap_sem livelock when an 895 * oom killed thread cannot exit because it requires the semaphore and 896 * its contended by another thread trying to allocate memory itself. 897 * That thread will now get access to memory reserves since it has a 898 * pending fatal signal. 899 */ 900 rcu_read_lock(); 901 for_each_process(p) { 902 if (!process_shares_mm(p, mm)) 903 continue; 904 if (same_thread_group(p, victim)) 905 continue; 906 if (is_global_init(p)) { 907 can_oom_reap = false; 908 set_bit(MMF_OOM_SKIP, &mm->flags); 909 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n", 910 task_pid_nr(victim), victim->comm, 911 task_pid_nr(p), p->comm); 912 continue; 913 } 914 /* 915 * No use_mm() user needs to read from the userspace so we are 916 * ok to reap it. 917 */ 918 if (unlikely(p->flags & PF_KTHREAD)) 919 continue; 920 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true); 921 } 922 rcu_read_unlock(); 923 924 if (can_oom_reap) 925 wake_oom_reaper(victim); 926 927 mmdrop(mm); 928 put_task_struct(victim); 929 } 930 #undef K 931 932 /* 933 * Determines whether the kernel must panic because of the panic_on_oom sysctl. 934 */ 935 static void check_panic_on_oom(struct oom_control *oc, 936 enum oom_constraint constraint) 937 { 938 if (likely(!sysctl_panic_on_oom)) 939 return; 940 if (sysctl_panic_on_oom != 2) { 941 /* 942 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel 943 * does not panic for cpuset, mempolicy, or memcg allocation 944 * failures. 945 */ 946 if (constraint != CONSTRAINT_NONE) 947 return; 948 } 949 /* Do not panic for oom kills triggered by sysrq */ 950 if (is_sysrq_oom(oc)) 951 return; 952 dump_header(oc, NULL); 953 panic("Out of memory: %s panic_on_oom is enabled\n", 954 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); 955 } 956 957 static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 958 959 int register_oom_notifier(struct notifier_block *nb) 960 { 961 return blocking_notifier_chain_register(&oom_notify_list, nb); 962 } 963 EXPORT_SYMBOL_GPL(register_oom_notifier); 964 965 int unregister_oom_notifier(struct notifier_block *nb) 966 { 967 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 968 } 969 EXPORT_SYMBOL_GPL(unregister_oom_notifier); 970 971 /** 972 * out_of_memory - kill the "best" process when we run out of memory 973 * @oc: pointer to struct oom_control 974 * 975 * If we run out of memory, we have the choice between either 976 * killing a random task (bad), letting the system crash (worse) 977 * OR try to be smart about which process to kill. Note that we 978 * don't have to be perfect here, we just have to be good. 979 */ 980 bool out_of_memory(struct oom_control *oc) 981 { 982 unsigned long freed = 0; 983 enum oom_constraint constraint = CONSTRAINT_NONE; 984 985 if (oom_killer_disabled) 986 return false; 987 988 if (!is_memcg_oom(oc)) { 989 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 990 if (freed > 0) 991 /* Got some memory back in the last second. */ 992 return true; 993 } 994 995 /* 996 * If current has a pending SIGKILL or is exiting, then automatically 997 * select it. The goal is to allow it to allocate so that it may 998 * quickly exit and free its memory. 999 */ 1000 if (task_will_free_mem(current)) { 1001 mark_oom_victim(current); 1002 wake_oom_reaper(current); 1003 return true; 1004 } 1005 1006 /* 1007 * The OOM killer does not compensate for IO-less reclaim. 1008 * pagefault_out_of_memory lost its gfp context so we have to 1009 * make sure exclude 0 mask - all other users should have at least 1010 * ___GFP_DIRECT_RECLAIM to get here. 1011 */ 1012 if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS)) 1013 return true; 1014 1015 /* 1016 * Check if there were limitations on the allocation (only relevant for 1017 * NUMA and memcg) that may require different handling. 1018 */ 1019 constraint = constrained_alloc(oc); 1020 if (constraint != CONSTRAINT_MEMORY_POLICY) 1021 oc->nodemask = NULL; 1022 check_panic_on_oom(oc, constraint); 1023 1024 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task && 1025 current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) && 1026 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) { 1027 get_task_struct(current); 1028 oc->chosen = current; 1029 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)"); 1030 return true; 1031 } 1032 1033 select_bad_process(oc); 1034 /* Found nothing?!?! Either we hang forever, or we panic. */ 1035 if (!oc->chosen && !is_sysrq_oom(oc) && !is_memcg_oom(oc)) { 1036 dump_header(oc, NULL); 1037 panic("Out of memory and no killable processes...\n"); 1038 } 1039 if (oc->chosen && oc->chosen != (void *)-1UL) { 1040 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" : 1041 "Memory cgroup out of memory"); 1042 /* 1043 * Give the killed process a good chance to exit before trying 1044 * to allocate memory again. 1045 */ 1046 schedule_timeout_killable(1); 1047 } 1048 return !!oc->chosen; 1049 } 1050 1051 /* 1052 * The pagefault handler calls here because it is out of memory, so kill a 1053 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom 1054 * killing is already in progress so do nothing. 1055 */ 1056 void pagefault_out_of_memory(void) 1057 { 1058 struct oom_control oc = { 1059 .zonelist = NULL, 1060 .nodemask = NULL, 1061 .memcg = NULL, 1062 .gfp_mask = 0, 1063 .order = 0, 1064 }; 1065 1066 if (mem_cgroup_oom_synchronize(true)) 1067 return; 1068 1069 if (!mutex_trylock(&oom_lock)) 1070 return; 1071 out_of_memory(&oc); 1072 mutex_unlock(&oom_lock); 1073 } 1074