xref: /openbmc/linux/mm/oom_kill.c (revision 1bcca2b1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/oom_kill.c
4  *
5  *  Copyright (C)  1998,2000  Rik van Riel
6  *	Thanks go out to Claus Fischer for some serious inspiration and
7  *	for goading me into coding this file...
8  *  Copyright (C)  2010  Google, Inc.
9  *	Rewritten by David Rientjes
10  *
11  *  The routines in this file are used to kill a process when
12  *  we're seriously out of memory. This gets called from __alloc_pages()
13  *  in mm/page_alloc.c when we really run out of memory.
14  *
15  *  Since we won't call these routines often (on a well-configured
16  *  machine) this file will double as a 'coding guide' and a signpost
17  *  for newbie kernel hackers. It features several pointers to major
18  *  kernel subsystems and hints as to where to find out what things do.
19  */
20 
21 #include <linux/oom.h>
22 #include <linux/mm.h>
23 #include <linux/err.h>
24 #include <linux/gfp.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/coredump.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/debug.h>
30 #include <linux/swap.h>
31 #include <linux/syscalls.h>
32 #include <linux/timex.h>
33 #include <linux/jiffies.h>
34 #include <linux/cpuset.h>
35 #include <linux/export.h>
36 #include <linux/notifier.h>
37 #include <linux/memcontrol.h>
38 #include <linux/mempolicy.h>
39 #include <linux/security.h>
40 #include <linux/ptrace.h>
41 #include <linux/freezer.h>
42 #include <linux/ftrace.h>
43 #include <linux/ratelimit.h>
44 #include <linux/kthread.h>
45 #include <linux/init.h>
46 #include <linux/mmu_notifier.h>
47 
48 #include <asm/tlb.h>
49 #include "internal.h"
50 #include "slab.h"
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/oom.h>
54 
55 static int sysctl_panic_on_oom;
56 static int sysctl_oom_kill_allocating_task;
57 static int sysctl_oom_dump_tasks = 1;
58 
59 #ifdef CONFIG_SYSCTL
60 static struct ctl_table vm_oom_kill_table[] = {
61 	{
62 		.procname	= "panic_on_oom",
63 		.data		= &sysctl_panic_on_oom,
64 		.maxlen		= sizeof(sysctl_panic_on_oom),
65 		.mode		= 0644,
66 		.proc_handler	= proc_dointvec_minmax,
67 		.extra1		= SYSCTL_ZERO,
68 		.extra2		= SYSCTL_TWO,
69 	},
70 	{
71 		.procname	= "oom_kill_allocating_task",
72 		.data		= &sysctl_oom_kill_allocating_task,
73 		.maxlen		= sizeof(sysctl_oom_kill_allocating_task),
74 		.mode		= 0644,
75 		.proc_handler	= proc_dointvec,
76 	},
77 	{
78 		.procname	= "oom_dump_tasks",
79 		.data		= &sysctl_oom_dump_tasks,
80 		.maxlen		= sizeof(sysctl_oom_dump_tasks),
81 		.mode		= 0644,
82 		.proc_handler	= proc_dointvec,
83 	},
84 	{}
85 };
86 #endif
87 
88 /*
89  * Serializes oom killer invocations (out_of_memory()) from all contexts to
90  * prevent from over eager oom killing (e.g. when the oom killer is invoked
91  * from different domains).
92  *
93  * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
94  * and mark_oom_victim
95  */
96 DEFINE_MUTEX(oom_lock);
97 /* Serializes oom_score_adj and oom_score_adj_min updates */
98 DEFINE_MUTEX(oom_adj_mutex);
99 
100 static inline bool is_memcg_oom(struct oom_control *oc)
101 {
102 	return oc->memcg != NULL;
103 }
104 
105 #ifdef CONFIG_NUMA
106 /**
107  * oom_cpuset_eligible() - check task eligibility for kill
108  * @start: task struct of which task to consider
109  * @oc: pointer to struct oom_control
110  *
111  * Task eligibility is determined by whether or not a candidate task, @tsk,
112  * shares the same mempolicy nodes as current if it is bound by such a policy
113  * and whether or not it has the same set of allowed cpuset nodes.
114  *
115  * This function is assuming oom-killer context and 'current' has triggered
116  * the oom-killer.
117  */
118 static bool oom_cpuset_eligible(struct task_struct *start,
119 				struct oom_control *oc)
120 {
121 	struct task_struct *tsk;
122 	bool ret = false;
123 	const nodemask_t *mask = oc->nodemask;
124 
125 	rcu_read_lock();
126 	for_each_thread(start, tsk) {
127 		if (mask) {
128 			/*
129 			 * If this is a mempolicy constrained oom, tsk's
130 			 * cpuset is irrelevant.  Only return true if its
131 			 * mempolicy intersects current, otherwise it may be
132 			 * needlessly killed.
133 			 */
134 			ret = mempolicy_in_oom_domain(tsk, mask);
135 		} else {
136 			/*
137 			 * This is not a mempolicy constrained oom, so only
138 			 * check the mems of tsk's cpuset.
139 			 */
140 			ret = cpuset_mems_allowed_intersects(current, tsk);
141 		}
142 		if (ret)
143 			break;
144 	}
145 	rcu_read_unlock();
146 
147 	return ret;
148 }
149 #else
150 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
151 {
152 	return true;
153 }
154 #endif /* CONFIG_NUMA */
155 
156 /*
157  * The process p may have detached its own ->mm while exiting or through
158  * kthread_use_mm(), but one or more of its subthreads may still have a valid
159  * pointer.  Return p, or any of its subthreads with a valid ->mm, with
160  * task_lock() held.
161  */
162 struct task_struct *find_lock_task_mm(struct task_struct *p)
163 {
164 	struct task_struct *t;
165 
166 	rcu_read_lock();
167 
168 	for_each_thread(p, t) {
169 		task_lock(t);
170 		if (likely(t->mm))
171 			goto found;
172 		task_unlock(t);
173 	}
174 	t = NULL;
175 found:
176 	rcu_read_unlock();
177 
178 	return t;
179 }
180 
181 /*
182  * order == -1 means the oom kill is required by sysrq, otherwise only
183  * for display purposes.
184  */
185 static inline bool is_sysrq_oom(struct oom_control *oc)
186 {
187 	return oc->order == -1;
188 }
189 
190 /* return true if the task is not adequate as candidate victim task. */
191 static bool oom_unkillable_task(struct task_struct *p)
192 {
193 	if (is_global_init(p))
194 		return true;
195 	if (p->flags & PF_KTHREAD)
196 		return true;
197 	return false;
198 }
199 
200 /*
201  * Check whether unreclaimable slab amount is greater than
202  * all user memory(LRU pages).
203  * dump_unreclaimable_slab() could help in the case that
204  * oom due to too much unreclaimable slab used by kernel.
205 */
206 static bool should_dump_unreclaim_slab(void)
207 {
208 	unsigned long nr_lru;
209 
210 	nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
211 		 global_node_page_state(NR_INACTIVE_ANON) +
212 		 global_node_page_state(NR_ACTIVE_FILE) +
213 		 global_node_page_state(NR_INACTIVE_FILE) +
214 		 global_node_page_state(NR_ISOLATED_ANON) +
215 		 global_node_page_state(NR_ISOLATED_FILE) +
216 		 global_node_page_state(NR_UNEVICTABLE);
217 
218 	return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
219 }
220 
221 /**
222  * oom_badness - heuristic function to determine which candidate task to kill
223  * @p: task struct of which task we should calculate
224  * @totalpages: total present RAM allowed for page allocation
225  *
226  * The heuristic for determining which task to kill is made to be as simple and
227  * predictable as possible.  The goal is to return the highest value for the
228  * task consuming the most memory to avoid subsequent oom failures.
229  */
230 long oom_badness(struct task_struct *p, unsigned long totalpages)
231 {
232 	long points;
233 	long adj;
234 
235 	if (oom_unkillable_task(p))
236 		return LONG_MIN;
237 
238 	p = find_lock_task_mm(p);
239 	if (!p)
240 		return LONG_MIN;
241 
242 	/*
243 	 * Do not even consider tasks which are explicitly marked oom
244 	 * unkillable or have been already oom reaped or the are in
245 	 * the middle of vfork
246 	 */
247 	adj = (long)p->signal->oom_score_adj;
248 	if (adj == OOM_SCORE_ADJ_MIN ||
249 			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
250 			in_vfork(p)) {
251 		task_unlock(p);
252 		return LONG_MIN;
253 	}
254 
255 	/*
256 	 * The baseline for the badness score is the proportion of RAM that each
257 	 * task's rss, pagetable and swap space use.
258 	 */
259 	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
260 		mm_pgtables_bytes(p->mm) / PAGE_SIZE;
261 	task_unlock(p);
262 
263 	/* Normalize to oom_score_adj units */
264 	adj *= totalpages / 1000;
265 	points += adj;
266 
267 	return points;
268 }
269 
270 static const char * const oom_constraint_text[] = {
271 	[CONSTRAINT_NONE] = "CONSTRAINT_NONE",
272 	[CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
273 	[CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
274 	[CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
275 };
276 
277 /*
278  * Determine the type of allocation constraint.
279  */
280 static enum oom_constraint constrained_alloc(struct oom_control *oc)
281 {
282 	struct zone *zone;
283 	struct zoneref *z;
284 	enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
285 	bool cpuset_limited = false;
286 	int nid;
287 
288 	if (is_memcg_oom(oc)) {
289 		oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
290 		return CONSTRAINT_MEMCG;
291 	}
292 
293 	/* Default to all available memory */
294 	oc->totalpages = totalram_pages() + total_swap_pages;
295 
296 	if (!IS_ENABLED(CONFIG_NUMA))
297 		return CONSTRAINT_NONE;
298 
299 	if (!oc->zonelist)
300 		return CONSTRAINT_NONE;
301 	/*
302 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
303 	 * to kill current.We have to random task kill in this case.
304 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
305 	 */
306 	if (oc->gfp_mask & __GFP_THISNODE)
307 		return CONSTRAINT_NONE;
308 
309 	/*
310 	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
311 	 * the page allocator means a mempolicy is in effect.  Cpuset policy
312 	 * is enforced in get_page_from_freelist().
313 	 */
314 	if (oc->nodemask &&
315 	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
316 		oc->totalpages = total_swap_pages;
317 		for_each_node_mask(nid, *oc->nodemask)
318 			oc->totalpages += node_present_pages(nid);
319 		return CONSTRAINT_MEMORY_POLICY;
320 	}
321 
322 	/* Check this allocation failure is caused by cpuset's wall function */
323 	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
324 			highest_zoneidx, oc->nodemask)
325 		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
326 			cpuset_limited = true;
327 
328 	if (cpuset_limited) {
329 		oc->totalpages = total_swap_pages;
330 		for_each_node_mask(nid, cpuset_current_mems_allowed)
331 			oc->totalpages += node_present_pages(nid);
332 		return CONSTRAINT_CPUSET;
333 	}
334 	return CONSTRAINT_NONE;
335 }
336 
337 static int oom_evaluate_task(struct task_struct *task, void *arg)
338 {
339 	struct oom_control *oc = arg;
340 	long points;
341 
342 	if (oom_unkillable_task(task))
343 		goto next;
344 
345 	/* p may not have freeable memory in nodemask */
346 	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
347 		goto next;
348 
349 	/*
350 	 * This task already has access to memory reserves and is being killed.
351 	 * Don't allow any other task to have access to the reserves unless
352 	 * the task has MMF_OOM_SKIP because chances that it would release
353 	 * any memory is quite low.
354 	 */
355 	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
356 		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
357 			goto next;
358 		goto abort;
359 	}
360 
361 	/*
362 	 * If task is allocating a lot of memory and has been marked to be
363 	 * killed first if it triggers an oom, then select it.
364 	 */
365 	if (oom_task_origin(task)) {
366 		points = LONG_MAX;
367 		goto select;
368 	}
369 
370 	points = oom_badness(task, oc->totalpages);
371 	if (points == LONG_MIN || points < oc->chosen_points)
372 		goto next;
373 
374 select:
375 	if (oc->chosen)
376 		put_task_struct(oc->chosen);
377 	get_task_struct(task);
378 	oc->chosen = task;
379 	oc->chosen_points = points;
380 next:
381 	return 0;
382 abort:
383 	if (oc->chosen)
384 		put_task_struct(oc->chosen);
385 	oc->chosen = (void *)-1UL;
386 	return 1;
387 }
388 
389 /*
390  * Simple selection loop. We choose the process with the highest number of
391  * 'points'. In case scan was aborted, oc->chosen is set to -1.
392  */
393 static void select_bad_process(struct oom_control *oc)
394 {
395 	oc->chosen_points = LONG_MIN;
396 
397 	if (is_memcg_oom(oc))
398 		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
399 	else {
400 		struct task_struct *p;
401 
402 		rcu_read_lock();
403 		for_each_process(p)
404 			if (oom_evaluate_task(p, oc))
405 				break;
406 		rcu_read_unlock();
407 	}
408 }
409 
410 static int dump_task(struct task_struct *p, void *arg)
411 {
412 	struct oom_control *oc = arg;
413 	struct task_struct *task;
414 
415 	if (oom_unkillable_task(p))
416 		return 0;
417 
418 	/* p may not have freeable memory in nodemask */
419 	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
420 		return 0;
421 
422 	task = find_lock_task_mm(p);
423 	if (!task) {
424 		/*
425 		 * All of p's threads have already detached their mm's. There's
426 		 * no need to report them; they can't be oom killed anyway.
427 		 */
428 		return 0;
429 	}
430 
431 	pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu         %5hd %s\n",
432 		task->pid, from_kuid(&init_user_ns, task_uid(task)),
433 		task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
434 		mm_pgtables_bytes(task->mm),
435 		get_mm_counter(task->mm, MM_SWAPENTS),
436 		task->signal->oom_score_adj, task->comm);
437 	task_unlock(task);
438 
439 	return 0;
440 }
441 
442 /**
443  * dump_tasks - dump current memory state of all system tasks
444  * @oc: pointer to struct oom_control
445  *
446  * Dumps the current memory state of all eligible tasks.  Tasks not in the same
447  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
448  * are not shown.
449  * State information includes task's pid, uid, tgid, vm size, rss,
450  * pgtables_bytes, swapents, oom_score_adj value, and name.
451  */
452 static void dump_tasks(struct oom_control *oc)
453 {
454 	pr_info("Tasks state (memory values in pages):\n");
455 	pr_info("[  pid  ]   uid  tgid total_vm      rss pgtables_bytes swapents oom_score_adj name\n");
456 
457 	if (is_memcg_oom(oc))
458 		mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
459 	else {
460 		struct task_struct *p;
461 
462 		rcu_read_lock();
463 		for_each_process(p)
464 			dump_task(p, oc);
465 		rcu_read_unlock();
466 	}
467 }
468 
469 static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
470 {
471 	/* one line summary of the oom killer context. */
472 	pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
473 			oom_constraint_text[oc->constraint],
474 			nodemask_pr_args(oc->nodemask));
475 	cpuset_print_current_mems_allowed();
476 	mem_cgroup_print_oom_context(oc->memcg, victim);
477 	pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
478 		from_kuid(&init_user_ns, task_uid(victim)));
479 }
480 
481 static void dump_header(struct oom_control *oc, struct task_struct *p)
482 {
483 	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
484 		current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
485 			current->signal->oom_score_adj);
486 	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
487 		pr_warn("COMPACTION is disabled!!!\n");
488 
489 	dump_stack();
490 	if (is_memcg_oom(oc))
491 		mem_cgroup_print_oom_meminfo(oc->memcg);
492 	else {
493 		show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
494 		if (should_dump_unreclaim_slab())
495 			dump_unreclaimable_slab();
496 	}
497 	if (sysctl_oom_dump_tasks)
498 		dump_tasks(oc);
499 	if (p)
500 		dump_oom_summary(oc, p);
501 }
502 
503 /*
504  * Number of OOM victims in flight
505  */
506 static atomic_t oom_victims = ATOMIC_INIT(0);
507 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
508 
509 static bool oom_killer_disabled __read_mostly;
510 
511 #define K(x) ((x) << (PAGE_SHIFT-10))
512 
513 /*
514  * task->mm can be NULL if the task is the exited group leader.  So to
515  * determine whether the task is using a particular mm, we examine all the
516  * task's threads: if one of those is using this mm then this task was also
517  * using it.
518  */
519 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
520 {
521 	struct task_struct *t;
522 
523 	for_each_thread(p, t) {
524 		struct mm_struct *t_mm = READ_ONCE(t->mm);
525 		if (t_mm)
526 			return t_mm == mm;
527 	}
528 	return false;
529 }
530 
531 #ifdef CONFIG_MMU
532 /*
533  * OOM Reaper kernel thread which tries to reap the memory used by the OOM
534  * victim (if that is possible) to help the OOM killer to move on.
535  */
536 static struct task_struct *oom_reaper_th;
537 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
538 static struct task_struct *oom_reaper_list;
539 static DEFINE_SPINLOCK(oom_reaper_lock);
540 
541 bool __oom_reap_task_mm(struct mm_struct *mm)
542 {
543 	struct vm_area_struct *vma;
544 	bool ret = true;
545 
546 	/*
547 	 * Tell all users of get_user/copy_from_user etc... that the content
548 	 * is no longer stable. No barriers really needed because unmapping
549 	 * should imply barriers already and the reader would hit a page fault
550 	 * if it stumbled over a reaped memory.
551 	 */
552 	set_bit(MMF_UNSTABLE, &mm->flags);
553 
554 	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
555 		if (vma->vm_flags & (VM_HUGETLB|VM_PFNMAP))
556 			continue;
557 
558 		/*
559 		 * Only anonymous pages have a good chance to be dropped
560 		 * without additional steps which we cannot afford as we
561 		 * are OOM already.
562 		 *
563 		 * We do not even care about fs backed pages because all
564 		 * which are reclaimable have already been reclaimed and
565 		 * we do not want to block exit_mmap by keeping mm ref
566 		 * count elevated without a good reason.
567 		 */
568 		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
569 			struct mmu_notifier_range range;
570 			struct mmu_gather tlb;
571 
572 			mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
573 						vma, mm, vma->vm_start,
574 						vma->vm_end);
575 			tlb_gather_mmu(&tlb, mm);
576 			if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
577 				tlb_finish_mmu(&tlb);
578 				ret = false;
579 				continue;
580 			}
581 			unmap_page_range(&tlb, vma, range.start, range.end, NULL);
582 			mmu_notifier_invalidate_range_end(&range);
583 			tlb_finish_mmu(&tlb);
584 		}
585 	}
586 
587 	return ret;
588 }
589 
590 /*
591  * Reaps the address space of the give task.
592  *
593  * Returns true on success and false if none or part of the address space
594  * has been reclaimed and the caller should retry later.
595  */
596 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
597 {
598 	bool ret = true;
599 
600 	if (!mmap_read_trylock(mm)) {
601 		trace_skip_task_reaping(tsk->pid);
602 		return false;
603 	}
604 
605 	/*
606 	 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
607 	 * work on the mm anymore. The check for MMF_OOM_SKIP must run
608 	 * under mmap_lock for reading because it serializes against the
609 	 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
610 	 */
611 	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
612 		trace_skip_task_reaping(tsk->pid);
613 		goto out_unlock;
614 	}
615 
616 	trace_start_task_reaping(tsk->pid);
617 
618 	/* failed to reap part of the address space. Try again later */
619 	ret = __oom_reap_task_mm(mm);
620 	if (!ret)
621 		goto out_finish;
622 
623 	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
624 			task_pid_nr(tsk), tsk->comm,
625 			K(get_mm_counter(mm, MM_ANONPAGES)),
626 			K(get_mm_counter(mm, MM_FILEPAGES)),
627 			K(get_mm_counter(mm, MM_SHMEMPAGES)));
628 out_finish:
629 	trace_finish_task_reaping(tsk->pid);
630 out_unlock:
631 	mmap_read_unlock(mm);
632 
633 	return ret;
634 }
635 
636 #define MAX_OOM_REAP_RETRIES 10
637 static void oom_reap_task(struct task_struct *tsk)
638 {
639 	int attempts = 0;
640 	struct mm_struct *mm = tsk->signal->oom_mm;
641 
642 	/* Retry the mmap_read_trylock(mm) a few times */
643 	while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
644 		schedule_timeout_idle(HZ/10);
645 
646 	if (attempts <= MAX_OOM_REAP_RETRIES ||
647 	    test_bit(MMF_OOM_SKIP, &mm->flags))
648 		goto done;
649 
650 	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
651 		task_pid_nr(tsk), tsk->comm);
652 	sched_show_task(tsk);
653 	debug_show_all_locks();
654 
655 done:
656 	tsk->oom_reaper_list = NULL;
657 
658 	/*
659 	 * Hide this mm from OOM killer because it has been either reaped or
660 	 * somebody can't call mmap_write_unlock(mm).
661 	 */
662 	set_bit(MMF_OOM_SKIP, &mm->flags);
663 
664 	/* Drop a reference taken by queue_oom_reaper */
665 	put_task_struct(tsk);
666 }
667 
668 static int oom_reaper(void *unused)
669 {
670 	set_freezable();
671 
672 	while (true) {
673 		struct task_struct *tsk = NULL;
674 
675 		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
676 		spin_lock_irq(&oom_reaper_lock);
677 		if (oom_reaper_list != NULL) {
678 			tsk = oom_reaper_list;
679 			oom_reaper_list = tsk->oom_reaper_list;
680 		}
681 		spin_unlock_irq(&oom_reaper_lock);
682 
683 		if (tsk)
684 			oom_reap_task(tsk);
685 	}
686 
687 	return 0;
688 }
689 
690 static void wake_oom_reaper(struct timer_list *timer)
691 {
692 	struct task_struct *tsk = container_of(timer, struct task_struct,
693 			oom_reaper_timer);
694 	struct mm_struct *mm = tsk->signal->oom_mm;
695 	unsigned long flags;
696 
697 	/* The victim managed to terminate on its own - see exit_mmap */
698 	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
699 		put_task_struct(tsk);
700 		return;
701 	}
702 
703 	spin_lock_irqsave(&oom_reaper_lock, flags);
704 	tsk->oom_reaper_list = oom_reaper_list;
705 	oom_reaper_list = tsk;
706 	spin_unlock_irqrestore(&oom_reaper_lock, flags);
707 	trace_wake_reaper(tsk->pid);
708 	wake_up(&oom_reaper_wait);
709 }
710 
711 /*
712  * Give the OOM victim time to exit naturally before invoking the oom_reaping.
713  * The timers timeout is arbitrary... the longer it is, the longer the worst
714  * case scenario for the OOM can take. If it is too small, the oom_reaper can
715  * get in the way and release resources needed by the process exit path.
716  * e.g. The futex robust list can sit in Anon|Private memory that gets reaped
717  * before the exit path is able to wake the futex waiters.
718  */
719 #define OOM_REAPER_DELAY (2*HZ)
720 static void queue_oom_reaper(struct task_struct *tsk)
721 {
722 	/* mm is already queued? */
723 	if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
724 		return;
725 
726 	get_task_struct(tsk);
727 	timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0);
728 	tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY;
729 	add_timer(&tsk->oom_reaper_timer);
730 }
731 
732 static int __init oom_init(void)
733 {
734 	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
735 #ifdef CONFIG_SYSCTL
736 	register_sysctl_init("vm", vm_oom_kill_table);
737 #endif
738 	return 0;
739 }
740 subsys_initcall(oom_init)
741 #else
742 static inline void queue_oom_reaper(struct task_struct *tsk)
743 {
744 }
745 #endif /* CONFIG_MMU */
746 
747 /**
748  * mark_oom_victim - mark the given task as OOM victim
749  * @tsk: task to mark
750  *
751  * Has to be called with oom_lock held and never after
752  * oom has been disabled already.
753  *
754  * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
755  * under task_lock or operate on the current).
756  */
757 static void mark_oom_victim(struct task_struct *tsk)
758 {
759 	struct mm_struct *mm = tsk->mm;
760 
761 	WARN_ON(oom_killer_disabled);
762 	/* OOM killer might race with memcg OOM */
763 	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
764 		return;
765 
766 	/* oom_mm is bound to the signal struct life time. */
767 	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
768 		mmgrab(tsk->signal->oom_mm);
769 		set_bit(MMF_OOM_VICTIM, &mm->flags);
770 	}
771 
772 	/*
773 	 * Make sure that the task is woken up from uninterruptible sleep
774 	 * if it is frozen because OOM killer wouldn't be able to free
775 	 * any memory and livelock. freezing_slow_path will tell the freezer
776 	 * that TIF_MEMDIE tasks should be ignored.
777 	 */
778 	__thaw_task(tsk);
779 	atomic_inc(&oom_victims);
780 	trace_mark_victim(tsk->pid);
781 }
782 
783 /**
784  * exit_oom_victim - note the exit of an OOM victim
785  */
786 void exit_oom_victim(void)
787 {
788 	clear_thread_flag(TIF_MEMDIE);
789 
790 	if (!atomic_dec_return(&oom_victims))
791 		wake_up_all(&oom_victims_wait);
792 }
793 
794 /**
795  * oom_killer_enable - enable OOM killer
796  */
797 void oom_killer_enable(void)
798 {
799 	oom_killer_disabled = false;
800 	pr_info("OOM killer enabled.\n");
801 }
802 
803 /**
804  * oom_killer_disable - disable OOM killer
805  * @timeout: maximum timeout to wait for oom victims in jiffies
806  *
807  * Forces all page allocations to fail rather than trigger OOM killer.
808  * Will block and wait until all OOM victims are killed or the given
809  * timeout expires.
810  *
811  * The function cannot be called when there are runnable user tasks because
812  * the userspace would see unexpected allocation failures as a result. Any
813  * new usage of this function should be consulted with MM people.
814  *
815  * Returns true if successful and false if the OOM killer cannot be
816  * disabled.
817  */
818 bool oom_killer_disable(signed long timeout)
819 {
820 	signed long ret;
821 
822 	/*
823 	 * Make sure to not race with an ongoing OOM killer. Check that the
824 	 * current is not killed (possibly due to sharing the victim's memory).
825 	 */
826 	if (mutex_lock_killable(&oom_lock))
827 		return false;
828 	oom_killer_disabled = true;
829 	mutex_unlock(&oom_lock);
830 
831 	ret = wait_event_interruptible_timeout(oom_victims_wait,
832 			!atomic_read(&oom_victims), timeout);
833 	if (ret <= 0) {
834 		oom_killer_enable();
835 		return false;
836 	}
837 	pr_info("OOM killer disabled.\n");
838 
839 	return true;
840 }
841 
842 static inline bool __task_will_free_mem(struct task_struct *task)
843 {
844 	struct signal_struct *sig = task->signal;
845 
846 	/*
847 	 * A coredumping process may sleep for an extended period in
848 	 * coredump_task_exit(), so the oom killer cannot assume that
849 	 * the process will promptly exit and release memory.
850 	 */
851 	if (sig->core_state)
852 		return false;
853 
854 	if (sig->flags & SIGNAL_GROUP_EXIT)
855 		return true;
856 
857 	if (thread_group_empty(task) && (task->flags & PF_EXITING))
858 		return true;
859 
860 	return false;
861 }
862 
863 /*
864  * Checks whether the given task is dying or exiting and likely to
865  * release its address space. This means that all threads and processes
866  * sharing the same mm have to be killed or exiting.
867  * Caller has to make sure that task->mm is stable (hold task_lock or
868  * it operates on the current).
869  */
870 static bool task_will_free_mem(struct task_struct *task)
871 {
872 	struct mm_struct *mm = task->mm;
873 	struct task_struct *p;
874 	bool ret = true;
875 
876 	/*
877 	 * Skip tasks without mm because it might have passed its exit_mm and
878 	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
879 	 * on that for now. We can consider find_lock_task_mm in future.
880 	 */
881 	if (!mm)
882 		return false;
883 
884 	if (!__task_will_free_mem(task))
885 		return false;
886 
887 	/*
888 	 * This task has already been drained by the oom reaper so there are
889 	 * only small chances it will free some more
890 	 */
891 	if (test_bit(MMF_OOM_SKIP, &mm->flags))
892 		return false;
893 
894 	if (atomic_read(&mm->mm_users) <= 1)
895 		return true;
896 
897 	/*
898 	 * Make sure that all tasks which share the mm with the given tasks
899 	 * are dying as well to make sure that a) nobody pins its mm and
900 	 * b) the task is also reapable by the oom reaper.
901 	 */
902 	rcu_read_lock();
903 	for_each_process(p) {
904 		if (!process_shares_mm(p, mm))
905 			continue;
906 		if (same_thread_group(task, p))
907 			continue;
908 		ret = __task_will_free_mem(p);
909 		if (!ret)
910 			break;
911 	}
912 	rcu_read_unlock();
913 
914 	return ret;
915 }
916 
917 static void __oom_kill_process(struct task_struct *victim, const char *message)
918 {
919 	struct task_struct *p;
920 	struct mm_struct *mm;
921 	bool can_oom_reap = true;
922 
923 	p = find_lock_task_mm(victim);
924 	if (!p) {
925 		pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
926 			message, task_pid_nr(victim), victim->comm);
927 		put_task_struct(victim);
928 		return;
929 	} else if (victim != p) {
930 		get_task_struct(p);
931 		put_task_struct(victim);
932 		victim = p;
933 	}
934 
935 	/* Get a reference to safely compare mm after task_unlock(victim) */
936 	mm = victim->mm;
937 	mmgrab(mm);
938 
939 	/* Raise event before sending signal: task reaper must see this */
940 	count_vm_event(OOM_KILL);
941 	memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
942 
943 	/*
944 	 * We should send SIGKILL before granting access to memory reserves
945 	 * in order to prevent the OOM victim from depleting the memory
946 	 * reserves from the user space under its control.
947 	 */
948 	do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
949 	mark_oom_victim(victim);
950 	pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
951 		message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
952 		K(get_mm_counter(mm, MM_ANONPAGES)),
953 		K(get_mm_counter(mm, MM_FILEPAGES)),
954 		K(get_mm_counter(mm, MM_SHMEMPAGES)),
955 		from_kuid(&init_user_ns, task_uid(victim)),
956 		mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
957 	task_unlock(victim);
958 
959 	/*
960 	 * Kill all user processes sharing victim->mm in other thread groups, if
961 	 * any.  They don't get access to memory reserves, though, to avoid
962 	 * depletion of all memory.  This prevents mm->mmap_lock livelock when an
963 	 * oom killed thread cannot exit because it requires the semaphore and
964 	 * its contended by another thread trying to allocate memory itself.
965 	 * That thread will now get access to memory reserves since it has a
966 	 * pending fatal signal.
967 	 */
968 	rcu_read_lock();
969 	for_each_process(p) {
970 		if (!process_shares_mm(p, mm))
971 			continue;
972 		if (same_thread_group(p, victim))
973 			continue;
974 		if (is_global_init(p)) {
975 			can_oom_reap = false;
976 			set_bit(MMF_OOM_SKIP, &mm->flags);
977 			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
978 					task_pid_nr(victim), victim->comm,
979 					task_pid_nr(p), p->comm);
980 			continue;
981 		}
982 		/*
983 		 * No kthread_use_mm() user needs to read from the userspace so
984 		 * we are ok to reap it.
985 		 */
986 		if (unlikely(p->flags & PF_KTHREAD))
987 			continue;
988 		do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
989 	}
990 	rcu_read_unlock();
991 
992 	if (can_oom_reap)
993 		queue_oom_reaper(victim);
994 
995 	mmdrop(mm);
996 	put_task_struct(victim);
997 }
998 #undef K
999 
1000 /*
1001  * Kill provided task unless it's secured by setting
1002  * oom_score_adj to OOM_SCORE_ADJ_MIN.
1003  */
1004 static int oom_kill_memcg_member(struct task_struct *task, void *message)
1005 {
1006 	if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
1007 	    !is_global_init(task)) {
1008 		get_task_struct(task);
1009 		__oom_kill_process(task, message);
1010 	}
1011 	return 0;
1012 }
1013 
1014 static void oom_kill_process(struct oom_control *oc, const char *message)
1015 {
1016 	struct task_struct *victim = oc->chosen;
1017 	struct mem_cgroup *oom_group;
1018 	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1019 					      DEFAULT_RATELIMIT_BURST);
1020 
1021 	/*
1022 	 * If the task is already exiting, don't alarm the sysadmin or kill
1023 	 * its children or threads, just give it access to memory reserves
1024 	 * so it can die quickly
1025 	 */
1026 	task_lock(victim);
1027 	if (task_will_free_mem(victim)) {
1028 		mark_oom_victim(victim);
1029 		queue_oom_reaper(victim);
1030 		task_unlock(victim);
1031 		put_task_struct(victim);
1032 		return;
1033 	}
1034 	task_unlock(victim);
1035 
1036 	if (__ratelimit(&oom_rs))
1037 		dump_header(oc, victim);
1038 
1039 	/*
1040 	 * Do we need to kill the entire memory cgroup?
1041 	 * Or even one of the ancestor memory cgroups?
1042 	 * Check this out before killing the victim task.
1043 	 */
1044 	oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
1045 
1046 	__oom_kill_process(victim, message);
1047 
1048 	/*
1049 	 * If necessary, kill all tasks in the selected memory cgroup.
1050 	 */
1051 	if (oom_group) {
1052 		memcg_memory_event(oom_group, MEMCG_OOM_GROUP_KILL);
1053 		mem_cgroup_print_oom_group(oom_group);
1054 		mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
1055 				      (void *)message);
1056 		mem_cgroup_put(oom_group);
1057 	}
1058 }
1059 
1060 /*
1061  * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1062  */
1063 static void check_panic_on_oom(struct oom_control *oc)
1064 {
1065 	if (likely(!sysctl_panic_on_oom))
1066 		return;
1067 	if (sysctl_panic_on_oom != 2) {
1068 		/*
1069 		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1070 		 * does not panic for cpuset, mempolicy, or memcg allocation
1071 		 * failures.
1072 		 */
1073 		if (oc->constraint != CONSTRAINT_NONE)
1074 			return;
1075 	}
1076 	/* Do not panic for oom kills triggered by sysrq */
1077 	if (is_sysrq_oom(oc))
1078 		return;
1079 	dump_header(oc, NULL);
1080 	panic("Out of memory: %s panic_on_oom is enabled\n",
1081 		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1082 }
1083 
1084 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1085 
1086 int register_oom_notifier(struct notifier_block *nb)
1087 {
1088 	return blocking_notifier_chain_register(&oom_notify_list, nb);
1089 }
1090 EXPORT_SYMBOL_GPL(register_oom_notifier);
1091 
1092 int unregister_oom_notifier(struct notifier_block *nb)
1093 {
1094 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1095 }
1096 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1097 
1098 /**
1099  * out_of_memory - kill the "best" process when we run out of memory
1100  * @oc: pointer to struct oom_control
1101  *
1102  * If we run out of memory, we have the choice between either
1103  * killing a random task (bad), letting the system crash (worse)
1104  * OR try to be smart about which process to kill. Note that we
1105  * don't have to be perfect here, we just have to be good.
1106  */
1107 bool out_of_memory(struct oom_control *oc)
1108 {
1109 	unsigned long freed = 0;
1110 
1111 	if (oom_killer_disabled)
1112 		return false;
1113 
1114 	if (!is_memcg_oom(oc)) {
1115 		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1116 		if (freed > 0 && !is_sysrq_oom(oc))
1117 			/* Got some memory back in the last second. */
1118 			return true;
1119 	}
1120 
1121 	/*
1122 	 * If current has a pending SIGKILL or is exiting, then automatically
1123 	 * select it.  The goal is to allow it to allocate so that it may
1124 	 * quickly exit and free its memory.
1125 	 */
1126 	if (task_will_free_mem(current)) {
1127 		mark_oom_victim(current);
1128 		queue_oom_reaper(current);
1129 		return true;
1130 	}
1131 
1132 	/*
1133 	 * The OOM killer does not compensate for IO-less reclaim.
1134 	 * pagefault_out_of_memory lost its gfp context so we have to
1135 	 * make sure exclude 0 mask - all other users should have at least
1136 	 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to
1137 	 * invoke the OOM killer even if it is a GFP_NOFS allocation.
1138 	 */
1139 	if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1140 		return true;
1141 
1142 	/*
1143 	 * Check if there were limitations on the allocation (only relevant for
1144 	 * NUMA and memcg) that may require different handling.
1145 	 */
1146 	oc->constraint = constrained_alloc(oc);
1147 	if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1148 		oc->nodemask = NULL;
1149 	check_panic_on_oom(oc);
1150 
1151 	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1152 	    current->mm && !oom_unkillable_task(current) &&
1153 	    oom_cpuset_eligible(current, oc) &&
1154 	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1155 		get_task_struct(current);
1156 		oc->chosen = current;
1157 		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1158 		return true;
1159 	}
1160 
1161 	select_bad_process(oc);
1162 	/* Found nothing?!?! */
1163 	if (!oc->chosen) {
1164 		dump_header(oc, NULL);
1165 		pr_warn("Out of memory and no killable processes...\n");
1166 		/*
1167 		 * If we got here due to an actual allocation at the
1168 		 * system level, we cannot survive this and will enter
1169 		 * an endless loop in the allocator. Bail out now.
1170 		 */
1171 		if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1172 			panic("System is deadlocked on memory\n");
1173 	}
1174 	if (oc->chosen && oc->chosen != (void *)-1UL)
1175 		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1176 				 "Memory cgroup out of memory");
1177 	return !!oc->chosen;
1178 }
1179 
1180 /*
1181  * The pagefault handler calls here because some allocation has failed. We have
1182  * to take care of the memcg OOM here because this is the only safe context without
1183  * any locks held but let the oom killer triggered from the allocation context care
1184  * about the global OOM.
1185  */
1186 void pagefault_out_of_memory(void)
1187 {
1188 	static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL,
1189 				      DEFAULT_RATELIMIT_BURST);
1190 
1191 	if (mem_cgroup_oom_synchronize(true))
1192 		return;
1193 
1194 	if (fatal_signal_pending(current))
1195 		return;
1196 
1197 	if (__ratelimit(&pfoom_rs))
1198 		pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
1199 }
1200 
1201 SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags)
1202 {
1203 #ifdef CONFIG_MMU
1204 	struct mm_struct *mm = NULL;
1205 	struct task_struct *task;
1206 	struct task_struct *p;
1207 	unsigned int f_flags;
1208 	bool reap = false;
1209 	long ret = 0;
1210 
1211 	if (flags)
1212 		return -EINVAL;
1213 
1214 	task = pidfd_get_task(pidfd, &f_flags);
1215 	if (IS_ERR(task))
1216 		return PTR_ERR(task);
1217 
1218 	/*
1219 	 * Make sure to choose a thread which still has a reference to mm
1220 	 * during the group exit
1221 	 */
1222 	p = find_lock_task_mm(task);
1223 	if (!p) {
1224 		ret = -ESRCH;
1225 		goto put_task;
1226 	}
1227 
1228 	mm = p->mm;
1229 	mmgrab(mm);
1230 
1231 	if (task_will_free_mem(p))
1232 		reap = true;
1233 	else {
1234 		/* Error only if the work has not been done already */
1235 		if (!test_bit(MMF_OOM_SKIP, &mm->flags))
1236 			ret = -EINVAL;
1237 	}
1238 	task_unlock(p);
1239 
1240 	if (!reap)
1241 		goto drop_mm;
1242 
1243 	if (mmap_read_lock_killable(mm)) {
1244 		ret = -EINTR;
1245 		goto drop_mm;
1246 	}
1247 	/*
1248 	 * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure
1249 	 * possible change in exit_mmap is seen
1250 	 */
1251 	if (!test_bit(MMF_OOM_SKIP, &mm->flags) && !__oom_reap_task_mm(mm))
1252 		ret = -EAGAIN;
1253 	mmap_read_unlock(mm);
1254 
1255 drop_mm:
1256 	mmdrop(mm);
1257 put_task:
1258 	put_task_struct(task);
1259 	return ret;
1260 #else
1261 	return -ENOSYS;
1262 #endif /* CONFIG_MMU */
1263 }
1264