xref: /openbmc/linux/mm/oom_kill.c (revision 174cd4b1)
1 /*
2  *  linux/mm/oom_kill.c
3  *
4  *  Copyright (C)  1998,2000  Rik van Riel
5  *	Thanks go out to Claus Fischer for some serious inspiration and
6  *	for goading me into coding this file...
7  *  Copyright (C)  2010  Google, Inc.
8  *	Rewritten by David Rientjes
9  *
10  *  The routines in this file are used to kill a process when
11  *  we're seriously out of memory. This gets called from __alloc_pages()
12  *  in mm/page_alloc.c when we really run out of memory.
13  *
14  *  Since we won't call these routines often (on a well-configured
15  *  machine) this file will double as a 'coding guide' and a signpost
16  *  for newbie kernel hackers. It features several pointers to major
17  *  kernel subsystems and hints as to where to find out what things do.
18  */
19 
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/sched/mm.h>
26 #include <linux/sched/coredump.h>
27 #include <linux/swap.h>
28 #include <linux/timex.h>
29 #include <linux/jiffies.h>
30 #include <linux/cpuset.h>
31 #include <linux/export.h>
32 #include <linux/notifier.h>
33 #include <linux/memcontrol.h>
34 #include <linux/mempolicy.h>
35 #include <linux/security.h>
36 #include <linux/ptrace.h>
37 #include <linux/freezer.h>
38 #include <linux/ftrace.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kthread.h>
41 #include <linux/init.h>
42 
43 #include <asm/tlb.h>
44 #include "internal.h"
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/oom.h>
48 
49 int sysctl_panic_on_oom;
50 int sysctl_oom_kill_allocating_task;
51 int sysctl_oom_dump_tasks = 1;
52 
53 DEFINE_MUTEX(oom_lock);
54 
55 #ifdef CONFIG_NUMA
56 /**
57  * has_intersects_mems_allowed() - check task eligiblity for kill
58  * @start: task struct of which task to consider
59  * @mask: nodemask passed to page allocator for mempolicy ooms
60  *
61  * Task eligibility is determined by whether or not a candidate task, @tsk,
62  * shares the same mempolicy nodes as current if it is bound by such a policy
63  * and whether or not it has the same set of allowed cpuset nodes.
64  */
65 static bool has_intersects_mems_allowed(struct task_struct *start,
66 					const nodemask_t *mask)
67 {
68 	struct task_struct *tsk;
69 	bool ret = false;
70 
71 	rcu_read_lock();
72 	for_each_thread(start, tsk) {
73 		if (mask) {
74 			/*
75 			 * If this is a mempolicy constrained oom, tsk's
76 			 * cpuset is irrelevant.  Only return true if its
77 			 * mempolicy intersects current, otherwise it may be
78 			 * needlessly killed.
79 			 */
80 			ret = mempolicy_nodemask_intersects(tsk, mask);
81 		} else {
82 			/*
83 			 * This is not a mempolicy constrained oom, so only
84 			 * check the mems of tsk's cpuset.
85 			 */
86 			ret = cpuset_mems_allowed_intersects(current, tsk);
87 		}
88 		if (ret)
89 			break;
90 	}
91 	rcu_read_unlock();
92 
93 	return ret;
94 }
95 #else
96 static bool has_intersects_mems_allowed(struct task_struct *tsk,
97 					const nodemask_t *mask)
98 {
99 	return true;
100 }
101 #endif /* CONFIG_NUMA */
102 
103 /*
104  * The process p may have detached its own ->mm while exiting or through
105  * use_mm(), but one or more of its subthreads may still have a valid
106  * pointer.  Return p, or any of its subthreads with a valid ->mm, with
107  * task_lock() held.
108  */
109 struct task_struct *find_lock_task_mm(struct task_struct *p)
110 {
111 	struct task_struct *t;
112 
113 	rcu_read_lock();
114 
115 	for_each_thread(p, t) {
116 		task_lock(t);
117 		if (likely(t->mm))
118 			goto found;
119 		task_unlock(t);
120 	}
121 	t = NULL;
122 found:
123 	rcu_read_unlock();
124 
125 	return t;
126 }
127 
128 /*
129  * order == -1 means the oom kill is required by sysrq, otherwise only
130  * for display purposes.
131  */
132 static inline bool is_sysrq_oom(struct oom_control *oc)
133 {
134 	return oc->order == -1;
135 }
136 
137 static inline bool is_memcg_oom(struct oom_control *oc)
138 {
139 	return oc->memcg != NULL;
140 }
141 
142 /* return true if the task is not adequate as candidate victim task. */
143 static bool oom_unkillable_task(struct task_struct *p,
144 		struct mem_cgroup *memcg, const nodemask_t *nodemask)
145 {
146 	if (is_global_init(p))
147 		return true;
148 	if (p->flags & PF_KTHREAD)
149 		return true;
150 
151 	/* When mem_cgroup_out_of_memory() and p is not member of the group */
152 	if (memcg && !task_in_mem_cgroup(p, memcg))
153 		return true;
154 
155 	/* p may not have freeable memory in nodemask */
156 	if (!has_intersects_mems_allowed(p, nodemask))
157 		return true;
158 
159 	return false;
160 }
161 
162 /**
163  * oom_badness - heuristic function to determine which candidate task to kill
164  * @p: task struct of which task we should calculate
165  * @totalpages: total present RAM allowed for page allocation
166  *
167  * The heuristic for determining which task to kill is made to be as simple and
168  * predictable as possible.  The goal is to return the highest value for the
169  * task consuming the most memory to avoid subsequent oom failures.
170  */
171 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
172 			  const nodemask_t *nodemask, unsigned long totalpages)
173 {
174 	long points;
175 	long adj;
176 
177 	if (oom_unkillable_task(p, memcg, nodemask))
178 		return 0;
179 
180 	p = find_lock_task_mm(p);
181 	if (!p)
182 		return 0;
183 
184 	/*
185 	 * Do not even consider tasks which are explicitly marked oom
186 	 * unkillable or have been already oom reaped or the are in
187 	 * the middle of vfork
188 	 */
189 	adj = (long)p->signal->oom_score_adj;
190 	if (adj == OOM_SCORE_ADJ_MIN ||
191 			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
192 			in_vfork(p)) {
193 		task_unlock(p);
194 		return 0;
195 	}
196 
197 	/*
198 	 * The baseline for the badness score is the proportion of RAM that each
199 	 * task's rss, pagetable and swap space use.
200 	 */
201 	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
202 		atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
203 	task_unlock(p);
204 
205 	/*
206 	 * Root processes get 3% bonus, just like the __vm_enough_memory()
207 	 * implementation used by LSMs.
208 	 */
209 	if (has_capability_noaudit(p, CAP_SYS_ADMIN))
210 		points -= (points * 3) / 100;
211 
212 	/* Normalize to oom_score_adj units */
213 	adj *= totalpages / 1000;
214 	points += adj;
215 
216 	/*
217 	 * Never return 0 for an eligible task regardless of the root bonus and
218 	 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
219 	 */
220 	return points > 0 ? points : 1;
221 }
222 
223 enum oom_constraint {
224 	CONSTRAINT_NONE,
225 	CONSTRAINT_CPUSET,
226 	CONSTRAINT_MEMORY_POLICY,
227 	CONSTRAINT_MEMCG,
228 };
229 
230 /*
231  * Determine the type of allocation constraint.
232  */
233 static enum oom_constraint constrained_alloc(struct oom_control *oc)
234 {
235 	struct zone *zone;
236 	struct zoneref *z;
237 	enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
238 	bool cpuset_limited = false;
239 	int nid;
240 
241 	if (is_memcg_oom(oc)) {
242 		oc->totalpages = mem_cgroup_get_limit(oc->memcg) ?: 1;
243 		return CONSTRAINT_MEMCG;
244 	}
245 
246 	/* Default to all available memory */
247 	oc->totalpages = totalram_pages + total_swap_pages;
248 
249 	if (!IS_ENABLED(CONFIG_NUMA))
250 		return CONSTRAINT_NONE;
251 
252 	if (!oc->zonelist)
253 		return CONSTRAINT_NONE;
254 	/*
255 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
256 	 * to kill current.We have to random task kill in this case.
257 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
258 	 */
259 	if (oc->gfp_mask & __GFP_THISNODE)
260 		return CONSTRAINT_NONE;
261 
262 	/*
263 	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
264 	 * the page allocator means a mempolicy is in effect.  Cpuset policy
265 	 * is enforced in get_page_from_freelist().
266 	 */
267 	if (oc->nodemask &&
268 	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
269 		oc->totalpages = total_swap_pages;
270 		for_each_node_mask(nid, *oc->nodemask)
271 			oc->totalpages += node_spanned_pages(nid);
272 		return CONSTRAINT_MEMORY_POLICY;
273 	}
274 
275 	/* Check this allocation failure is caused by cpuset's wall function */
276 	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
277 			high_zoneidx, oc->nodemask)
278 		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
279 			cpuset_limited = true;
280 
281 	if (cpuset_limited) {
282 		oc->totalpages = total_swap_pages;
283 		for_each_node_mask(nid, cpuset_current_mems_allowed)
284 			oc->totalpages += node_spanned_pages(nid);
285 		return CONSTRAINT_CPUSET;
286 	}
287 	return CONSTRAINT_NONE;
288 }
289 
290 static int oom_evaluate_task(struct task_struct *task, void *arg)
291 {
292 	struct oom_control *oc = arg;
293 	unsigned long points;
294 
295 	if (oom_unkillable_task(task, NULL, oc->nodemask))
296 		goto next;
297 
298 	/*
299 	 * This task already has access to memory reserves and is being killed.
300 	 * Don't allow any other task to have access to the reserves unless
301 	 * the task has MMF_OOM_SKIP because chances that it would release
302 	 * any memory is quite low.
303 	 */
304 	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
305 		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
306 			goto next;
307 		goto abort;
308 	}
309 
310 	/*
311 	 * If task is allocating a lot of memory and has been marked to be
312 	 * killed first if it triggers an oom, then select it.
313 	 */
314 	if (oom_task_origin(task)) {
315 		points = ULONG_MAX;
316 		goto select;
317 	}
318 
319 	points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
320 	if (!points || points < oc->chosen_points)
321 		goto next;
322 
323 	/* Prefer thread group leaders for display purposes */
324 	if (points == oc->chosen_points && thread_group_leader(oc->chosen))
325 		goto next;
326 select:
327 	if (oc->chosen)
328 		put_task_struct(oc->chosen);
329 	get_task_struct(task);
330 	oc->chosen = task;
331 	oc->chosen_points = points;
332 next:
333 	return 0;
334 abort:
335 	if (oc->chosen)
336 		put_task_struct(oc->chosen);
337 	oc->chosen = (void *)-1UL;
338 	return 1;
339 }
340 
341 /*
342  * Simple selection loop. We choose the process with the highest number of
343  * 'points'. In case scan was aborted, oc->chosen is set to -1.
344  */
345 static void select_bad_process(struct oom_control *oc)
346 {
347 	if (is_memcg_oom(oc))
348 		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
349 	else {
350 		struct task_struct *p;
351 
352 		rcu_read_lock();
353 		for_each_process(p)
354 			if (oom_evaluate_task(p, oc))
355 				break;
356 		rcu_read_unlock();
357 	}
358 
359 	oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
360 }
361 
362 /**
363  * dump_tasks - dump current memory state of all system tasks
364  * @memcg: current's memory controller, if constrained
365  * @nodemask: nodemask passed to page allocator for mempolicy ooms
366  *
367  * Dumps the current memory state of all eligible tasks.  Tasks not in the same
368  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
369  * are not shown.
370  * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
371  * swapents, oom_score_adj value, and name.
372  */
373 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
374 {
375 	struct task_struct *p;
376 	struct task_struct *task;
377 
378 	pr_info("[ pid ]   uid  tgid total_vm      rss nr_ptes nr_pmds swapents oom_score_adj name\n");
379 	rcu_read_lock();
380 	for_each_process(p) {
381 		if (oom_unkillable_task(p, memcg, nodemask))
382 			continue;
383 
384 		task = find_lock_task_mm(p);
385 		if (!task) {
386 			/*
387 			 * This is a kthread or all of p's threads have already
388 			 * detached their mm's.  There's no need to report
389 			 * them; they can't be oom killed anyway.
390 			 */
391 			continue;
392 		}
393 
394 		pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu         %5hd %s\n",
395 			task->pid, from_kuid(&init_user_ns, task_uid(task)),
396 			task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
397 			atomic_long_read(&task->mm->nr_ptes),
398 			mm_nr_pmds(task->mm),
399 			get_mm_counter(task->mm, MM_SWAPENTS),
400 			task->signal->oom_score_adj, task->comm);
401 		task_unlock(task);
402 	}
403 	rcu_read_unlock();
404 }
405 
406 static void dump_header(struct oom_control *oc, struct task_struct *p)
407 {
408 	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), nodemask=",
409 		current->comm, oc->gfp_mask, &oc->gfp_mask);
410 	if (oc->nodemask)
411 		pr_cont("%*pbl", nodemask_pr_args(oc->nodemask));
412 	else
413 		pr_cont("(null)");
414 	pr_cont(",  order=%d, oom_score_adj=%hd\n",
415 		oc->order, current->signal->oom_score_adj);
416 	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
417 		pr_warn("COMPACTION is disabled!!!\n");
418 
419 	cpuset_print_current_mems_allowed();
420 	dump_stack();
421 	if (oc->memcg)
422 		mem_cgroup_print_oom_info(oc->memcg, p);
423 	else
424 		show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
425 	if (sysctl_oom_dump_tasks)
426 		dump_tasks(oc->memcg, oc->nodemask);
427 }
428 
429 /*
430  * Number of OOM victims in flight
431  */
432 static atomic_t oom_victims = ATOMIC_INIT(0);
433 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
434 
435 static bool oom_killer_disabled __read_mostly;
436 
437 #define K(x) ((x) << (PAGE_SHIFT-10))
438 
439 /*
440  * task->mm can be NULL if the task is the exited group leader.  So to
441  * determine whether the task is using a particular mm, we examine all the
442  * task's threads: if one of those is using this mm then this task was also
443  * using it.
444  */
445 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
446 {
447 	struct task_struct *t;
448 
449 	for_each_thread(p, t) {
450 		struct mm_struct *t_mm = READ_ONCE(t->mm);
451 		if (t_mm)
452 			return t_mm == mm;
453 	}
454 	return false;
455 }
456 
457 
458 #ifdef CONFIG_MMU
459 /*
460  * OOM Reaper kernel thread which tries to reap the memory used by the OOM
461  * victim (if that is possible) to help the OOM killer to move on.
462  */
463 static struct task_struct *oom_reaper_th;
464 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
465 static struct task_struct *oom_reaper_list;
466 static DEFINE_SPINLOCK(oom_reaper_lock);
467 
468 static bool __oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
469 {
470 	struct mmu_gather tlb;
471 	struct vm_area_struct *vma;
472 	bool ret = true;
473 
474 	/*
475 	 * We have to make sure to not race with the victim exit path
476 	 * and cause premature new oom victim selection:
477 	 * __oom_reap_task_mm		exit_mm
478 	 *   mmget_not_zero
479 	 *				  mmput
480 	 *				    atomic_dec_and_test
481 	 *				  exit_oom_victim
482 	 *				[...]
483 	 *				out_of_memory
484 	 *				  select_bad_process
485 	 *				    # no TIF_MEMDIE task selects new victim
486 	 *  unmap_page_range # frees some memory
487 	 */
488 	mutex_lock(&oom_lock);
489 
490 	if (!down_read_trylock(&mm->mmap_sem)) {
491 		ret = false;
492 		goto unlock_oom;
493 	}
494 
495 	/*
496 	 * increase mm_users only after we know we will reap something so
497 	 * that the mmput_async is called only when we have reaped something
498 	 * and delayed __mmput doesn't matter that much
499 	 */
500 	if (!mmget_not_zero(mm)) {
501 		up_read(&mm->mmap_sem);
502 		goto unlock_oom;
503 	}
504 
505 	/*
506 	 * Tell all users of get_user/copy_from_user etc... that the content
507 	 * is no longer stable. No barriers really needed because unmapping
508 	 * should imply barriers already and the reader would hit a page fault
509 	 * if it stumbled over a reaped memory.
510 	 */
511 	set_bit(MMF_UNSTABLE, &mm->flags);
512 
513 	tlb_gather_mmu(&tlb, mm, 0, -1);
514 	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
515 		if (!can_madv_dontneed_vma(vma))
516 			continue;
517 
518 		/*
519 		 * Only anonymous pages have a good chance to be dropped
520 		 * without additional steps which we cannot afford as we
521 		 * are OOM already.
522 		 *
523 		 * We do not even care about fs backed pages because all
524 		 * which are reclaimable have already been reclaimed and
525 		 * we do not want to block exit_mmap by keeping mm ref
526 		 * count elevated without a good reason.
527 		 */
528 		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED))
529 			unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
530 					 NULL);
531 	}
532 	tlb_finish_mmu(&tlb, 0, -1);
533 	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
534 			task_pid_nr(tsk), tsk->comm,
535 			K(get_mm_counter(mm, MM_ANONPAGES)),
536 			K(get_mm_counter(mm, MM_FILEPAGES)),
537 			K(get_mm_counter(mm, MM_SHMEMPAGES)));
538 	up_read(&mm->mmap_sem);
539 
540 	/*
541 	 * Drop our reference but make sure the mmput slow path is called from a
542 	 * different context because we shouldn't risk we get stuck there and
543 	 * put the oom_reaper out of the way.
544 	 */
545 	mmput_async(mm);
546 unlock_oom:
547 	mutex_unlock(&oom_lock);
548 	return ret;
549 }
550 
551 #define MAX_OOM_REAP_RETRIES 10
552 static void oom_reap_task(struct task_struct *tsk)
553 {
554 	int attempts = 0;
555 	struct mm_struct *mm = tsk->signal->oom_mm;
556 
557 	/* Retry the down_read_trylock(mmap_sem) a few times */
558 	while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task_mm(tsk, mm))
559 		schedule_timeout_idle(HZ/10);
560 
561 	if (attempts <= MAX_OOM_REAP_RETRIES)
562 		goto done;
563 
564 
565 	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
566 		task_pid_nr(tsk), tsk->comm);
567 	debug_show_all_locks();
568 
569 done:
570 	tsk->oom_reaper_list = NULL;
571 
572 	/*
573 	 * Hide this mm from OOM killer because it has been either reaped or
574 	 * somebody can't call up_write(mmap_sem).
575 	 */
576 	set_bit(MMF_OOM_SKIP, &mm->flags);
577 
578 	/* Drop a reference taken by wake_oom_reaper */
579 	put_task_struct(tsk);
580 }
581 
582 static int oom_reaper(void *unused)
583 {
584 	while (true) {
585 		struct task_struct *tsk = NULL;
586 
587 		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
588 		spin_lock(&oom_reaper_lock);
589 		if (oom_reaper_list != NULL) {
590 			tsk = oom_reaper_list;
591 			oom_reaper_list = tsk->oom_reaper_list;
592 		}
593 		spin_unlock(&oom_reaper_lock);
594 
595 		if (tsk)
596 			oom_reap_task(tsk);
597 	}
598 
599 	return 0;
600 }
601 
602 static void wake_oom_reaper(struct task_struct *tsk)
603 {
604 	if (!oom_reaper_th)
605 		return;
606 
607 	/* tsk is already queued? */
608 	if (tsk == oom_reaper_list || tsk->oom_reaper_list)
609 		return;
610 
611 	get_task_struct(tsk);
612 
613 	spin_lock(&oom_reaper_lock);
614 	tsk->oom_reaper_list = oom_reaper_list;
615 	oom_reaper_list = tsk;
616 	spin_unlock(&oom_reaper_lock);
617 	wake_up(&oom_reaper_wait);
618 }
619 
620 static int __init oom_init(void)
621 {
622 	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
623 	if (IS_ERR(oom_reaper_th)) {
624 		pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
625 				PTR_ERR(oom_reaper_th));
626 		oom_reaper_th = NULL;
627 	}
628 	return 0;
629 }
630 subsys_initcall(oom_init)
631 #else
632 static inline void wake_oom_reaper(struct task_struct *tsk)
633 {
634 }
635 #endif /* CONFIG_MMU */
636 
637 /**
638  * mark_oom_victim - mark the given task as OOM victim
639  * @tsk: task to mark
640  *
641  * Has to be called with oom_lock held and never after
642  * oom has been disabled already.
643  *
644  * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
645  * under task_lock or operate on the current).
646  */
647 static void mark_oom_victim(struct task_struct *tsk)
648 {
649 	struct mm_struct *mm = tsk->mm;
650 
651 	WARN_ON(oom_killer_disabled);
652 	/* OOM killer might race with memcg OOM */
653 	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
654 		return;
655 
656 	/* oom_mm is bound to the signal struct life time. */
657 	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
658 		mmgrab(tsk->signal->oom_mm);
659 
660 	/*
661 	 * Make sure that the task is woken up from uninterruptible sleep
662 	 * if it is frozen because OOM killer wouldn't be able to free
663 	 * any memory and livelock. freezing_slow_path will tell the freezer
664 	 * that TIF_MEMDIE tasks should be ignored.
665 	 */
666 	__thaw_task(tsk);
667 	atomic_inc(&oom_victims);
668 }
669 
670 /**
671  * exit_oom_victim - note the exit of an OOM victim
672  */
673 void exit_oom_victim(void)
674 {
675 	clear_thread_flag(TIF_MEMDIE);
676 
677 	if (!atomic_dec_return(&oom_victims))
678 		wake_up_all(&oom_victims_wait);
679 }
680 
681 /**
682  * oom_killer_enable - enable OOM killer
683  */
684 void oom_killer_enable(void)
685 {
686 	oom_killer_disabled = false;
687 }
688 
689 /**
690  * oom_killer_disable - disable OOM killer
691  * @timeout: maximum timeout to wait for oom victims in jiffies
692  *
693  * Forces all page allocations to fail rather than trigger OOM killer.
694  * Will block and wait until all OOM victims are killed or the given
695  * timeout expires.
696  *
697  * The function cannot be called when there are runnable user tasks because
698  * the userspace would see unexpected allocation failures as a result. Any
699  * new usage of this function should be consulted with MM people.
700  *
701  * Returns true if successful and false if the OOM killer cannot be
702  * disabled.
703  */
704 bool oom_killer_disable(signed long timeout)
705 {
706 	signed long ret;
707 
708 	/*
709 	 * Make sure to not race with an ongoing OOM killer. Check that the
710 	 * current is not killed (possibly due to sharing the victim's memory).
711 	 */
712 	if (mutex_lock_killable(&oom_lock))
713 		return false;
714 	oom_killer_disabled = true;
715 	mutex_unlock(&oom_lock);
716 
717 	ret = wait_event_interruptible_timeout(oom_victims_wait,
718 			!atomic_read(&oom_victims), timeout);
719 	if (ret <= 0) {
720 		oom_killer_enable();
721 		return false;
722 	}
723 
724 	return true;
725 }
726 
727 static inline bool __task_will_free_mem(struct task_struct *task)
728 {
729 	struct signal_struct *sig = task->signal;
730 
731 	/*
732 	 * A coredumping process may sleep for an extended period in exit_mm(),
733 	 * so the oom killer cannot assume that the process will promptly exit
734 	 * and release memory.
735 	 */
736 	if (sig->flags & SIGNAL_GROUP_COREDUMP)
737 		return false;
738 
739 	if (sig->flags & SIGNAL_GROUP_EXIT)
740 		return true;
741 
742 	if (thread_group_empty(task) && (task->flags & PF_EXITING))
743 		return true;
744 
745 	return false;
746 }
747 
748 /*
749  * Checks whether the given task is dying or exiting and likely to
750  * release its address space. This means that all threads and processes
751  * sharing the same mm have to be killed or exiting.
752  * Caller has to make sure that task->mm is stable (hold task_lock or
753  * it operates on the current).
754  */
755 static bool task_will_free_mem(struct task_struct *task)
756 {
757 	struct mm_struct *mm = task->mm;
758 	struct task_struct *p;
759 	bool ret = true;
760 
761 	/*
762 	 * Skip tasks without mm because it might have passed its exit_mm and
763 	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
764 	 * on that for now. We can consider find_lock_task_mm in future.
765 	 */
766 	if (!mm)
767 		return false;
768 
769 	if (!__task_will_free_mem(task))
770 		return false;
771 
772 	/*
773 	 * This task has already been drained by the oom reaper so there are
774 	 * only small chances it will free some more
775 	 */
776 	if (test_bit(MMF_OOM_SKIP, &mm->flags))
777 		return false;
778 
779 	if (atomic_read(&mm->mm_users) <= 1)
780 		return true;
781 
782 	/*
783 	 * Make sure that all tasks which share the mm with the given tasks
784 	 * are dying as well to make sure that a) nobody pins its mm and
785 	 * b) the task is also reapable by the oom reaper.
786 	 */
787 	rcu_read_lock();
788 	for_each_process(p) {
789 		if (!process_shares_mm(p, mm))
790 			continue;
791 		if (same_thread_group(task, p))
792 			continue;
793 		ret = __task_will_free_mem(p);
794 		if (!ret)
795 			break;
796 	}
797 	rcu_read_unlock();
798 
799 	return ret;
800 }
801 
802 static void oom_kill_process(struct oom_control *oc, const char *message)
803 {
804 	struct task_struct *p = oc->chosen;
805 	unsigned int points = oc->chosen_points;
806 	struct task_struct *victim = p;
807 	struct task_struct *child;
808 	struct task_struct *t;
809 	struct mm_struct *mm;
810 	unsigned int victim_points = 0;
811 	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
812 					      DEFAULT_RATELIMIT_BURST);
813 	bool can_oom_reap = true;
814 
815 	/*
816 	 * If the task is already exiting, don't alarm the sysadmin or kill
817 	 * its children or threads, just set TIF_MEMDIE so it can die quickly
818 	 */
819 	task_lock(p);
820 	if (task_will_free_mem(p)) {
821 		mark_oom_victim(p);
822 		wake_oom_reaper(p);
823 		task_unlock(p);
824 		put_task_struct(p);
825 		return;
826 	}
827 	task_unlock(p);
828 
829 	if (__ratelimit(&oom_rs))
830 		dump_header(oc, p);
831 
832 	pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
833 		message, task_pid_nr(p), p->comm, points);
834 
835 	/*
836 	 * If any of p's children has a different mm and is eligible for kill,
837 	 * the one with the highest oom_badness() score is sacrificed for its
838 	 * parent.  This attempts to lose the minimal amount of work done while
839 	 * still freeing memory.
840 	 */
841 	read_lock(&tasklist_lock);
842 	for_each_thread(p, t) {
843 		list_for_each_entry(child, &t->children, sibling) {
844 			unsigned int child_points;
845 
846 			if (process_shares_mm(child, p->mm))
847 				continue;
848 			/*
849 			 * oom_badness() returns 0 if the thread is unkillable
850 			 */
851 			child_points = oom_badness(child,
852 				oc->memcg, oc->nodemask, oc->totalpages);
853 			if (child_points > victim_points) {
854 				put_task_struct(victim);
855 				victim = child;
856 				victim_points = child_points;
857 				get_task_struct(victim);
858 			}
859 		}
860 	}
861 	read_unlock(&tasklist_lock);
862 
863 	p = find_lock_task_mm(victim);
864 	if (!p) {
865 		put_task_struct(victim);
866 		return;
867 	} else if (victim != p) {
868 		get_task_struct(p);
869 		put_task_struct(victim);
870 		victim = p;
871 	}
872 
873 	/* Get a reference to safely compare mm after task_unlock(victim) */
874 	mm = victim->mm;
875 	mmgrab(mm);
876 	/*
877 	 * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
878 	 * the OOM victim from depleting the memory reserves from the user
879 	 * space under its control.
880 	 */
881 	do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
882 	mark_oom_victim(victim);
883 	pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
884 		task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
885 		K(get_mm_counter(victim->mm, MM_ANONPAGES)),
886 		K(get_mm_counter(victim->mm, MM_FILEPAGES)),
887 		K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
888 	task_unlock(victim);
889 
890 	/*
891 	 * Kill all user processes sharing victim->mm in other thread groups, if
892 	 * any.  They don't get access to memory reserves, though, to avoid
893 	 * depletion of all memory.  This prevents mm->mmap_sem livelock when an
894 	 * oom killed thread cannot exit because it requires the semaphore and
895 	 * its contended by another thread trying to allocate memory itself.
896 	 * That thread will now get access to memory reserves since it has a
897 	 * pending fatal signal.
898 	 */
899 	rcu_read_lock();
900 	for_each_process(p) {
901 		if (!process_shares_mm(p, mm))
902 			continue;
903 		if (same_thread_group(p, victim))
904 			continue;
905 		if (is_global_init(p)) {
906 			can_oom_reap = false;
907 			set_bit(MMF_OOM_SKIP, &mm->flags);
908 			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
909 					task_pid_nr(victim), victim->comm,
910 					task_pid_nr(p), p->comm);
911 			continue;
912 		}
913 		/*
914 		 * No use_mm() user needs to read from the userspace so we are
915 		 * ok to reap it.
916 		 */
917 		if (unlikely(p->flags & PF_KTHREAD))
918 			continue;
919 		do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
920 	}
921 	rcu_read_unlock();
922 
923 	if (can_oom_reap)
924 		wake_oom_reaper(victim);
925 
926 	mmdrop(mm);
927 	put_task_struct(victim);
928 }
929 #undef K
930 
931 /*
932  * Determines whether the kernel must panic because of the panic_on_oom sysctl.
933  */
934 static void check_panic_on_oom(struct oom_control *oc,
935 			       enum oom_constraint constraint)
936 {
937 	if (likely(!sysctl_panic_on_oom))
938 		return;
939 	if (sysctl_panic_on_oom != 2) {
940 		/*
941 		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
942 		 * does not panic for cpuset, mempolicy, or memcg allocation
943 		 * failures.
944 		 */
945 		if (constraint != CONSTRAINT_NONE)
946 			return;
947 	}
948 	/* Do not panic for oom kills triggered by sysrq */
949 	if (is_sysrq_oom(oc))
950 		return;
951 	dump_header(oc, NULL);
952 	panic("Out of memory: %s panic_on_oom is enabled\n",
953 		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
954 }
955 
956 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
957 
958 int register_oom_notifier(struct notifier_block *nb)
959 {
960 	return blocking_notifier_chain_register(&oom_notify_list, nb);
961 }
962 EXPORT_SYMBOL_GPL(register_oom_notifier);
963 
964 int unregister_oom_notifier(struct notifier_block *nb)
965 {
966 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
967 }
968 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
969 
970 /**
971  * out_of_memory - kill the "best" process when we run out of memory
972  * @oc: pointer to struct oom_control
973  *
974  * If we run out of memory, we have the choice between either
975  * killing a random task (bad), letting the system crash (worse)
976  * OR try to be smart about which process to kill. Note that we
977  * don't have to be perfect here, we just have to be good.
978  */
979 bool out_of_memory(struct oom_control *oc)
980 {
981 	unsigned long freed = 0;
982 	enum oom_constraint constraint = CONSTRAINT_NONE;
983 
984 	if (oom_killer_disabled)
985 		return false;
986 
987 	if (!is_memcg_oom(oc)) {
988 		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
989 		if (freed > 0)
990 			/* Got some memory back in the last second. */
991 			return true;
992 	}
993 
994 	/*
995 	 * If current has a pending SIGKILL or is exiting, then automatically
996 	 * select it.  The goal is to allow it to allocate so that it may
997 	 * quickly exit and free its memory.
998 	 */
999 	if (task_will_free_mem(current)) {
1000 		mark_oom_victim(current);
1001 		wake_oom_reaper(current);
1002 		return true;
1003 	}
1004 
1005 	/*
1006 	 * The OOM killer does not compensate for IO-less reclaim.
1007 	 * pagefault_out_of_memory lost its gfp context so we have to
1008 	 * make sure exclude 0 mask - all other users should have at least
1009 	 * ___GFP_DIRECT_RECLAIM to get here.
1010 	 */
1011 	if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS))
1012 		return true;
1013 
1014 	/*
1015 	 * Check if there were limitations on the allocation (only relevant for
1016 	 * NUMA and memcg) that may require different handling.
1017 	 */
1018 	constraint = constrained_alloc(oc);
1019 	if (constraint != CONSTRAINT_MEMORY_POLICY)
1020 		oc->nodemask = NULL;
1021 	check_panic_on_oom(oc, constraint);
1022 
1023 	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1024 	    current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
1025 	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1026 		get_task_struct(current);
1027 		oc->chosen = current;
1028 		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1029 		return true;
1030 	}
1031 
1032 	select_bad_process(oc);
1033 	/* Found nothing?!?! Either we hang forever, or we panic. */
1034 	if (!oc->chosen && !is_sysrq_oom(oc) && !is_memcg_oom(oc)) {
1035 		dump_header(oc, NULL);
1036 		panic("Out of memory and no killable processes...\n");
1037 	}
1038 	if (oc->chosen && oc->chosen != (void *)-1UL) {
1039 		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1040 				 "Memory cgroup out of memory");
1041 		/*
1042 		 * Give the killed process a good chance to exit before trying
1043 		 * to allocate memory again.
1044 		 */
1045 		schedule_timeout_killable(1);
1046 	}
1047 	return !!oc->chosen;
1048 }
1049 
1050 /*
1051  * The pagefault handler calls here because it is out of memory, so kill a
1052  * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1053  * killing is already in progress so do nothing.
1054  */
1055 void pagefault_out_of_memory(void)
1056 {
1057 	struct oom_control oc = {
1058 		.zonelist = NULL,
1059 		.nodemask = NULL,
1060 		.memcg = NULL,
1061 		.gfp_mask = 0,
1062 		.order = 0,
1063 	};
1064 
1065 	if (mem_cgroup_oom_synchronize(true))
1066 		return;
1067 
1068 	if (!mutex_trylock(&oom_lock))
1069 		return;
1070 	out_of_memory(&oc);
1071 	mutex_unlock(&oom_lock);
1072 }
1073