xref: /openbmc/linux/mm/oom_kill.c (revision 0be3ff0c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/oom_kill.c
4  *
5  *  Copyright (C)  1998,2000  Rik van Riel
6  *	Thanks go out to Claus Fischer for some serious inspiration and
7  *	for goading me into coding this file...
8  *  Copyright (C)  2010  Google, Inc.
9  *	Rewritten by David Rientjes
10  *
11  *  The routines in this file are used to kill a process when
12  *  we're seriously out of memory. This gets called from __alloc_pages()
13  *  in mm/page_alloc.c when we really run out of memory.
14  *
15  *  Since we won't call these routines often (on a well-configured
16  *  machine) this file will double as a 'coding guide' and a signpost
17  *  for newbie kernel hackers. It features several pointers to major
18  *  kernel subsystems and hints as to where to find out what things do.
19  */
20 
21 #include <linux/oom.h>
22 #include <linux/mm.h>
23 #include <linux/err.h>
24 #include <linux/gfp.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/coredump.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/debug.h>
30 #include <linux/swap.h>
31 #include <linux/syscalls.h>
32 #include <linux/timex.h>
33 #include <linux/jiffies.h>
34 #include <linux/cpuset.h>
35 #include <linux/export.h>
36 #include <linux/notifier.h>
37 #include <linux/memcontrol.h>
38 #include <linux/mempolicy.h>
39 #include <linux/security.h>
40 #include <linux/ptrace.h>
41 #include <linux/freezer.h>
42 #include <linux/ftrace.h>
43 #include <linux/ratelimit.h>
44 #include <linux/kthread.h>
45 #include <linux/init.h>
46 #include <linux/mmu_notifier.h>
47 
48 #include <asm/tlb.h>
49 #include "internal.h"
50 #include "slab.h"
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/oom.h>
54 
55 int sysctl_panic_on_oom;
56 int sysctl_oom_kill_allocating_task;
57 int sysctl_oom_dump_tasks = 1;
58 
59 /*
60  * Serializes oom killer invocations (out_of_memory()) from all contexts to
61  * prevent from over eager oom killing (e.g. when the oom killer is invoked
62  * from different domains).
63  *
64  * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
65  * and mark_oom_victim
66  */
67 DEFINE_MUTEX(oom_lock);
68 /* Serializes oom_score_adj and oom_score_adj_min updates */
69 DEFINE_MUTEX(oom_adj_mutex);
70 
71 static inline bool is_memcg_oom(struct oom_control *oc)
72 {
73 	return oc->memcg != NULL;
74 }
75 
76 #ifdef CONFIG_NUMA
77 /**
78  * oom_cpuset_eligible() - check task eligibility for kill
79  * @start: task struct of which task to consider
80  * @oc: pointer to struct oom_control
81  *
82  * Task eligibility is determined by whether or not a candidate task, @tsk,
83  * shares the same mempolicy nodes as current if it is bound by such a policy
84  * and whether or not it has the same set of allowed cpuset nodes.
85  *
86  * This function is assuming oom-killer context and 'current' has triggered
87  * the oom-killer.
88  */
89 static bool oom_cpuset_eligible(struct task_struct *start,
90 				struct oom_control *oc)
91 {
92 	struct task_struct *tsk;
93 	bool ret = false;
94 	const nodemask_t *mask = oc->nodemask;
95 
96 	rcu_read_lock();
97 	for_each_thread(start, tsk) {
98 		if (mask) {
99 			/*
100 			 * If this is a mempolicy constrained oom, tsk's
101 			 * cpuset is irrelevant.  Only return true if its
102 			 * mempolicy intersects current, otherwise it may be
103 			 * needlessly killed.
104 			 */
105 			ret = mempolicy_in_oom_domain(tsk, mask);
106 		} else {
107 			/*
108 			 * This is not a mempolicy constrained oom, so only
109 			 * check the mems of tsk's cpuset.
110 			 */
111 			ret = cpuset_mems_allowed_intersects(current, tsk);
112 		}
113 		if (ret)
114 			break;
115 	}
116 	rcu_read_unlock();
117 
118 	return ret;
119 }
120 #else
121 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
122 {
123 	return true;
124 }
125 #endif /* CONFIG_NUMA */
126 
127 /*
128  * The process p may have detached its own ->mm while exiting or through
129  * kthread_use_mm(), but one or more of its subthreads may still have a valid
130  * pointer.  Return p, or any of its subthreads with a valid ->mm, with
131  * task_lock() held.
132  */
133 struct task_struct *find_lock_task_mm(struct task_struct *p)
134 {
135 	struct task_struct *t;
136 
137 	rcu_read_lock();
138 
139 	for_each_thread(p, t) {
140 		task_lock(t);
141 		if (likely(t->mm))
142 			goto found;
143 		task_unlock(t);
144 	}
145 	t = NULL;
146 found:
147 	rcu_read_unlock();
148 
149 	return t;
150 }
151 
152 /*
153  * order == -1 means the oom kill is required by sysrq, otherwise only
154  * for display purposes.
155  */
156 static inline bool is_sysrq_oom(struct oom_control *oc)
157 {
158 	return oc->order == -1;
159 }
160 
161 /* return true if the task is not adequate as candidate victim task. */
162 static bool oom_unkillable_task(struct task_struct *p)
163 {
164 	if (is_global_init(p))
165 		return true;
166 	if (p->flags & PF_KTHREAD)
167 		return true;
168 	return false;
169 }
170 
171 /*
172  * Check whether unreclaimable slab amount is greater than
173  * all user memory(LRU pages).
174  * dump_unreclaimable_slab() could help in the case that
175  * oom due to too much unreclaimable slab used by kernel.
176 */
177 static bool should_dump_unreclaim_slab(void)
178 {
179 	unsigned long nr_lru;
180 
181 	nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
182 		 global_node_page_state(NR_INACTIVE_ANON) +
183 		 global_node_page_state(NR_ACTIVE_FILE) +
184 		 global_node_page_state(NR_INACTIVE_FILE) +
185 		 global_node_page_state(NR_ISOLATED_ANON) +
186 		 global_node_page_state(NR_ISOLATED_FILE) +
187 		 global_node_page_state(NR_UNEVICTABLE);
188 
189 	return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
190 }
191 
192 /**
193  * oom_badness - heuristic function to determine which candidate task to kill
194  * @p: task struct of which task we should calculate
195  * @totalpages: total present RAM allowed for page allocation
196  *
197  * The heuristic for determining which task to kill is made to be as simple and
198  * predictable as possible.  The goal is to return the highest value for the
199  * task consuming the most memory to avoid subsequent oom failures.
200  */
201 long oom_badness(struct task_struct *p, unsigned long totalpages)
202 {
203 	long points;
204 	long adj;
205 
206 	if (oom_unkillable_task(p))
207 		return LONG_MIN;
208 
209 	p = find_lock_task_mm(p);
210 	if (!p)
211 		return LONG_MIN;
212 
213 	/*
214 	 * Do not even consider tasks which are explicitly marked oom
215 	 * unkillable or have been already oom reaped or the are in
216 	 * the middle of vfork
217 	 */
218 	adj = (long)p->signal->oom_score_adj;
219 	if (adj == OOM_SCORE_ADJ_MIN ||
220 			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
221 			in_vfork(p)) {
222 		task_unlock(p);
223 		return LONG_MIN;
224 	}
225 
226 	/*
227 	 * The baseline for the badness score is the proportion of RAM that each
228 	 * task's rss, pagetable and swap space use.
229 	 */
230 	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
231 		mm_pgtables_bytes(p->mm) / PAGE_SIZE;
232 	task_unlock(p);
233 
234 	/* Normalize to oom_score_adj units */
235 	adj *= totalpages / 1000;
236 	points += adj;
237 
238 	return points;
239 }
240 
241 static const char * const oom_constraint_text[] = {
242 	[CONSTRAINT_NONE] = "CONSTRAINT_NONE",
243 	[CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
244 	[CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
245 	[CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
246 };
247 
248 /*
249  * Determine the type of allocation constraint.
250  */
251 static enum oom_constraint constrained_alloc(struct oom_control *oc)
252 {
253 	struct zone *zone;
254 	struct zoneref *z;
255 	enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
256 	bool cpuset_limited = false;
257 	int nid;
258 
259 	if (is_memcg_oom(oc)) {
260 		oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
261 		return CONSTRAINT_MEMCG;
262 	}
263 
264 	/* Default to all available memory */
265 	oc->totalpages = totalram_pages() + total_swap_pages;
266 
267 	if (!IS_ENABLED(CONFIG_NUMA))
268 		return CONSTRAINT_NONE;
269 
270 	if (!oc->zonelist)
271 		return CONSTRAINT_NONE;
272 	/*
273 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
274 	 * to kill current.We have to random task kill in this case.
275 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
276 	 */
277 	if (oc->gfp_mask & __GFP_THISNODE)
278 		return CONSTRAINT_NONE;
279 
280 	/*
281 	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
282 	 * the page allocator means a mempolicy is in effect.  Cpuset policy
283 	 * is enforced in get_page_from_freelist().
284 	 */
285 	if (oc->nodemask &&
286 	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
287 		oc->totalpages = total_swap_pages;
288 		for_each_node_mask(nid, *oc->nodemask)
289 			oc->totalpages += node_present_pages(nid);
290 		return CONSTRAINT_MEMORY_POLICY;
291 	}
292 
293 	/* Check this allocation failure is caused by cpuset's wall function */
294 	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
295 			highest_zoneidx, oc->nodemask)
296 		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
297 			cpuset_limited = true;
298 
299 	if (cpuset_limited) {
300 		oc->totalpages = total_swap_pages;
301 		for_each_node_mask(nid, cpuset_current_mems_allowed)
302 			oc->totalpages += node_present_pages(nid);
303 		return CONSTRAINT_CPUSET;
304 	}
305 	return CONSTRAINT_NONE;
306 }
307 
308 static int oom_evaluate_task(struct task_struct *task, void *arg)
309 {
310 	struct oom_control *oc = arg;
311 	long points;
312 
313 	if (oom_unkillable_task(task))
314 		goto next;
315 
316 	/* p may not have freeable memory in nodemask */
317 	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
318 		goto next;
319 
320 	/*
321 	 * This task already has access to memory reserves and is being killed.
322 	 * Don't allow any other task to have access to the reserves unless
323 	 * the task has MMF_OOM_SKIP because chances that it would release
324 	 * any memory is quite low.
325 	 */
326 	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
327 		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
328 			goto next;
329 		goto abort;
330 	}
331 
332 	/*
333 	 * If task is allocating a lot of memory and has been marked to be
334 	 * killed first if it triggers an oom, then select it.
335 	 */
336 	if (oom_task_origin(task)) {
337 		points = LONG_MAX;
338 		goto select;
339 	}
340 
341 	points = oom_badness(task, oc->totalpages);
342 	if (points == LONG_MIN || points < oc->chosen_points)
343 		goto next;
344 
345 select:
346 	if (oc->chosen)
347 		put_task_struct(oc->chosen);
348 	get_task_struct(task);
349 	oc->chosen = task;
350 	oc->chosen_points = points;
351 next:
352 	return 0;
353 abort:
354 	if (oc->chosen)
355 		put_task_struct(oc->chosen);
356 	oc->chosen = (void *)-1UL;
357 	return 1;
358 }
359 
360 /*
361  * Simple selection loop. We choose the process with the highest number of
362  * 'points'. In case scan was aborted, oc->chosen is set to -1.
363  */
364 static void select_bad_process(struct oom_control *oc)
365 {
366 	oc->chosen_points = LONG_MIN;
367 
368 	if (is_memcg_oom(oc))
369 		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
370 	else {
371 		struct task_struct *p;
372 
373 		rcu_read_lock();
374 		for_each_process(p)
375 			if (oom_evaluate_task(p, oc))
376 				break;
377 		rcu_read_unlock();
378 	}
379 }
380 
381 static int dump_task(struct task_struct *p, void *arg)
382 {
383 	struct oom_control *oc = arg;
384 	struct task_struct *task;
385 
386 	if (oom_unkillable_task(p))
387 		return 0;
388 
389 	/* p may not have freeable memory in nodemask */
390 	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
391 		return 0;
392 
393 	task = find_lock_task_mm(p);
394 	if (!task) {
395 		/*
396 		 * All of p's threads have already detached their mm's. There's
397 		 * no need to report them; they can't be oom killed anyway.
398 		 */
399 		return 0;
400 	}
401 
402 	pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu         %5hd %s\n",
403 		task->pid, from_kuid(&init_user_ns, task_uid(task)),
404 		task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
405 		mm_pgtables_bytes(task->mm),
406 		get_mm_counter(task->mm, MM_SWAPENTS),
407 		task->signal->oom_score_adj, task->comm);
408 	task_unlock(task);
409 
410 	return 0;
411 }
412 
413 /**
414  * dump_tasks - dump current memory state of all system tasks
415  * @oc: pointer to struct oom_control
416  *
417  * Dumps the current memory state of all eligible tasks.  Tasks not in the same
418  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
419  * are not shown.
420  * State information includes task's pid, uid, tgid, vm size, rss,
421  * pgtables_bytes, swapents, oom_score_adj value, and name.
422  */
423 static void dump_tasks(struct oom_control *oc)
424 {
425 	pr_info("Tasks state (memory values in pages):\n");
426 	pr_info("[  pid  ]   uid  tgid total_vm      rss pgtables_bytes swapents oom_score_adj name\n");
427 
428 	if (is_memcg_oom(oc))
429 		mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
430 	else {
431 		struct task_struct *p;
432 
433 		rcu_read_lock();
434 		for_each_process(p)
435 			dump_task(p, oc);
436 		rcu_read_unlock();
437 	}
438 }
439 
440 static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
441 {
442 	/* one line summary of the oom killer context. */
443 	pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
444 			oom_constraint_text[oc->constraint],
445 			nodemask_pr_args(oc->nodemask));
446 	cpuset_print_current_mems_allowed();
447 	mem_cgroup_print_oom_context(oc->memcg, victim);
448 	pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
449 		from_kuid(&init_user_ns, task_uid(victim)));
450 }
451 
452 static void dump_header(struct oom_control *oc, struct task_struct *p)
453 {
454 	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
455 		current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
456 			current->signal->oom_score_adj);
457 	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
458 		pr_warn("COMPACTION is disabled!!!\n");
459 
460 	dump_stack();
461 	if (is_memcg_oom(oc))
462 		mem_cgroup_print_oom_meminfo(oc->memcg);
463 	else {
464 		show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
465 		if (should_dump_unreclaim_slab())
466 			dump_unreclaimable_slab();
467 	}
468 	if (sysctl_oom_dump_tasks)
469 		dump_tasks(oc);
470 	if (p)
471 		dump_oom_summary(oc, p);
472 }
473 
474 /*
475  * Number of OOM victims in flight
476  */
477 static atomic_t oom_victims = ATOMIC_INIT(0);
478 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
479 
480 static bool oom_killer_disabled __read_mostly;
481 
482 #define K(x) ((x) << (PAGE_SHIFT-10))
483 
484 /*
485  * task->mm can be NULL if the task is the exited group leader.  So to
486  * determine whether the task is using a particular mm, we examine all the
487  * task's threads: if one of those is using this mm then this task was also
488  * using it.
489  */
490 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
491 {
492 	struct task_struct *t;
493 
494 	for_each_thread(p, t) {
495 		struct mm_struct *t_mm = READ_ONCE(t->mm);
496 		if (t_mm)
497 			return t_mm == mm;
498 	}
499 	return false;
500 }
501 
502 #ifdef CONFIG_MMU
503 /*
504  * OOM Reaper kernel thread which tries to reap the memory used by the OOM
505  * victim (if that is possible) to help the OOM killer to move on.
506  */
507 static struct task_struct *oom_reaper_th;
508 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
509 static struct task_struct *oom_reaper_list;
510 static DEFINE_SPINLOCK(oom_reaper_lock);
511 
512 bool __oom_reap_task_mm(struct mm_struct *mm)
513 {
514 	struct vm_area_struct *vma;
515 	bool ret = true;
516 
517 	/*
518 	 * Tell all users of get_user/copy_from_user etc... that the content
519 	 * is no longer stable. No barriers really needed because unmapping
520 	 * should imply barriers already and the reader would hit a page fault
521 	 * if it stumbled over a reaped memory.
522 	 */
523 	set_bit(MMF_UNSTABLE, &mm->flags);
524 
525 	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
526 		if (vma->vm_flags & (VM_HUGETLB|VM_PFNMAP))
527 			continue;
528 
529 		/*
530 		 * Only anonymous pages have a good chance to be dropped
531 		 * without additional steps which we cannot afford as we
532 		 * are OOM already.
533 		 *
534 		 * We do not even care about fs backed pages because all
535 		 * which are reclaimable have already been reclaimed and
536 		 * we do not want to block exit_mmap by keeping mm ref
537 		 * count elevated without a good reason.
538 		 */
539 		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
540 			struct mmu_notifier_range range;
541 			struct mmu_gather tlb;
542 
543 			mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
544 						vma, mm, vma->vm_start,
545 						vma->vm_end);
546 			tlb_gather_mmu(&tlb, mm);
547 			if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
548 				tlb_finish_mmu(&tlb);
549 				ret = false;
550 				continue;
551 			}
552 			unmap_page_range(&tlb, vma, range.start, range.end, NULL);
553 			mmu_notifier_invalidate_range_end(&range);
554 			tlb_finish_mmu(&tlb);
555 		}
556 	}
557 
558 	return ret;
559 }
560 
561 /*
562  * Reaps the address space of the give task.
563  *
564  * Returns true on success and false if none or part of the address space
565  * has been reclaimed and the caller should retry later.
566  */
567 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
568 {
569 	bool ret = true;
570 
571 	if (!mmap_read_trylock(mm)) {
572 		trace_skip_task_reaping(tsk->pid);
573 		return false;
574 	}
575 
576 	/*
577 	 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
578 	 * work on the mm anymore. The check for MMF_OOM_SKIP must run
579 	 * under mmap_lock for reading because it serializes against the
580 	 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
581 	 */
582 	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
583 		trace_skip_task_reaping(tsk->pid);
584 		goto out_unlock;
585 	}
586 
587 	trace_start_task_reaping(tsk->pid);
588 
589 	/* failed to reap part of the address space. Try again later */
590 	ret = __oom_reap_task_mm(mm);
591 	if (!ret)
592 		goto out_finish;
593 
594 	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
595 			task_pid_nr(tsk), tsk->comm,
596 			K(get_mm_counter(mm, MM_ANONPAGES)),
597 			K(get_mm_counter(mm, MM_FILEPAGES)),
598 			K(get_mm_counter(mm, MM_SHMEMPAGES)));
599 out_finish:
600 	trace_finish_task_reaping(tsk->pid);
601 out_unlock:
602 	mmap_read_unlock(mm);
603 
604 	return ret;
605 }
606 
607 #define MAX_OOM_REAP_RETRIES 10
608 static void oom_reap_task(struct task_struct *tsk)
609 {
610 	int attempts = 0;
611 	struct mm_struct *mm = tsk->signal->oom_mm;
612 
613 	/* Retry the mmap_read_trylock(mm) a few times */
614 	while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
615 		schedule_timeout_idle(HZ/10);
616 
617 	if (attempts <= MAX_OOM_REAP_RETRIES ||
618 	    test_bit(MMF_OOM_SKIP, &mm->flags))
619 		goto done;
620 
621 	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
622 		task_pid_nr(tsk), tsk->comm);
623 	sched_show_task(tsk);
624 	debug_show_all_locks();
625 
626 done:
627 	tsk->oom_reaper_list = NULL;
628 
629 	/*
630 	 * Hide this mm from OOM killer because it has been either reaped or
631 	 * somebody can't call mmap_write_unlock(mm).
632 	 */
633 	set_bit(MMF_OOM_SKIP, &mm->flags);
634 
635 	/* Drop a reference taken by queue_oom_reaper */
636 	put_task_struct(tsk);
637 }
638 
639 static int oom_reaper(void *unused)
640 {
641 	set_freezable();
642 
643 	while (true) {
644 		struct task_struct *tsk = NULL;
645 
646 		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
647 		spin_lock_irq(&oom_reaper_lock);
648 		if (oom_reaper_list != NULL) {
649 			tsk = oom_reaper_list;
650 			oom_reaper_list = tsk->oom_reaper_list;
651 		}
652 		spin_unlock_irq(&oom_reaper_lock);
653 
654 		if (tsk)
655 			oom_reap_task(tsk);
656 	}
657 
658 	return 0;
659 }
660 
661 static void wake_oom_reaper(struct timer_list *timer)
662 {
663 	struct task_struct *tsk = container_of(timer, struct task_struct,
664 			oom_reaper_timer);
665 	struct mm_struct *mm = tsk->signal->oom_mm;
666 	unsigned long flags;
667 
668 	/* The victim managed to terminate on its own - see exit_mmap */
669 	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
670 		put_task_struct(tsk);
671 		return;
672 	}
673 
674 	spin_lock_irqsave(&oom_reaper_lock, flags);
675 	tsk->oom_reaper_list = oom_reaper_list;
676 	oom_reaper_list = tsk;
677 	spin_unlock_irqrestore(&oom_reaper_lock, flags);
678 	trace_wake_reaper(tsk->pid);
679 	wake_up(&oom_reaper_wait);
680 }
681 
682 /*
683  * Give the OOM victim time to exit naturally before invoking the oom_reaping.
684  * The timers timeout is arbitrary... the longer it is, the longer the worst
685  * case scenario for the OOM can take. If it is too small, the oom_reaper can
686  * get in the way and release resources needed by the process exit path.
687  * e.g. The futex robust list can sit in Anon|Private memory that gets reaped
688  * before the exit path is able to wake the futex waiters.
689  */
690 #define OOM_REAPER_DELAY (2*HZ)
691 static void queue_oom_reaper(struct task_struct *tsk)
692 {
693 	/* mm is already queued? */
694 	if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
695 		return;
696 
697 	get_task_struct(tsk);
698 	timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0);
699 	tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY;
700 	add_timer(&tsk->oom_reaper_timer);
701 }
702 
703 static int __init oom_init(void)
704 {
705 	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
706 	return 0;
707 }
708 subsys_initcall(oom_init)
709 #else
710 static inline void queue_oom_reaper(struct task_struct *tsk)
711 {
712 }
713 #endif /* CONFIG_MMU */
714 
715 /**
716  * mark_oom_victim - mark the given task as OOM victim
717  * @tsk: task to mark
718  *
719  * Has to be called with oom_lock held and never after
720  * oom has been disabled already.
721  *
722  * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
723  * under task_lock or operate on the current).
724  */
725 static void mark_oom_victim(struct task_struct *tsk)
726 {
727 	struct mm_struct *mm = tsk->mm;
728 
729 	WARN_ON(oom_killer_disabled);
730 	/* OOM killer might race with memcg OOM */
731 	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
732 		return;
733 
734 	/* oom_mm is bound to the signal struct life time. */
735 	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
736 		mmgrab(tsk->signal->oom_mm);
737 		set_bit(MMF_OOM_VICTIM, &mm->flags);
738 	}
739 
740 	/*
741 	 * Make sure that the task is woken up from uninterruptible sleep
742 	 * if it is frozen because OOM killer wouldn't be able to free
743 	 * any memory and livelock. freezing_slow_path will tell the freezer
744 	 * that TIF_MEMDIE tasks should be ignored.
745 	 */
746 	__thaw_task(tsk);
747 	atomic_inc(&oom_victims);
748 	trace_mark_victim(tsk->pid);
749 }
750 
751 /**
752  * exit_oom_victim - note the exit of an OOM victim
753  */
754 void exit_oom_victim(void)
755 {
756 	clear_thread_flag(TIF_MEMDIE);
757 
758 	if (!atomic_dec_return(&oom_victims))
759 		wake_up_all(&oom_victims_wait);
760 }
761 
762 /**
763  * oom_killer_enable - enable OOM killer
764  */
765 void oom_killer_enable(void)
766 {
767 	oom_killer_disabled = false;
768 	pr_info("OOM killer enabled.\n");
769 }
770 
771 /**
772  * oom_killer_disable - disable OOM killer
773  * @timeout: maximum timeout to wait for oom victims in jiffies
774  *
775  * Forces all page allocations to fail rather than trigger OOM killer.
776  * Will block and wait until all OOM victims are killed or the given
777  * timeout expires.
778  *
779  * The function cannot be called when there are runnable user tasks because
780  * the userspace would see unexpected allocation failures as a result. Any
781  * new usage of this function should be consulted with MM people.
782  *
783  * Returns true if successful and false if the OOM killer cannot be
784  * disabled.
785  */
786 bool oom_killer_disable(signed long timeout)
787 {
788 	signed long ret;
789 
790 	/*
791 	 * Make sure to not race with an ongoing OOM killer. Check that the
792 	 * current is not killed (possibly due to sharing the victim's memory).
793 	 */
794 	if (mutex_lock_killable(&oom_lock))
795 		return false;
796 	oom_killer_disabled = true;
797 	mutex_unlock(&oom_lock);
798 
799 	ret = wait_event_interruptible_timeout(oom_victims_wait,
800 			!atomic_read(&oom_victims), timeout);
801 	if (ret <= 0) {
802 		oom_killer_enable();
803 		return false;
804 	}
805 	pr_info("OOM killer disabled.\n");
806 
807 	return true;
808 }
809 
810 static inline bool __task_will_free_mem(struct task_struct *task)
811 {
812 	struct signal_struct *sig = task->signal;
813 
814 	/*
815 	 * A coredumping process may sleep for an extended period in
816 	 * coredump_task_exit(), so the oom killer cannot assume that
817 	 * the process will promptly exit and release memory.
818 	 */
819 	if (sig->core_state)
820 		return false;
821 
822 	if (sig->flags & SIGNAL_GROUP_EXIT)
823 		return true;
824 
825 	if (thread_group_empty(task) && (task->flags & PF_EXITING))
826 		return true;
827 
828 	return false;
829 }
830 
831 /*
832  * Checks whether the given task is dying or exiting and likely to
833  * release its address space. This means that all threads and processes
834  * sharing the same mm have to be killed or exiting.
835  * Caller has to make sure that task->mm is stable (hold task_lock or
836  * it operates on the current).
837  */
838 static bool task_will_free_mem(struct task_struct *task)
839 {
840 	struct mm_struct *mm = task->mm;
841 	struct task_struct *p;
842 	bool ret = true;
843 
844 	/*
845 	 * Skip tasks without mm because it might have passed its exit_mm and
846 	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
847 	 * on that for now. We can consider find_lock_task_mm in future.
848 	 */
849 	if (!mm)
850 		return false;
851 
852 	if (!__task_will_free_mem(task))
853 		return false;
854 
855 	/*
856 	 * This task has already been drained by the oom reaper so there are
857 	 * only small chances it will free some more
858 	 */
859 	if (test_bit(MMF_OOM_SKIP, &mm->flags))
860 		return false;
861 
862 	if (atomic_read(&mm->mm_users) <= 1)
863 		return true;
864 
865 	/*
866 	 * Make sure that all tasks which share the mm with the given tasks
867 	 * are dying as well to make sure that a) nobody pins its mm and
868 	 * b) the task is also reapable by the oom reaper.
869 	 */
870 	rcu_read_lock();
871 	for_each_process(p) {
872 		if (!process_shares_mm(p, mm))
873 			continue;
874 		if (same_thread_group(task, p))
875 			continue;
876 		ret = __task_will_free_mem(p);
877 		if (!ret)
878 			break;
879 	}
880 	rcu_read_unlock();
881 
882 	return ret;
883 }
884 
885 static void __oom_kill_process(struct task_struct *victim, const char *message)
886 {
887 	struct task_struct *p;
888 	struct mm_struct *mm;
889 	bool can_oom_reap = true;
890 
891 	p = find_lock_task_mm(victim);
892 	if (!p) {
893 		pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
894 			message, task_pid_nr(victim), victim->comm);
895 		put_task_struct(victim);
896 		return;
897 	} else if (victim != p) {
898 		get_task_struct(p);
899 		put_task_struct(victim);
900 		victim = p;
901 	}
902 
903 	/* Get a reference to safely compare mm after task_unlock(victim) */
904 	mm = victim->mm;
905 	mmgrab(mm);
906 
907 	/* Raise event before sending signal: task reaper must see this */
908 	count_vm_event(OOM_KILL);
909 	memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
910 
911 	/*
912 	 * We should send SIGKILL before granting access to memory reserves
913 	 * in order to prevent the OOM victim from depleting the memory
914 	 * reserves from the user space under its control.
915 	 */
916 	do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
917 	mark_oom_victim(victim);
918 	pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
919 		message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
920 		K(get_mm_counter(mm, MM_ANONPAGES)),
921 		K(get_mm_counter(mm, MM_FILEPAGES)),
922 		K(get_mm_counter(mm, MM_SHMEMPAGES)),
923 		from_kuid(&init_user_ns, task_uid(victim)),
924 		mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
925 	task_unlock(victim);
926 
927 	/*
928 	 * Kill all user processes sharing victim->mm in other thread groups, if
929 	 * any.  They don't get access to memory reserves, though, to avoid
930 	 * depletion of all memory.  This prevents mm->mmap_lock livelock when an
931 	 * oom killed thread cannot exit because it requires the semaphore and
932 	 * its contended by another thread trying to allocate memory itself.
933 	 * That thread will now get access to memory reserves since it has a
934 	 * pending fatal signal.
935 	 */
936 	rcu_read_lock();
937 	for_each_process(p) {
938 		if (!process_shares_mm(p, mm))
939 			continue;
940 		if (same_thread_group(p, victim))
941 			continue;
942 		if (is_global_init(p)) {
943 			can_oom_reap = false;
944 			set_bit(MMF_OOM_SKIP, &mm->flags);
945 			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
946 					task_pid_nr(victim), victim->comm,
947 					task_pid_nr(p), p->comm);
948 			continue;
949 		}
950 		/*
951 		 * No kthread_use_mm() user needs to read from the userspace so
952 		 * we are ok to reap it.
953 		 */
954 		if (unlikely(p->flags & PF_KTHREAD))
955 			continue;
956 		do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
957 	}
958 	rcu_read_unlock();
959 
960 	if (can_oom_reap)
961 		queue_oom_reaper(victim);
962 
963 	mmdrop(mm);
964 	put_task_struct(victim);
965 }
966 #undef K
967 
968 /*
969  * Kill provided task unless it's secured by setting
970  * oom_score_adj to OOM_SCORE_ADJ_MIN.
971  */
972 static int oom_kill_memcg_member(struct task_struct *task, void *message)
973 {
974 	if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
975 	    !is_global_init(task)) {
976 		get_task_struct(task);
977 		__oom_kill_process(task, message);
978 	}
979 	return 0;
980 }
981 
982 static void oom_kill_process(struct oom_control *oc, const char *message)
983 {
984 	struct task_struct *victim = oc->chosen;
985 	struct mem_cgroup *oom_group;
986 	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
987 					      DEFAULT_RATELIMIT_BURST);
988 
989 	/*
990 	 * If the task is already exiting, don't alarm the sysadmin or kill
991 	 * its children or threads, just give it access to memory reserves
992 	 * so it can die quickly
993 	 */
994 	task_lock(victim);
995 	if (task_will_free_mem(victim)) {
996 		mark_oom_victim(victim);
997 		queue_oom_reaper(victim);
998 		task_unlock(victim);
999 		put_task_struct(victim);
1000 		return;
1001 	}
1002 	task_unlock(victim);
1003 
1004 	if (__ratelimit(&oom_rs))
1005 		dump_header(oc, victim);
1006 
1007 	/*
1008 	 * Do we need to kill the entire memory cgroup?
1009 	 * Or even one of the ancestor memory cgroups?
1010 	 * Check this out before killing the victim task.
1011 	 */
1012 	oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
1013 
1014 	__oom_kill_process(victim, message);
1015 
1016 	/*
1017 	 * If necessary, kill all tasks in the selected memory cgroup.
1018 	 */
1019 	if (oom_group) {
1020 		memcg_memory_event(oom_group, MEMCG_OOM_GROUP_KILL);
1021 		mem_cgroup_print_oom_group(oom_group);
1022 		mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
1023 				      (void *)message);
1024 		mem_cgroup_put(oom_group);
1025 	}
1026 }
1027 
1028 /*
1029  * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1030  */
1031 static void check_panic_on_oom(struct oom_control *oc)
1032 {
1033 	if (likely(!sysctl_panic_on_oom))
1034 		return;
1035 	if (sysctl_panic_on_oom != 2) {
1036 		/*
1037 		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1038 		 * does not panic for cpuset, mempolicy, or memcg allocation
1039 		 * failures.
1040 		 */
1041 		if (oc->constraint != CONSTRAINT_NONE)
1042 			return;
1043 	}
1044 	/* Do not panic for oom kills triggered by sysrq */
1045 	if (is_sysrq_oom(oc))
1046 		return;
1047 	dump_header(oc, NULL);
1048 	panic("Out of memory: %s panic_on_oom is enabled\n",
1049 		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1050 }
1051 
1052 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1053 
1054 int register_oom_notifier(struct notifier_block *nb)
1055 {
1056 	return blocking_notifier_chain_register(&oom_notify_list, nb);
1057 }
1058 EXPORT_SYMBOL_GPL(register_oom_notifier);
1059 
1060 int unregister_oom_notifier(struct notifier_block *nb)
1061 {
1062 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1063 }
1064 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1065 
1066 /**
1067  * out_of_memory - kill the "best" process when we run out of memory
1068  * @oc: pointer to struct oom_control
1069  *
1070  * If we run out of memory, we have the choice between either
1071  * killing a random task (bad), letting the system crash (worse)
1072  * OR try to be smart about which process to kill. Note that we
1073  * don't have to be perfect here, we just have to be good.
1074  */
1075 bool out_of_memory(struct oom_control *oc)
1076 {
1077 	unsigned long freed = 0;
1078 
1079 	if (oom_killer_disabled)
1080 		return false;
1081 
1082 	if (!is_memcg_oom(oc)) {
1083 		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1084 		if (freed > 0 && !is_sysrq_oom(oc))
1085 			/* Got some memory back in the last second. */
1086 			return true;
1087 	}
1088 
1089 	/*
1090 	 * If current has a pending SIGKILL or is exiting, then automatically
1091 	 * select it.  The goal is to allow it to allocate so that it may
1092 	 * quickly exit and free its memory.
1093 	 */
1094 	if (task_will_free_mem(current)) {
1095 		mark_oom_victim(current);
1096 		queue_oom_reaper(current);
1097 		return true;
1098 	}
1099 
1100 	/*
1101 	 * The OOM killer does not compensate for IO-less reclaim.
1102 	 * pagefault_out_of_memory lost its gfp context so we have to
1103 	 * make sure exclude 0 mask - all other users should have at least
1104 	 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to
1105 	 * invoke the OOM killer even if it is a GFP_NOFS allocation.
1106 	 */
1107 	if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1108 		return true;
1109 
1110 	/*
1111 	 * Check if there were limitations on the allocation (only relevant for
1112 	 * NUMA and memcg) that may require different handling.
1113 	 */
1114 	oc->constraint = constrained_alloc(oc);
1115 	if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1116 		oc->nodemask = NULL;
1117 	check_panic_on_oom(oc);
1118 
1119 	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1120 	    current->mm && !oom_unkillable_task(current) &&
1121 	    oom_cpuset_eligible(current, oc) &&
1122 	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1123 		get_task_struct(current);
1124 		oc->chosen = current;
1125 		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1126 		return true;
1127 	}
1128 
1129 	select_bad_process(oc);
1130 	/* Found nothing?!?! */
1131 	if (!oc->chosen) {
1132 		dump_header(oc, NULL);
1133 		pr_warn("Out of memory and no killable processes...\n");
1134 		/*
1135 		 * If we got here due to an actual allocation at the
1136 		 * system level, we cannot survive this and will enter
1137 		 * an endless loop in the allocator. Bail out now.
1138 		 */
1139 		if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1140 			panic("System is deadlocked on memory\n");
1141 	}
1142 	if (oc->chosen && oc->chosen != (void *)-1UL)
1143 		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1144 				 "Memory cgroup out of memory");
1145 	return !!oc->chosen;
1146 }
1147 
1148 /*
1149  * The pagefault handler calls here because some allocation has failed. We have
1150  * to take care of the memcg OOM here because this is the only safe context without
1151  * any locks held but let the oom killer triggered from the allocation context care
1152  * about the global OOM.
1153  */
1154 void pagefault_out_of_memory(void)
1155 {
1156 	static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL,
1157 				      DEFAULT_RATELIMIT_BURST);
1158 
1159 	if (mem_cgroup_oom_synchronize(true))
1160 		return;
1161 
1162 	if (fatal_signal_pending(current))
1163 		return;
1164 
1165 	if (__ratelimit(&pfoom_rs))
1166 		pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
1167 }
1168 
1169 SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags)
1170 {
1171 #ifdef CONFIG_MMU
1172 	struct mm_struct *mm = NULL;
1173 	struct task_struct *task;
1174 	struct task_struct *p;
1175 	unsigned int f_flags;
1176 	bool reap = false;
1177 	long ret = 0;
1178 
1179 	if (flags)
1180 		return -EINVAL;
1181 
1182 	task = pidfd_get_task(pidfd, &f_flags);
1183 	if (IS_ERR(task))
1184 		return PTR_ERR(task);
1185 
1186 	/*
1187 	 * Make sure to choose a thread which still has a reference to mm
1188 	 * during the group exit
1189 	 */
1190 	p = find_lock_task_mm(task);
1191 	if (!p) {
1192 		ret = -ESRCH;
1193 		goto put_task;
1194 	}
1195 
1196 	mm = p->mm;
1197 	mmgrab(mm);
1198 
1199 	if (task_will_free_mem(p))
1200 		reap = true;
1201 	else {
1202 		/* Error only if the work has not been done already */
1203 		if (!test_bit(MMF_OOM_SKIP, &mm->flags))
1204 			ret = -EINVAL;
1205 	}
1206 	task_unlock(p);
1207 
1208 	if (!reap)
1209 		goto drop_mm;
1210 
1211 	if (mmap_read_lock_killable(mm)) {
1212 		ret = -EINTR;
1213 		goto drop_mm;
1214 	}
1215 	/*
1216 	 * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure
1217 	 * possible change in exit_mmap is seen
1218 	 */
1219 	if (!test_bit(MMF_OOM_SKIP, &mm->flags) && !__oom_reap_task_mm(mm))
1220 		ret = -EAGAIN;
1221 	mmap_read_unlock(mm);
1222 
1223 drop_mm:
1224 	mmdrop(mm);
1225 put_task:
1226 	put_task_struct(task);
1227 	return ret;
1228 #else
1229 	return -ENOSYS;
1230 #endif /* CONFIG_MMU */
1231 }
1232