xref: /openbmc/linux/mm/oom_kill.c (revision 0984d159)
1 /*
2  *  linux/mm/oom_kill.c
3  *
4  *  Copyright (C)  1998,2000  Rik van Riel
5  *	Thanks go out to Claus Fischer for some serious inspiration and
6  *	for goading me into coding this file...
7  *  Copyright (C)  2010  Google, Inc.
8  *	Rewritten by David Rientjes
9  *
10  *  The routines in this file are used to kill a process when
11  *  we're seriously out of memory. This gets called from __alloc_pages()
12  *  in mm/page_alloc.c when we really run out of memory.
13  *
14  *  Since we won't call these routines often (on a well-configured
15  *  machine) this file will double as a 'coding guide' and a signpost
16  *  for newbie kernel hackers. It features several pointers to major
17  *  kernel subsystems and hints as to where to find out what things do.
18  */
19 
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/swap.h>
26 #include <linux/timex.h>
27 #include <linux/jiffies.h>
28 #include <linux/cpuset.h>
29 #include <linux/export.h>
30 #include <linux/notifier.h>
31 #include <linux/memcontrol.h>
32 #include <linux/mempolicy.h>
33 #include <linux/security.h>
34 #include <linux/ptrace.h>
35 #include <linux/freezer.h>
36 #include <linux/ftrace.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kthread.h>
39 #include <linux/init.h>
40 
41 #include <asm/tlb.h>
42 #include "internal.h"
43 
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/oom.h>
46 
47 int sysctl_panic_on_oom;
48 int sysctl_oom_kill_allocating_task;
49 int sysctl_oom_dump_tasks = 1;
50 
51 DEFINE_MUTEX(oom_lock);
52 
53 #ifdef CONFIG_NUMA
54 /**
55  * has_intersects_mems_allowed() - check task eligiblity for kill
56  * @start: task struct of which task to consider
57  * @mask: nodemask passed to page allocator for mempolicy ooms
58  *
59  * Task eligibility is determined by whether or not a candidate task, @tsk,
60  * shares the same mempolicy nodes as current if it is bound by such a policy
61  * and whether or not it has the same set of allowed cpuset nodes.
62  */
63 static bool has_intersects_mems_allowed(struct task_struct *start,
64 					const nodemask_t *mask)
65 {
66 	struct task_struct *tsk;
67 	bool ret = false;
68 
69 	rcu_read_lock();
70 	for_each_thread(start, tsk) {
71 		if (mask) {
72 			/*
73 			 * If this is a mempolicy constrained oom, tsk's
74 			 * cpuset is irrelevant.  Only return true if its
75 			 * mempolicy intersects current, otherwise it may be
76 			 * needlessly killed.
77 			 */
78 			ret = mempolicy_nodemask_intersects(tsk, mask);
79 		} else {
80 			/*
81 			 * This is not a mempolicy constrained oom, so only
82 			 * check the mems of tsk's cpuset.
83 			 */
84 			ret = cpuset_mems_allowed_intersects(current, tsk);
85 		}
86 		if (ret)
87 			break;
88 	}
89 	rcu_read_unlock();
90 
91 	return ret;
92 }
93 #else
94 static bool has_intersects_mems_allowed(struct task_struct *tsk,
95 					const nodemask_t *mask)
96 {
97 	return true;
98 }
99 #endif /* CONFIG_NUMA */
100 
101 /*
102  * The process p may have detached its own ->mm while exiting or through
103  * use_mm(), but one or more of its subthreads may still have a valid
104  * pointer.  Return p, or any of its subthreads with a valid ->mm, with
105  * task_lock() held.
106  */
107 struct task_struct *find_lock_task_mm(struct task_struct *p)
108 {
109 	struct task_struct *t;
110 
111 	rcu_read_lock();
112 
113 	for_each_thread(p, t) {
114 		task_lock(t);
115 		if (likely(t->mm))
116 			goto found;
117 		task_unlock(t);
118 	}
119 	t = NULL;
120 found:
121 	rcu_read_unlock();
122 
123 	return t;
124 }
125 
126 /*
127  * order == -1 means the oom kill is required by sysrq, otherwise only
128  * for display purposes.
129  */
130 static inline bool is_sysrq_oom(struct oom_control *oc)
131 {
132 	return oc->order == -1;
133 }
134 
135 /* return true if the task is not adequate as candidate victim task. */
136 static bool oom_unkillable_task(struct task_struct *p,
137 		struct mem_cgroup *memcg, const nodemask_t *nodemask)
138 {
139 	if (is_global_init(p))
140 		return true;
141 	if (p->flags & PF_KTHREAD)
142 		return true;
143 
144 	/* When mem_cgroup_out_of_memory() and p is not member of the group */
145 	if (memcg && !task_in_mem_cgroup(p, memcg))
146 		return true;
147 
148 	/* p may not have freeable memory in nodemask */
149 	if (!has_intersects_mems_allowed(p, nodemask))
150 		return true;
151 
152 	return false;
153 }
154 
155 /**
156  * oom_badness - heuristic function to determine which candidate task to kill
157  * @p: task struct of which task we should calculate
158  * @totalpages: total present RAM allowed for page allocation
159  *
160  * The heuristic for determining which task to kill is made to be as simple and
161  * predictable as possible.  The goal is to return the highest value for the
162  * task consuming the most memory to avoid subsequent oom failures.
163  */
164 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
165 			  const nodemask_t *nodemask, unsigned long totalpages)
166 {
167 	long points;
168 	long adj;
169 
170 	if (oom_unkillable_task(p, memcg, nodemask))
171 		return 0;
172 
173 	p = find_lock_task_mm(p);
174 	if (!p)
175 		return 0;
176 
177 	/*
178 	 * Do not even consider tasks which are explicitly marked oom
179 	 * unkillable or have been already oom reaped.
180 	 */
181 	adj = (long)p->signal->oom_score_adj;
182 	if (adj == OOM_SCORE_ADJ_MIN ||
183 			test_bit(MMF_OOM_REAPED, &p->mm->flags)) {
184 		task_unlock(p);
185 		return 0;
186 	}
187 
188 	/*
189 	 * The baseline for the badness score is the proportion of RAM that each
190 	 * task's rss, pagetable and swap space use.
191 	 */
192 	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
193 		atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
194 	task_unlock(p);
195 
196 	/*
197 	 * Root processes get 3% bonus, just like the __vm_enough_memory()
198 	 * implementation used by LSMs.
199 	 */
200 	if (has_capability_noaudit(p, CAP_SYS_ADMIN))
201 		points -= (points * 3) / 100;
202 
203 	/* Normalize to oom_score_adj units */
204 	adj *= totalpages / 1000;
205 	points += adj;
206 
207 	/*
208 	 * Never return 0 for an eligible task regardless of the root bonus and
209 	 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
210 	 */
211 	return points > 0 ? points : 1;
212 }
213 
214 /*
215  * Determine the type of allocation constraint.
216  */
217 #ifdef CONFIG_NUMA
218 static enum oom_constraint constrained_alloc(struct oom_control *oc,
219 					     unsigned long *totalpages)
220 {
221 	struct zone *zone;
222 	struct zoneref *z;
223 	enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
224 	bool cpuset_limited = false;
225 	int nid;
226 
227 	/* Default to all available memory */
228 	*totalpages = totalram_pages + total_swap_pages;
229 
230 	if (!oc->zonelist)
231 		return CONSTRAINT_NONE;
232 	/*
233 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
234 	 * to kill current.We have to random task kill in this case.
235 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
236 	 */
237 	if (oc->gfp_mask & __GFP_THISNODE)
238 		return CONSTRAINT_NONE;
239 
240 	/*
241 	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
242 	 * the page allocator means a mempolicy is in effect.  Cpuset policy
243 	 * is enforced in get_page_from_freelist().
244 	 */
245 	if (oc->nodemask &&
246 	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
247 		*totalpages = total_swap_pages;
248 		for_each_node_mask(nid, *oc->nodemask)
249 			*totalpages += node_spanned_pages(nid);
250 		return CONSTRAINT_MEMORY_POLICY;
251 	}
252 
253 	/* Check this allocation failure is caused by cpuset's wall function */
254 	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
255 			high_zoneidx, oc->nodemask)
256 		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
257 			cpuset_limited = true;
258 
259 	if (cpuset_limited) {
260 		*totalpages = total_swap_pages;
261 		for_each_node_mask(nid, cpuset_current_mems_allowed)
262 			*totalpages += node_spanned_pages(nid);
263 		return CONSTRAINT_CPUSET;
264 	}
265 	return CONSTRAINT_NONE;
266 }
267 #else
268 static enum oom_constraint constrained_alloc(struct oom_control *oc,
269 					     unsigned long *totalpages)
270 {
271 	*totalpages = totalram_pages + total_swap_pages;
272 	return CONSTRAINT_NONE;
273 }
274 #endif
275 
276 enum oom_scan_t oom_scan_process_thread(struct oom_control *oc,
277 			struct task_struct *task, unsigned long totalpages)
278 {
279 	if (oom_unkillable_task(task, NULL, oc->nodemask))
280 		return OOM_SCAN_CONTINUE;
281 
282 	/*
283 	 * This task already has access to memory reserves and is being killed.
284 	 * Don't allow any other task to have access to the reserves.
285 	 */
286 	if (!is_sysrq_oom(oc) && atomic_read(&task->signal->oom_victims))
287 		return OOM_SCAN_ABORT;
288 
289 	/*
290 	 * If task is allocating a lot of memory and has been marked to be
291 	 * killed first if it triggers an oom, then select it.
292 	 */
293 	if (oom_task_origin(task))
294 		return OOM_SCAN_SELECT;
295 
296 	return OOM_SCAN_OK;
297 }
298 
299 /*
300  * Simple selection loop. We chose the process with the highest
301  * number of 'points'.  Returns -1 on scan abort.
302  */
303 static struct task_struct *select_bad_process(struct oom_control *oc,
304 		unsigned int *ppoints, unsigned long totalpages)
305 {
306 	struct task_struct *p;
307 	struct task_struct *chosen = NULL;
308 	unsigned long chosen_points = 0;
309 
310 	rcu_read_lock();
311 	for_each_process(p) {
312 		unsigned int points;
313 
314 		switch (oom_scan_process_thread(oc, p, totalpages)) {
315 		case OOM_SCAN_SELECT:
316 			chosen = p;
317 			chosen_points = ULONG_MAX;
318 			/* fall through */
319 		case OOM_SCAN_CONTINUE:
320 			continue;
321 		case OOM_SCAN_ABORT:
322 			rcu_read_unlock();
323 			return (struct task_struct *)(-1UL);
324 		case OOM_SCAN_OK:
325 			break;
326 		};
327 		points = oom_badness(p, NULL, oc->nodemask, totalpages);
328 		if (!points || points < chosen_points)
329 			continue;
330 
331 		chosen = p;
332 		chosen_points = points;
333 	}
334 	if (chosen)
335 		get_task_struct(chosen);
336 	rcu_read_unlock();
337 
338 	*ppoints = chosen_points * 1000 / totalpages;
339 	return chosen;
340 }
341 
342 /**
343  * dump_tasks - dump current memory state of all system tasks
344  * @memcg: current's memory controller, if constrained
345  * @nodemask: nodemask passed to page allocator for mempolicy ooms
346  *
347  * Dumps the current memory state of all eligible tasks.  Tasks not in the same
348  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
349  * are not shown.
350  * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
351  * swapents, oom_score_adj value, and name.
352  */
353 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
354 {
355 	struct task_struct *p;
356 	struct task_struct *task;
357 
358 	pr_info("[ pid ]   uid  tgid total_vm      rss nr_ptes nr_pmds swapents oom_score_adj name\n");
359 	rcu_read_lock();
360 	for_each_process(p) {
361 		if (oom_unkillable_task(p, memcg, nodemask))
362 			continue;
363 
364 		task = find_lock_task_mm(p);
365 		if (!task) {
366 			/*
367 			 * This is a kthread or all of p's threads have already
368 			 * detached their mm's.  There's no need to report
369 			 * them; they can't be oom killed anyway.
370 			 */
371 			continue;
372 		}
373 
374 		pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu         %5hd %s\n",
375 			task->pid, from_kuid(&init_user_ns, task_uid(task)),
376 			task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
377 			atomic_long_read(&task->mm->nr_ptes),
378 			mm_nr_pmds(task->mm),
379 			get_mm_counter(task->mm, MM_SWAPENTS),
380 			task->signal->oom_score_adj, task->comm);
381 		task_unlock(task);
382 	}
383 	rcu_read_unlock();
384 }
385 
386 static void dump_header(struct oom_control *oc, struct task_struct *p,
387 			struct mem_cgroup *memcg)
388 {
389 	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
390 		current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
391 		current->signal->oom_score_adj);
392 
393 	cpuset_print_current_mems_allowed();
394 	dump_stack();
395 	if (memcg)
396 		mem_cgroup_print_oom_info(memcg, p);
397 	else
398 		show_mem(SHOW_MEM_FILTER_NODES);
399 	if (sysctl_oom_dump_tasks)
400 		dump_tasks(memcg, oc->nodemask);
401 }
402 
403 /*
404  * Number of OOM victims in flight
405  */
406 static atomic_t oom_victims = ATOMIC_INIT(0);
407 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
408 
409 bool oom_killer_disabled __read_mostly;
410 
411 #define K(x) ((x) << (PAGE_SHIFT-10))
412 
413 /*
414  * task->mm can be NULL if the task is the exited group leader.  So to
415  * determine whether the task is using a particular mm, we examine all the
416  * task's threads: if one of those is using this mm then this task was also
417  * using it.
418  */
419 static bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
420 {
421 	struct task_struct *t;
422 
423 	for_each_thread(p, t) {
424 		struct mm_struct *t_mm = READ_ONCE(t->mm);
425 		if (t_mm)
426 			return t_mm == mm;
427 	}
428 	return false;
429 }
430 
431 
432 #ifdef CONFIG_MMU
433 /*
434  * OOM Reaper kernel thread which tries to reap the memory used by the OOM
435  * victim (if that is possible) to help the OOM killer to move on.
436  */
437 static struct task_struct *oom_reaper_th;
438 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
439 static struct task_struct *oom_reaper_list;
440 static DEFINE_SPINLOCK(oom_reaper_lock);
441 
442 static bool __oom_reap_task(struct task_struct *tsk)
443 {
444 	struct mmu_gather tlb;
445 	struct vm_area_struct *vma;
446 	struct mm_struct *mm = NULL;
447 	struct task_struct *p;
448 	struct zap_details details = {.check_swap_entries = true,
449 				      .ignore_dirty = true};
450 	bool ret = true;
451 
452 	/*
453 	 * We have to make sure to not race with the victim exit path
454 	 * and cause premature new oom victim selection:
455 	 * __oom_reap_task		exit_mm
456 	 *   atomic_inc_not_zero
457 	 *				  mmput
458 	 *				    atomic_dec_and_test
459 	 *				  exit_oom_victim
460 	 *				[...]
461 	 *				out_of_memory
462 	 *				  select_bad_process
463 	 *				    # no TIF_MEMDIE task selects new victim
464 	 *  unmap_page_range # frees some memory
465 	 */
466 	mutex_lock(&oom_lock);
467 
468 	/*
469 	 * Make sure we find the associated mm_struct even when the particular
470 	 * thread has already terminated and cleared its mm.
471 	 * We might have race with exit path so consider our work done if there
472 	 * is no mm.
473 	 */
474 	p = find_lock_task_mm(tsk);
475 	if (!p)
476 		goto unlock_oom;
477 	mm = p->mm;
478 	atomic_inc(&mm->mm_users);
479 	task_unlock(p);
480 
481 	if (!down_read_trylock(&mm->mmap_sem)) {
482 		ret = false;
483 		goto unlock_oom;
484 	}
485 
486 	tlb_gather_mmu(&tlb, mm, 0, -1);
487 	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
488 		if (is_vm_hugetlb_page(vma))
489 			continue;
490 
491 		/*
492 		 * mlocked VMAs require explicit munlocking before unmap.
493 		 * Let's keep it simple here and skip such VMAs.
494 		 */
495 		if (vma->vm_flags & VM_LOCKED)
496 			continue;
497 
498 		/*
499 		 * Only anonymous pages have a good chance to be dropped
500 		 * without additional steps which we cannot afford as we
501 		 * are OOM already.
502 		 *
503 		 * We do not even care about fs backed pages because all
504 		 * which are reclaimable have already been reclaimed and
505 		 * we do not want to block exit_mmap by keeping mm ref
506 		 * count elevated without a good reason.
507 		 */
508 		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED))
509 			unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
510 					 &details);
511 	}
512 	tlb_finish_mmu(&tlb, 0, -1);
513 	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
514 			task_pid_nr(tsk), tsk->comm,
515 			K(get_mm_counter(mm, MM_ANONPAGES)),
516 			K(get_mm_counter(mm, MM_FILEPAGES)),
517 			K(get_mm_counter(mm, MM_SHMEMPAGES)));
518 	up_read(&mm->mmap_sem);
519 
520 	/*
521 	 * This task can be safely ignored because we cannot do much more
522 	 * to release its memory.
523 	 */
524 	set_bit(MMF_OOM_REAPED, &mm->flags);
525 unlock_oom:
526 	mutex_unlock(&oom_lock);
527 	/*
528 	 * Drop our reference but make sure the mmput slow path is called from a
529 	 * different context because we shouldn't risk we get stuck there and
530 	 * put the oom_reaper out of the way.
531 	 */
532 	if (mm)
533 		mmput_async(mm);
534 	return ret;
535 }
536 
537 #define MAX_OOM_REAP_RETRIES 10
538 static void oom_reap_task(struct task_struct *tsk)
539 {
540 	int attempts = 0;
541 
542 	/* Retry the down_read_trylock(mmap_sem) a few times */
543 	while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task(tsk))
544 		schedule_timeout_idle(HZ/10);
545 
546 	if (attempts > MAX_OOM_REAP_RETRIES) {
547 		pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
548 				task_pid_nr(tsk), tsk->comm);
549 		debug_show_all_locks();
550 	}
551 
552 	/*
553 	 * Clear TIF_MEMDIE because the task shouldn't be sitting on a
554 	 * reasonably reclaimable memory anymore or it is not a good candidate
555 	 * for the oom victim right now because it cannot release its memory
556 	 * itself nor by the oom reaper.
557 	 */
558 	tsk->oom_reaper_list = NULL;
559 	exit_oom_victim(tsk);
560 
561 	/* Drop a reference taken by wake_oom_reaper */
562 	put_task_struct(tsk);
563 }
564 
565 static int oom_reaper(void *unused)
566 {
567 	set_freezable();
568 
569 	while (true) {
570 		struct task_struct *tsk = NULL;
571 
572 		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
573 		spin_lock(&oom_reaper_lock);
574 		if (oom_reaper_list != NULL) {
575 			tsk = oom_reaper_list;
576 			oom_reaper_list = tsk->oom_reaper_list;
577 		}
578 		spin_unlock(&oom_reaper_lock);
579 
580 		if (tsk)
581 			oom_reap_task(tsk);
582 	}
583 
584 	return 0;
585 }
586 
587 static void wake_oom_reaper(struct task_struct *tsk)
588 {
589 	if (!oom_reaper_th)
590 		return;
591 
592 	/* tsk is already queued? */
593 	if (tsk == oom_reaper_list || tsk->oom_reaper_list)
594 		return;
595 
596 	get_task_struct(tsk);
597 
598 	spin_lock(&oom_reaper_lock);
599 	tsk->oom_reaper_list = oom_reaper_list;
600 	oom_reaper_list = tsk;
601 	spin_unlock(&oom_reaper_lock);
602 	wake_up(&oom_reaper_wait);
603 }
604 
605 /* Check if we can reap the given task. This has to be called with stable
606  * tsk->mm
607  */
608 void try_oom_reaper(struct task_struct *tsk)
609 {
610 	struct mm_struct *mm = tsk->mm;
611 	struct task_struct *p;
612 
613 	if (!mm)
614 		return;
615 
616 	/*
617 	 * There might be other threads/processes which are either not
618 	 * dying or even not killable.
619 	 */
620 	if (atomic_read(&mm->mm_users) > 1) {
621 		rcu_read_lock();
622 		for_each_process(p) {
623 			if (!process_shares_mm(p, mm))
624 				continue;
625 			if (fatal_signal_pending(p))
626 				continue;
627 
628 			/*
629 			 * If the task is exiting make sure the whole thread group
630 			 * is exiting and cannot acces mm anymore.
631 			 */
632 			if (signal_group_exit(p->signal))
633 				continue;
634 
635 			/* Give up */
636 			rcu_read_unlock();
637 			return;
638 		}
639 		rcu_read_unlock();
640 	}
641 
642 	wake_oom_reaper(tsk);
643 }
644 
645 static int __init oom_init(void)
646 {
647 	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
648 	if (IS_ERR(oom_reaper_th)) {
649 		pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
650 				PTR_ERR(oom_reaper_th));
651 		oom_reaper_th = NULL;
652 	}
653 	return 0;
654 }
655 subsys_initcall(oom_init)
656 #else
657 static void wake_oom_reaper(struct task_struct *tsk)
658 {
659 }
660 #endif
661 
662 /**
663  * mark_oom_victim - mark the given task as OOM victim
664  * @tsk: task to mark
665  *
666  * Has to be called with oom_lock held and never after
667  * oom has been disabled already.
668  */
669 void mark_oom_victim(struct task_struct *tsk)
670 {
671 	WARN_ON(oom_killer_disabled);
672 	/* OOM killer might race with memcg OOM */
673 	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
674 		return;
675 	atomic_inc(&tsk->signal->oom_victims);
676 	/*
677 	 * Make sure that the task is woken up from uninterruptible sleep
678 	 * if it is frozen because OOM killer wouldn't be able to free
679 	 * any memory and livelock. freezing_slow_path will tell the freezer
680 	 * that TIF_MEMDIE tasks should be ignored.
681 	 */
682 	__thaw_task(tsk);
683 	atomic_inc(&oom_victims);
684 }
685 
686 /**
687  * exit_oom_victim - note the exit of an OOM victim
688  */
689 void exit_oom_victim(struct task_struct *tsk)
690 {
691 	if (!test_and_clear_tsk_thread_flag(tsk, TIF_MEMDIE))
692 		return;
693 	atomic_dec(&tsk->signal->oom_victims);
694 
695 	if (!atomic_dec_return(&oom_victims))
696 		wake_up_all(&oom_victims_wait);
697 }
698 
699 /**
700  * oom_killer_disable - disable OOM killer
701  *
702  * Forces all page allocations to fail rather than trigger OOM killer.
703  * Will block and wait until all OOM victims are killed.
704  *
705  * The function cannot be called when there are runnable user tasks because
706  * the userspace would see unexpected allocation failures as a result. Any
707  * new usage of this function should be consulted with MM people.
708  *
709  * Returns true if successful and false if the OOM killer cannot be
710  * disabled.
711  */
712 bool oom_killer_disable(void)
713 {
714 	/*
715 	 * Make sure to not race with an ongoing OOM killer. Check that the
716 	 * current is not killed (possibly due to sharing the victim's memory).
717 	 */
718 	if (mutex_lock_killable(&oom_lock))
719 		return false;
720 	oom_killer_disabled = true;
721 	mutex_unlock(&oom_lock);
722 
723 	wait_event(oom_victims_wait, !atomic_read(&oom_victims));
724 
725 	return true;
726 }
727 
728 /**
729  * oom_killer_enable - enable OOM killer
730  */
731 void oom_killer_enable(void)
732 {
733 	oom_killer_disabled = false;
734 }
735 
736 /*
737  * Must be called while holding a reference to p, which will be released upon
738  * returning.
739  */
740 void oom_kill_process(struct oom_control *oc, struct task_struct *p,
741 		      unsigned int points, unsigned long totalpages,
742 		      struct mem_cgroup *memcg, const char *message)
743 {
744 	struct task_struct *victim = p;
745 	struct task_struct *child;
746 	struct task_struct *t;
747 	struct mm_struct *mm;
748 	unsigned int victim_points = 0;
749 	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
750 					      DEFAULT_RATELIMIT_BURST);
751 	bool can_oom_reap = true;
752 
753 	/*
754 	 * If the task is already exiting, don't alarm the sysadmin or kill
755 	 * its children or threads, just set TIF_MEMDIE so it can die quickly
756 	 */
757 	task_lock(p);
758 	if (p->mm && task_will_free_mem(p)) {
759 		mark_oom_victim(p);
760 		try_oom_reaper(p);
761 		task_unlock(p);
762 		put_task_struct(p);
763 		return;
764 	}
765 	task_unlock(p);
766 
767 	if (__ratelimit(&oom_rs))
768 		dump_header(oc, p, memcg);
769 
770 	pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
771 		message, task_pid_nr(p), p->comm, points);
772 
773 	/*
774 	 * If any of p's children has a different mm and is eligible for kill,
775 	 * the one with the highest oom_badness() score is sacrificed for its
776 	 * parent.  This attempts to lose the minimal amount of work done while
777 	 * still freeing memory.
778 	 */
779 	read_lock(&tasklist_lock);
780 	for_each_thread(p, t) {
781 		list_for_each_entry(child, &t->children, sibling) {
782 			unsigned int child_points;
783 
784 			if (process_shares_mm(child, p->mm))
785 				continue;
786 			/*
787 			 * oom_badness() returns 0 if the thread is unkillable
788 			 */
789 			child_points = oom_badness(child, memcg, oc->nodemask,
790 								totalpages);
791 			if (child_points > victim_points) {
792 				put_task_struct(victim);
793 				victim = child;
794 				victim_points = child_points;
795 				get_task_struct(victim);
796 			}
797 		}
798 	}
799 	read_unlock(&tasklist_lock);
800 
801 	p = find_lock_task_mm(victim);
802 	if (!p) {
803 		put_task_struct(victim);
804 		return;
805 	} else if (victim != p) {
806 		get_task_struct(p);
807 		put_task_struct(victim);
808 		victim = p;
809 	}
810 
811 	/* Get a reference to safely compare mm after task_unlock(victim) */
812 	mm = victim->mm;
813 	atomic_inc(&mm->mm_count);
814 	/*
815 	 * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
816 	 * the OOM victim from depleting the memory reserves from the user
817 	 * space under its control.
818 	 */
819 	do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
820 	mark_oom_victim(victim);
821 	pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
822 		task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
823 		K(get_mm_counter(victim->mm, MM_ANONPAGES)),
824 		K(get_mm_counter(victim->mm, MM_FILEPAGES)),
825 		K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
826 	task_unlock(victim);
827 
828 	/*
829 	 * Kill all user processes sharing victim->mm in other thread groups, if
830 	 * any.  They don't get access to memory reserves, though, to avoid
831 	 * depletion of all memory.  This prevents mm->mmap_sem livelock when an
832 	 * oom killed thread cannot exit because it requires the semaphore and
833 	 * its contended by another thread trying to allocate memory itself.
834 	 * That thread will now get access to memory reserves since it has a
835 	 * pending fatal signal.
836 	 */
837 	rcu_read_lock();
838 	for_each_process(p) {
839 		if (!process_shares_mm(p, mm))
840 			continue;
841 		if (same_thread_group(p, victim))
842 			continue;
843 		if (unlikely(p->flags & PF_KTHREAD) || is_global_init(p) ||
844 		    p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
845 			/*
846 			 * We cannot use oom_reaper for the mm shared by this
847 			 * process because it wouldn't get killed and so the
848 			 * memory might be still used.
849 			 */
850 			can_oom_reap = false;
851 			continue;
852 		}
853 		do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
854 	}
855 	rcu_read_unlock();
856 
857 	if (can_oom_reap)
858 		wake_oom_reaper(victim);
859 
860 	mmdrop(mm);
861 	put_task_struct(victim);
862 }
863 #undef K
864 
865 /*
866  * Determines whether the kernel must panic because of the panic_on_oom sysctl.
867  */
868 void check_panic_on_oom(struct oom_control *oc, enum oom_constraint constraint,
869 			struct mem_cgroup *memcg)
870 {
871 	if (likely(!sysctl_panic_on_oom))
872 		return;
873 	if (sysctl_panic_on_oom != 2) {
874 		/*
875 		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
876 		 * does not panic for cpuset, mempolicy, or memcg allocation
877 		 * failures.
878 		 */
879 		if (constraint != CONSTRAINT_NONE)
880 			return;
881 	}
882 	/* Do not panic for oom kills triggered by sysrq */
883 	if (is_sysrq_oom(oc))
884 		return;
885 	dump_header(oc, NULL, memcg);
886 	panic("Out of memory: %s panic_on_oom is enabled\n",
887 		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
888 }
889 
890 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
891 
892 int register_oom_notifier(struct notifier_block *nb)
893 {
894 	return blocking_notifier_chain_register(&oom_notify_list, nb);
895 }
896 EXPORT_SYMBOL_GPL(register_oom_notifier);
897 
898 int unregister_oom_notifier(struct notifier_block *nb)
899 {
900 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
901 }
902 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
903 
904 /**
905  * out_of_memory - kill the "best" process when we run out of memory
906  * @oc: pointer to struct oom_control
907  *
908  * If we run out of memory, we have the choice between either
909  * killing a random task (bad), letting the system crash (worse)
910  * OR try to be smart about which process to kill. Note that we
911  * don't have to be perfect here, we just have to be good.
912  */
913 bool out_of_memory(struct oom_control *oc)
914 {
915 	struct task_struct *p;
916 	unsigned long totalpages;
917 	unsigned long freed = 0;
918 	unsigned int uninitialized_var(points);
919 	enum oom_constraint constraint = CONSTRAINT_NONE;
920 
921 	if (oom_killer_disabled)
922 		return false;
923 
924 	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
925 	if (freed > 0)
926 		/* Got some memory back in the last second. */
927 		return true;
928 
929 	/*
930 	 * If current has a pending SIGKILL or is exiting, then automatically
931 	 * select it.  The goal is to allow it to allocate so that it may
932 	 * quickly exit and free its memory.
933 	 *
934 	 * But don't select if current has already released its mm and cleared
935 	 * TIF_MEMDIE flag at exit_mm(), otherwise an OOM livelock may occur.
936 	 */
937 	if (current->mm &&
938 	    (fatal_signal_pending(current) || task_will_free_mem(current))) {
939 		mark_oom_victim(current);
940 		try_oom_reaper(current);
941 		return true;
942 	}
943 
944 	/*
945 	 * The OOM killer does not compensate for IO-less reclaim.
946 	 * pagefault_out_of_memory lost its gfp context so we have to
947 	 * make sure exclude 0 mask - all other users should have at least
948 	 * ___GFP_DIRECT_RECLAIM to get here.
949 	 */
950 	if (oc->gfp_mask && !(oc->gfp_mask & (__GFP_FS|__GFP_NOFAIL)))
951 		return true;
952 
953 	/*
954 	 * Check if there were limitations on the allocation (only relevant for
955 	 * NUMA) that may require different handling.
956 	 */
957 	constraint = constrained_alloc(oc, &totalpages);
958 	if (constraint != CONSTRAINT_MEMORY_POLICY)
959 		oc->nodemask = NULL;
960 	check_panic_on_oom(oc, constraint, NULL);
961 
962 	if (sysctl_oom_kill_allocating_task && current->mm &&
963 	    !oom_unkillable_task(current, NULL, oc->nodemask) &&
964 	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
965 		get_task_struct(current);
966 		oom_kill_process(oc, current, 0, totalpages, NULL,
967 				 "Out of memory (oom_kill_allocating_task)");
968 		return true;
969 	}
970 
971 	p = select_bad_process(oc, &points, totalpages);
972 	/* Found nothing?!?! Either we hang forever, or we panic. */
973 	if (!p && !is_sysrq_oom(oc)) {
974 		dump_header(oc, NULL, NULL);
975 		panic("Out of memory and no killable processes...\n");
976 	}
977 	if (p && p != (void *)-1UL) {
978 		oom_kill_process(oc, p, points, totalpages, NULL,
979 				 "Out of memory");
980 		/*
981 		 * Give the killed process a good chance to exit before trying
982 		 * to allocate memory again.
983 		 */
984 		schedule_timeout_killable(1);
985 	}
986 	return true;
987 }
988 
989 /*
990  * The pagefault handler calls here because it is out of memory, so kill a
991  * memory-hogging task.  If any populated zone has ZONE_OOM_LOCKED set, a
992  * parallel oom killing is already in progress so do nothing.
993  */
994 void pagefault_out_of_memory(void)
995 {
996 	struct oom_control oc = {
997 		.zonelist = NULL,
998 		.nodemask = NULL,
999 		.gfp_mask = 0,
1000 		.order = 0,
1001 	};
1002 
1003 	if (mem_cgroup_oom_synchronize(true))
1004 		return;
1005 
1006 	if (!mutex_trylock(&oom_lock))
1007 		return;
1008 
1009 	if (!out_of_memory(&oc)) {
1010 		/*
1011 		 * There shouldn't be any user tasks runnable while the
1012 		 * OOM killer is disabled, so the current task has to
1013 		 * be a racing OOM victim for which oom_killer_disable()
1014 		 * is waiting for.
1015 		 */
1016 		WARN_ON(test_thread_flag(TIF_MEMDIE));
1017 	}
1018 
1019 	mutex_unlock(&oom_lock);
1020 }
1021