1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/oom_kill.c
4 *
5 * Copyright (C) 1998,2000 Rik van Riel
6 * Thanks go out to Claus Fischer for some serious inspiration and
7 * for goading me into coding this file...
8 * Copyright (C) 2010 Google, Inc.
9 * Rewritten by David Rientjes
10 *
11 * The routines in this file are used to kill a process when
12 * we're seriously out of memory. This gets called from __alloc_pages()
13 * in mm/page_alloc.c when we really run out of memory.
14 *
15 * Since we won't call these routines often (on a well-configured
16 * machine) this file will double as a 'coding guide' and a signpost
17 * for newbie kernel hackers. It features several pointers to major
18 * kernel subsystems and hints as to where to find out what things do.
19 */
20
21 #include <linux/oom.h>
22 #include <linux/mm.h>
23 #include <linux/err.h>
24 #include <linux/gfp.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/coredump.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/debug.h>
30 #include <linux/swap.h>
31 #include <linux/syscalls.h>
32 #include <linux/timex.h>
33 #include <linux/jiffies.h>
34 #include <linux/cpuset.h>
35 #include <linux/export.h>
36 #include <linux/notifier.h>
37 #include <linux/memcontrol.h>
38 #include <linux/mempolicy.h>
39 #include <linux/security.h>
40 #include <linux/ptrace.h>
41 #include <linux/freezer.h>
42 #include <linux/ftrace.h>
43 #include <linux/ratelimit.h>
44 #include <linux/kthread.h>
45 #include <linux/init.h>
46 #include <linux/mmu_notifier.h>
47
48 #include <asm/tlb.h>
49 #include "internal.h"
50 #include "slab.h"
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/oom.h>
54
55 static int sysctl_panic_on_oom;
56 static int sysctl_oom_kill_allocating_task;
57 static int sysctl_oom_dump_tasks = 1;
58
59 /*
60 * Serializes oom killer invocations (out_of_memory()) from all contexts to
61 * prevent from over eager oom killing (e.g. when the oom killer is invoked
62 * from different domains).
63 *
64 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
65 * and mark_oom_victim
66 */
67 DEFINE_MUTEX(oom_lock);
68 /* Serializes oom_score_adj and oom_score_adj_min updates */
69 DEFINE_MUTEX(oom_adj_mutex);
70
is_memcg_oom(struct oom_control * oc)71 static inline bool is_memcg_oom(struct oom_control *oc)
72 {
73 return oc->memcg != NULL;
74 }
75
76 #ifdef CONFIG_NUMA
77 /**
78 * oom_cpuset_eligible() - check task eligibility for kill
79 * @start: task struct of which task to consider
80 * @oc: pointer to struct oom_control
81 *
82 * Task eligibility is determined by whether or not a candidate task, @tsk,
83 * shares the same mempolicy nodes as current if it is bound by such a policy
84 * and whether or not it has the same set of allowed cpuset nodes.
85 *
86 * This function is assuming oom-killer context and 'current' has triggered
87 * the oom-killer.
88 */
oom_cpuset_eligible(struct task_struct * start,struct oom_control * oc)89 static bool oom_cpuset_eligible(struct task_struct *start,
90 struct oom_control *oc)
91 {
92 struct task_struct *tsk;
93 bool ret = false;
94 const nodemask_t *mask = oc->nodemask;
95
96 rcu_read_lock();
97 for_each_thread(start, tsk) {
98 if (mask) {
99 /*
100 * If this is a mempolicy constrained oom, tsk's
101 * cpuset is irrelevant. Only return true if its
102 * mempolicy intersects current, otherwise it may be
103 * needlessly killed.
104 */
105 ret = mempolicy_in_oom_domain(tsk, mask);
106 } else {
107 /*
108 * This is not a mempolicy constrained oom, so only
109 * check the mems of tsk's cpuset.
110 */
111 ret = cpuset_mems_allowed_intersects(current, tsk);
112 }
113 if (ret)
114 break;
115 }
116 rcu_read_unlock();
117
118 return ret;
119 }
120 #else
oom_cpuset_eligible(struct task_struct * tsk,struct oom_control * oc)121 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
122 {
123 return true;
124 }
125 #endif /* CONFIG_NUMA */
126
127 /*
128 * The process p may have detached its own ->mm while exiting or through
129 * kthread_use_mm(), but one or more of its subthreads may still have a valid
130 * pointer. Return p, or any of its subthreads with a valid ->mm, with
131 * task_lock() held.
132 */
find_lock_task_mm(struct task_struct * p)133 struct task_struct *find_lock_task_mm(struct task_struct *p)
134 {
135 struct task_struct *t;
136
137 rcu_read_lock();
138
139 for_each_thread(p, t) {
140 task_lock(t);
141 if (likely(t->mm))
142 goto found;
143 task_unlock(t);
144 }
145 t = NULL;
146 found:
147 rcu_read_unlock();
148
149 return t;
150 }
151
152 /*
153 * order == -1 means the oom kill is required by sysrq, otherwise only
154 * for display purposes.
155 */
is_sysrq_oom(struct oom_control * oc)156 static inline bool is_sysrq_oom(struct oom_control *oc)
157 {
158 return oc->order == -1;
159 }
160
161 /* return true if the task is not adequate as candidate victim task. */
oom_unkillable_task(struct task_struct * p)162 static bool oom_unkillable_task(struct task_struct *p)
163 {
164 if (is_global_init(p))
165 return true;
166 if (p->flags & PF_KTHREAD)
167 return true;
168 return false;
169 }
170
171 /*
172 * Check whether unreclaimable slab amount is greater than
173 * all user memory(LRU pages).
174 * dump_unreclaimable_slab() could help in the case that
175 * oom due to too much unreclaimable slab used by kernel.
176 */
should_dump_unreclaim_slab(void)177 static bool should_dump_unreclaim_slab(void)
178 {
179 unsigned long nr_lru;
180
181 nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
182 global_node_page_state(NR_INACTIVE_ANON) +
183 global_node_page_state(NR_ACTIVE_FILE) +
184 global_node_page_state(NR_INACTIVE_FILE) +
185 global_node_page_state(NR_ISOLATED_ANON) +
186 global_node_page_state(NR_ISOLATED_FILE) +
187 global_node_page_state(NR_UNEVICTABLE);
188
189 return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
190 }
191
192 /**
193 * oom_badness - heuristic function to determine which candidate task to kill
194 * @p: task struct of which task we should calculate
195 * @totalpages: total present RAM allowed for page allocation
196 *
197 * The heuristic for determining which task to kill is made to be as simple and
198 * predictable as possible. The goal is to return the highest value for the
199 * task consuming the most memory to avoid subsequent oom failures.
200 */
oom_badness(struct task_struct * p,unsigned long totalpages)201 long oom_badness(struct task_struct *p, unsigned long totalpages)
202 {
203 long points;
204 long adj;
205
206 if (oom_unkillable_task(p))
207 return LONG_MIN;
208
209 p = find_lock_task_mm(p);
210 if (!p)
211 return LONG_MIN;
212
213 /*
214 * Do not even consider tasks which are explicitly marked oom
215 * unkillable or have been already oom reaped or the are in
216 * the middle of vfork
217 */
218 adj = (long)p->signal->oom_score_adj;
219 if (adj == OOM_SCORE_ADJ_MIN ||
220 test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
221 in_vfork(p)) {
222 task_unlock(p);
223 return LONG_MIN;
224 }
225
226 /*
227 * The baseline for the badness score is the proportion of RAM that each
228 * task's rss, pagetable and swap space use.
229 */
230 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
231 mm_pgtables_bytes(p->mm) / PAGE_SIZE;
232 task_unlock(p);
233
234 /* Normalize to oom_score_adj units */
235 adj *= totalpages / 1000;
236 points += adj;
237
238 return points;
239 }
240
241 static const char * const oom_constraint_text[] = {
242 [CONSTRAINT_NONE] = "CONSTRAINT_NONE",
243 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
244 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
245 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
246 };
247
248 /*
249 * Determine the type of allocation constraint.
250 */
constrained_alloc(struct oom_control * oc)251 static enum oom_constraint constrained_alloc(struct oom_control *oc)
252 {
253 struct zone *zone;
254 struct zoneref *z;
255 enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
256 bool cpuset_limited = false;
257 int nid;
258
259 if (is_memcg_oom(oc)) {
260 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
261 return CONSTRAINT_MEMCG;
262 }
263
264 /* Default to all available memory */
265 oc->totalpages = totalram_pages() + total_swap_pages;
266
267 if (!IS_ENABLED(CONFIG_NUMA))
268 return CONSTRAINT_NONE;
269
270 if (!oc->zonelist)
271 return CONSTRAINT_NONE;
272 /*
273 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
274 * to kill current.We have to random task kill in this case.
275 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
276 */
277 if (oc->gfp_mask & __GFP_THISNODE)
278 return CONSTRAINT_NONE;
279
280 /*
281 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
282 * the page allocator means a mempolicy is in effect. Cpuset policy
283 * is enforced in get_page_from_freelist().
284 */
285 if (oc->nodemask &&
286 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
287 oc->totalpages = total_swap_pages;
288 for_each_node_mask(nid, *oc->nodemask)
289 oc->totalpages += node_present_pages(nid);
290 return CONSTRAINT_MEMORY_POLICY;
291 }
292
293 /* Check this allocation failure is caused by cpuset's wall function */
294 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
295 highest_zoneidx, oc->nodemask)
296 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
297 cpuset_limited = true;
298
299 if (cpuset_limited) {
300 oc->totalpages = total_swap_pages;
301 for_each_node_mask(nid, cpuset_current_mems_allowed)
302 oc->totalpages += node_present_pages(nid);
303 return CONSTRAINT_CPUSET;
304 }
305 return CONSTRAINT_NONE;
306 }
307
oom_evaluate_task(struct task_struct * task,void * arg)308 static int oom_evaluate_task(struct task_struct *task, void *arg)
309 {
310 struct oom_control *oc = arg;
311 long points;
312
313 if (oom_unkillable_task(task))
314 goto next;
315
316 /* p may not have freeable memory in nodemask */
317 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
318 goto next;
319
320 /*
321 * This task already has access to memory reserves and is being killed.
322 * Don't allow any other task to have access to the reserves unless
323 * the task has MMF_OOM_SKIP because chances that it would release
324 * any memory is quite low.
325 */
326 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
327 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
328 goto next;
329 goto abort;
330 }
331
332 /*
333 * If task is allocating a lot of memory and has been marked to be
334 * killed first if it triggers an oom, then select it.
335 */
336 if (oom_task_origin(task)) {
337 points = LONG_MAX;
338 goto select;
339 }
340
341 points = oom_badness(task, oc->totalpages);
342 if (points == LONG_MIN || points < oc->chosen_points)
343 goto next;
344
345 select:
346 if (oc->chosen)
347 put_task_struct(oc->chosen);
348 get_task_struct(task);
349 oc->chosen = task;
350 oc->chosen_points = points;
351 next:
352 return 0;
353 abort:
354 if (oc->chosen)
355 put_task_struct(oc->chosen);
356 oc->chosen = (void *)-1UL;
357 return 1;
358 }
359
360 /*
361 * Simple selection loop. We choose the process with the highest number of
362 * 'points'. In case scan was aborted, oc->chosen is set to -1.
363 */
select_bad_process(struct oom_control * oc)364 static void select_bad_process(struct oom_control *oc)
365 {
366 oc->chosen_points = LONG_MIN;
367
368 if (is_memcg_oom(oc))
369 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
370 else {
371 struct task_struct *p;
372
373 rcu_read_lock();
374 for_each_process(p)
375 if (oom_evaluate_task(p, oc))
376 break;
377 rcu_read_unlock();
378 }
379 }
380
dump_task(struct task_struct * p,void * arg)381 static int dump_task(struct task_struct *p, void *arg)
382 {
383 struct oom_control *oc = arg;
384 struct task_struct *task;
385
386 if (oom_unkillable_task(p))
387 return 0;
388
389 /* p may not have freeable memory in nodemask */
390 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
391 return 0;
392
393 task = find_lock_task_mm(p);
394 if (!task) {
395 /*
396 * All of p's threads have already detached their mm's. There's
397 * no need to report them; they can't be oom killed anyway.
398 */
399 return 0;
400 }
401
402 pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu %5hd %s\n",
403 task->pid, from_kuid(&init_user_ns, task_uid(task)),
404 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
405 mm_pgtables_bytes(task->mm),
406 get_mm_counter(task->mm, MM_SWAPENTS),
407 task->signal->oom_score_adj, task->comm);
408 task_unlock(task);
409
410 return 0;
411 }
412
413 /**
414 * dump_tasks - dump current memory state of all system tasks
415 * @oc: pointer to struct oom_control
416 *
417 * Dumps the current memory state of all eligible tasks. Tasks not in the same
418 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
419 * are not shown.
420 * State information includes task's pid, uid, tgid, vm size, rss,
421 * pgtables_bytes, swapents, oom_score_adj value, and name.
422 */
dump_tasks(struct oom_control * oc)423 static void dump_tasks(struct oom_control *oc)
424 {
425 pr_info("Tasks state (memory values in pages):\n");
426 pr_info("[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name\n");
427
428 if (is_memcg_oom(oc))
429 mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
430 else {
431 struct task_struct *p;
432
433 rcu_read_lock();
434 for_each_process(p)
435 dump_task(p, oc);
436 rcu_read_unlock();
437 }
438 }
439
dump_oom_summary(struct oom_control * oc,struct task_struct * victim)440 static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
441 {
442 /* one line summary of the oom killer context. */
443 pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
444 oom_constraint_text[oc->constraint],
445 nodemask_pr_args(oc->nodemask));
446 cpuset_print_current_mems_allowed();
447 mem_cgroup_print_oom_context(oc->memcg, victim);
448 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
449 from_kuid(&init_user_ns, task_uid(victim)));
450 }
451
dump_header(struct oom_control * oc,struct task_struct * p)452 static void dump_header(struct oom_control *oc, struct task_struct *p)
453 {
454 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
455 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
456 current->signal->oom_score_adj);
457 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
458 pr_warn("COMPACTION is disabled!!!\n");
459
460 dump_stack();
461 if (is_memcg_oom(oc))
462 mem_cgroup_print_oom_meminfo(oc->memcg);
463 else {
464 __show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask, gfp_zone(oc->gfp_mask));
465 if (should_dump_unreclaim_slab())
466 dump_unreclaimable_slab();
467 }
468 if (sysctl_oom_dump_tasks)
469 dump_tasks(oc);
470 if (p)
471 dump_oom_summary(oc, p);
472 }
473
474 /*
475 * Number of OOM victims in flight
476 */
477 static atomic_t oom_victims = ATOMIC_INIT(0);
478 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
479
480 static bool oom_killer_disabled __read_mostly;
481
482 /*
483 * task->mm can be NULL if the task is the exited group leader. So to
484 * determine whether the task is using a particular mm, we examine all the
485 * task's threads: if one of those is using this mm then this task was also
486 * using it.
487 */
process_shares_mm(struct task_struct * p,struct mm_struct * mm)488 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
489 {
490 struct task_struct *t;
491
492 for_each_thread(p, t) {
493 struct mm_struct *t_mm = READ_ONCE(t->mm);
494 if (t_mm)
495 return t_mm == mm;
496 }
497 return false;
498 }
499
500 #ifdef CONFIG_MMU
501 /*
502 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
503 * victim (if that is possible) to help the OOM killer to move on.
504 */
505 static struct task_struct *oom_reaper_th;
506 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
507 static struct task_struct *oom_reaper_list;
508 static DEFINE_SPINLOCK(oom_reaper_lock);
509
__oom_reap_task_mm(struct mm_struct * mm)510 static bool __oom_reap_task_mm(struct mm_struct *mm)
511 {
512 struct vm_area_struct *vma;
513 bool ret = true;
514 VMA_ITERATOR(vmi, mm, 0);
515
516 /*
517 * Tell all users of get_user/copy_from_user etc... that the content
518 * is no longer stable. No barriers really needed because unmapping
519 * should imply barriers already and the reader would hit a page fault
520 * if it stumbled over a reaped memory.
521 */
522 set_bit(MMF_UNSTABLE, &mm->flags);
523
524 for_each_vma(vmi, vma) {
525 if (vma->vm_flags & (VM_HUGETLB|VM_PFNMAP))
526 continue;
527
528 /*
529 * Only anonymous pages have a good chance to be dropped
530 * without additional steps which we cannot afford as we
531 * are OOM already.
532 *
533 * We do not even care about fs backed pages because all
534 * which are reclaimable have already been reclaimed and
535 * we do not want to block exit_mmap by keeping mm ref
536 * count elevated without a good reason.
537 */
538 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
539 struct mmu_notifier_range range;
540 struct mmu_gather tlb;
541
542 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
543 mm, vma->vm_start,
544 vma->vm_end);
545 tlb_gather_mmu(&tlb, mm);
546 if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
547 tlb_finish_mmu(&tlb);
548 ret = false;
549 continue;
550 }
551 unmap_page_range(&tlb, vma, range.start, range.end, NULL);
552 mmu_notifier_invalidate_range_end(&range);
553 tlb_finish_mmu(&tlb);
554 }
555 }
556
557 return ret;
558 }
559
560 /*
561 * Reaps the address space of the give task.
562 *
563 * Returns true on success and false if none or part of the address space
564 * has been reclaimed and the caller should retry later.
565 */
oom_reap_task_mm(struct task_struct * tsk,struct mm_struct * mm)566 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
567 {
568 bool ret = true;
569
570 if (!mmap_read_trylock(mm)) {
571 trace_skip_task_reaping(tsk->pid);
572 return false;
573 }
574
575 /*
576 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
577 * work on the mm anymore. The check for MMF_OOM_SKIP must run
578 * under mmap_lock for reading because it serializes against the
579 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
580 */
581 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
582 trace_skip_task_reaping(tsk->pid);
583 goto out_unlock;
584 }
585
586 trace_start_task_reaping(tsk->pid);
587
588 /* failed to reap part of the address space. Try again later */
589 ret = __oom_reap_task_mm(mm);
590 if (!ret)
591 goto out_finish;
592
593 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
594 task_pid_nr(tsk), tsk->comm,
595 K(get_mm_counter(mm, MM_ANONPAGES)),
596 K(get_mm_counter(mm, MM_FILEPAGES)),
597 K(get_mm_counter(mm, MM_SHMEMPAGES)));
598 out_finish:
599 trace_finish_task_reaping(tsk->pid);
600 out_unlock:
601 mmap_read_unlock(mm);
602
603 return ret;
604 }
605
606 #define MAX_OOM_REAP_RETRIES 10
oom_reap_task(struct task_struct * tsk)607 static void oom_reap_task(struct task_struct *tsk)
608 {
609 int attempts = 0;
610 struct mm_struct *mm = tsk->signal->oom_mm;
611
612 /* Retry the mmap_read_trylock(mm) a few times */
613 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
614 schedule_timeout_idle(HZ/10);
615
616 if (attempts <= MAX_OOM_REAP_RETRIES ||
617 test_bit(MMF_OOM_SKIP, &mm->flags))
618 goto done;
619
620 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
621 task_pid_nr(tsk), tsk->comm);
622 sched_show_task(tsk);
623 debug_show_all_locks();
624
625 done:
626 tsk->oom_reaper_list = NULL;
627
628 /*
629 * Hide this mm from OOM killer because it has been either reaped or
630 * somebody can't call mmap_write_unlock(mm).
631 */
632 set_bit(MMF_OOM_SKIP, &mm->flags);
633
634 /* Drop a reference taken by queue_oom_reaper */
635 put_task_struct(tsk);
636 }
637
oom_reaper(void * unused)638 static int oom_reaper(void *unused)
639 {
640 set_freezable();
641
642 while (true) {
643 struct task_struct *tsk = NULL;
644
645 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
646 spin_lock_irq(&oom_reaper_lock);
647 if (oom_reaper_list != NULL) {
648 tsk = oom_reaper_list;
649 oom_reaper_list = tsk->oom_reaper_list;
650 }
651 spin_unlock_irq(&oom_reaper_lock);
652
653 if (tsk)
654 oom_reap_task(tsk);
655 }
656
657 return 0;
658 }
659
wake_oom_reaper(struct timer_list * timer)660 static void wake_oom_reaper(struct timer_list *timer)
661 {
662 struct task_struct *tsk = container_of(timer, struct task_struct,
663 oom_reaper_timer);
664 struct mm_struct *mm = tsk->signal->oom_mm;
665 unsigned long flags;
666
667 /* The victim managed to terminate on its own - see exit_mmap */
668 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
669 put_task_struct(tsk);
670 return;
671 }
672
673 spin_lock_irqsave(&oom_reaper_lock, flags);
674 tsk->oom_reaper_list = oom_reaper_list;
675 oom_reaper_list = tsk;
676 spin_unlock_irqrestore(&oom_reaper_lock, flags);
677 trace_wake_reaper(tsk->pid);
678 wake_up(&oom_reaper_wait);
679 }
680
681 /*
682 * Give the OOM victim time to exit naturally before invoking the oom_reaping.
683 * The timers timeout is arbitrary... the longer it is, the longer the worst
684 * case scenario for the OOM can take. If it is too small, the oom_reaper can
685 * get in the way and release resources needed by the process exit path.
686 * e.g. The futex robust list can sit in Anon|Private memory that gets reaped
687 * before the exit path is able to wake the futex waiters.
688 */
689 #define OOM_REAPER_DELAY (2*HZ)
queue_oom_reaper(struct task_struct * tsk)690 static void queue_oom_reaper(struct task_struct *tsk)
691 {
692 /* mm is already queued? */
693 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
694 return;
695
696 get_task_struct(tsk);
697 timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0);
698 tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY;
699 add_timer(&tsk->oom_reaper_timer);
700 }
701
702 #ifdef CONFIG_SYSCTL
703 static struct ctl_table vm_oom_kill_table[] = {
704 {
705 .procname = "panic_on_oom",
706 .data = &sysctl_panic_on_oom,
707 .maxlen = sizeof(sysctl_panic_on_oom),
708 .mode = 0644,
709 .proc_handler = proc_dointvec_minmax,
710 .extra1 = SYSCTL_ZERO,
711 .extra2 = SYSCTL_TWO,
712 },
713 {
714 .procname = "oom_kill_allocating_task",
715 .data = &sysctl_oom_kill_allocating_task,
716 .maxlen = sizeof(sysctl_oom_kill_allocating_task),
717 .mode = 0644,
718 .proc_handler = proc_dointvec,
719 },
720 {
721 .procname = "oom_dump_tasks",
722 .data = &sysctl_oom_dump_tasks,
723 .maxlen = sizeof(sysctl_oom_dump_tasks),
724 .mode = 0644,
725 .proc_handler = proc_dointvec,
726 },
727 {}
728 };
729 #endif
730
oom_init(void)731 static int __init oom_init(void)
732 {
733 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
734 #ifdef CONFIG_SYSCTL
735 register_sysctl_init("vm", vm_oom_kill_table);
736 #endif
737 return 0;
738 }
subsys_initcall(oom_init)739 subsys_initcall(oom_init)
740 #else
741 static inline void queue_oom_reaper(struct task_struct *tsk)
742 {
743 }
744 #endif /* CONFIG_MMU */
745
746 /**
747 * mark_oom_victim - mark the given task as OOM victim
748 * @tsk: task to mark
749 *
750 * Has to be called with oom_lock held and never after
751 * oom has been disabled already.
752 *
753 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
754 * under task_lock or operate on the current).
755 */
756 static void mark_oom_victim(struct task_struct *tsk)
757 {
758 struct mm_struct *mm = tsk->mm;
759
760 WARN_ON(oom_killer_disabled);
761 /* OOM killer might race with memcg OOM */
762 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
763 return;
764
765 /* oom_mm is bound to the signal struct life time. */
766 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
767 mmgrab(tsk->signal->oom_mm);
768
769 /*
770 * Make sure that the task is woken up from uninterruptible sleep
771 * if it is frozen because OOM killer wouldn't be able to free
772 * any memory and livelock. freezing_slow_path will tell the freezer
773 * that TIF_MEMDIE tasks should be ignored.
774 */
775 __thaw_task(tsk);
776 atomic_inc(&oom_victims);
777 trace_mark_victim(tsk->pid);
778 }
779
780 /**
781 * exit_oom_victim - note the exit of an OOM victim
782 */
exit_oom_victim(void)783 void exit_oom_victim(void)
784 {
785 clear_thread_flag(TIF_MEMDIE);
786
787 if (!atomic_dec_return(&oom_victims))
788 wake_up_all(&oom_victims_wait);
789 }
790
791 /**
792 * oom_killer_enable - enable OOM killer
793 */
oom_killer_enable(void)794 void oom_killer_enable(void)
795 {
796 oom_killer_disabled = false;
797 pr_info("OOM killer enabled.\n");
798 }
799
800 /**
801 * oom_killer_disable - disable OOM killer
802 * @timeout: maximum timeout to wait for oom victims in jiffies
803 *
804 * Forces all page allocations to fail rather than trigger OOM killer.
805 * Will block and wait until all OOM victims are killed or the given
806 * timeout expires.
807 *
808 * The function cannot be called when there are runnable user tasks because
809 * the userspace would see unexpected allocation failures as a result. Any
810 * new usage of this function should be consulted with MM people.
811 *
812 * Returns true if successful and false if the OOM killer cannot be
813 * disabled.
814 */
oom_killer_disable(signed long timeout)815 bool oom_killer_disable(signed long timeout)
816 {
817 signed long ret;
818
819 /*
820 * Make sure to not race with an ongoing OOM killer. Check that the
821 * current is not killed (possibly due to sharing the victim's memory).
822 */
823 if (mutex_lock_killable(&oom_lock))
824 return false;
825 oom_killer_disabled = true;
826 mutex_unlock(&oom_lock);
827
828 ret = wait_event_interruptible_timeout(oom_victims_wait,
829 !atomic_read(&oom_victims), timeout);
830 if (ret <= 0) {
831 oom_killer_enable();
832 return false;
833 }
834 pr_info("OOM killer disabled.\n");
835
836 return true;
837 }
838
__task_will_free_mem(struct task_struct * task)839 static inline bool __task_will_free_mem(struct task_struct *task)
840 {
841 struct signal_struct *sig = task->signal;
842
843 /*
844 * A coredumping process may sleep for an extended period in
845 * coredump_task_exit(), so the oom killer cannot assume that
846 * the process will promptly exit and release memory.
847 */
848 if (sig->core_state)
849 return false;
850
851 if (sig->flags & SIGNAL_GROUP_EXIT)
852 return true;
853
854 if (thread_group_empty(task) && (task->flags & PF_EXITING))
855 return true;
856
857 return false;
858 }
859
860 /*
861 * Checks whether the given task is dying or exiting and likely to
862 * release its address space. This means that all threads and processes
863 * sharing the same mm have to be killed or exiting.
864 * Caller has to make sure that task->mm is stable (hold task_lock or
865 * it operates on the current).
866 */
task_will_free_mem(struct task_struct * task)867 static bool task_will_free_mem(struct task_struct *task)
868 {
869 struct mm_struct *mm = task->mm;
870 struct task_struct *p;
871 bool ret = true;
872
873 /*
874 * Skip tasks without mm because it might have passed its exit_mm and
875 * exit_oom_victim. oom_reaper could have rescued that but do not rely
876 * on that for now. We can consider find_lock_task_mm in future.
877 */
878 if (!mm)
879 return false;
880
881 if (!__task_will_free_mem(task))
882 return false;
883
884 /*
885 * This task has already been drained by the oom reaper so there are
886 * only small chances it will free some more
887 */
888 if (test_bit(MMF_OOM_SKIP, &mm->flags))
889 return false;
890
891 if (atomic_read(&mm->mm_users) <= 1)
892 return true;
893
894 /*
895 * Make sure that all tasks which share the mm with the given tasks
896 * are dying as well to make sure that a) nobody pins its mm and
897 * b) the task is also reapable by the oom reaper.
898 */
899 rcu_read_lock();
900 for_each_process(p) {
901 if (!process_shares_mm(p, mm))
902 continue;
903 if (same_thread_group(task, p))
904 continue;
905 ret = __task_will_free_mem(p);
906 if (!ret)
907 break;
908 }
909 rcu_read_unlock();
910
911 return ret;
912 }
913
__oom_kill_process(struct task_struct * victim,const char * message)914 static void __oom_kill_process(struct task_struct *victim, const char *message)
915 {
916 struct task_struct *p;
917 struct mm_struct *mm;
918 bool can_oom_reap = true;
919
920 p = find_lock_task_mm(victim);
921 if (!p) {
922 pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
923 message, task_pid_nr(victim), victim->comm);
924 put_task_struct(victim);
925 return;
926 } else if (victim != p) {
927 get_task_struct(p);
928 put_task_struct(victim);
929 victim = p;
930 }
931
932 /* Get a reference to safely compare mm after task_unlock(victim) */
933 mm = victim->mm;
934 mmgrab(mm);
935
936 /* Raise event before sending signal: task reaper must see this */
937 count_vm_event(OOM_KILL);
938 memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
939
940 /*
941 * We should send SIGKILL before granting access to memory reserves
942 * in order to prevent the OOM victim from depleting the memory
943 * reserves from the user space under its control.
944 */
945 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
946 mark_oom_victim(victim);
947 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
948 message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
949 K(get_mm_counter(mm, MM_ANONPAGES)),
950 K(get_mm_counter(mm, MM_FILEPAGES)),
951 K(get_mm_counter(mm, MM_SHMEMPAGES)),
952 from_kuid(&init_user_ns, task_uid(victim)),
953 mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
954 task_unlock(victim);
955
956 /*
957 * Kill all user processes sharing victim->mm in other thread groups, if
958 * any. They don't get access to memory reserves, though, to avoid
959 * depletion of all memory. This prevents mm->mmap_lock livelock when an
960 * oom killed thread cannot exit because it requires the semaphore and
961 * its contended by another thread trying to allocate memory itself.
962 * That thread will now get access to memory reserves since it has a
963 * pending fatal signal.
964 */
965 rcu_read_lock();
966 for_each_process(p) {
967 if (!process_shares_mm(p, mm))
968 continue;
969 if (same_thread_group(p, victim))
970 continue;
971 if (is_global_init(p)) {
972 can_oom_reap = false;
973 set_bit(MMF_OOM_SKIP, &mm->flags);
974 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
975 task_pid_nr(victim), victim->comm,
976 task_pid_nr(p), p->comm);
977 continue;
978 }
979 /*
980 * No kthread_use_mm() user needs to read from the userspace so
981 * we are ok to reap it.
982 */
983 if (unlikely(p->flags & PF_KTHREAD))
984 continue;
985 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
986 }
987 rcu_read_unlock();
988
989 if (can_oom_reap)
990 queue_oom_reaper(victim);
991
992 mmdrop(mm);
993 put_task_struct(victim);
994 }
995
996 /*
997 * Kill provided task unless it's secured by setting
998 * oom_score_adj to OOM_SCORE_ADJ_MIN.
999 */
oom_kill_memcg_member(struct task_struct * task,void * message)1000 static int oom_kill_memcg_member(struct task_struct *task, void *message)
1001 {
1002 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
1003 !is_global_init(task)) {
1004 get_task_struct(task);
1005 __oom_kill_process(task, message);
1006 }
1007 return 0;
1008 }
1009
oom_kill_process(struct oom_control * oc,const char * message)1010 static void oom_kill_process(struct oom_control *oc, const char *message)
1011 {
1012 struct task_struct *victim = oc->chosen;
1013 struct mem_cgroup *oom_group;
1014 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1015 DEFAULT_RATELIMIT_BURST);
1016
1017 /*
1018 * If the task is already exiting, don't alarm the sysadmin or kill
1019 * its children or threads, just give it access to memory reserves
1020 * so it can die quickly
1021 */
1022 task_lock(victim);
1023 if (task_will_free_mem(victim)) {
1024 mark_oom_victim(victim);
1025 queue_oom_reaper(victim);
1026 task_unlock(victim);
1027 put_task_struct(victim);
1028 return;
1029 }
1030 task_unlock(victim);
1031
1032 if (__ratelimit(&oom_rs))
1033 dump_header(oc, victim);
1034
1035 /*
1036 * Do we need to kill the entire memory cgroup?
1037 * Or even one of the ancestor memory cgroups?
1038 * Check this out before killing the victim task.
1039 */
1040 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
1041
1042 __oom_kill_process(victim, message);
1043
1044 /*
1045 * If necessary, kill all tasks in the selected memory cgroup.
1046 */
1047 if (oom_group) {
1048 memcg_memory_event(oom_group, MEMCG_OOM_GROUP_KILL);
1049 mem_cgroup_print_oom_group(oom_group);
1050 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
1051 (void *)message);
1052 mem_cgroup_put(oom_group);
1053 }
1054 }
1055
1056 /*
1057 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1058 */
check_panic_on_oom(struct oom_control * oc)1059 static void check_panic_on_oom(struct oom_control *oc)
1060 {
1061 if (likely(!sysctl_panic_on_oom))
1062 return;
1063 if (sysctl_panic_on_oom != 2) {
1064 /*
1065 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1066 * does not panic for cpuset, mempolicy, or memcg allocation
1067 * failures.
1068 */
1069 if (oc->constraint != CONSTRAINT_NONE)
1070 return;
1071 }
1072 /* Do not panic for oom kills triggered by sysrq */
1073 if (is_sysrq_oom(oc))
1074 return;
1075 dump_header(oc, NULL);
1076 panic("Out of memory: %s panic_on_oom is enabled\n",
1077 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1078 }
1079
1080 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1081
register_oom_notifier(struct notifier_block * nb)1082 int register_oom_notifier(struct notifier_block *nb)
1083 {
1084 return blocking_notifier_chain_register(&oom_notify_list, nb);
1085 }
1086 EXPORT_SYMBOL_GPL(register_oom_notifier);
1087
unregister_oom_notifier(struct notifier_block * nb)1088 int unregister_oom_notifier(struct notifier_block *nb)
1089 {
1090 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1091 }
1092 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1093
1094 /**
1095 * out_of_memory - kill the "best" process when we run out of memory
1096 * @oc: pointer to struct oom_control
1097 *
1098 * If we run out of memory, we have the choice between either
1099 * killing a random task (bad), letting the system crash (worse)
1100 * OR try to be smart about which process to kill. Note that we
1101 * don't have to be perfect here, we just have to be good.
1102 */
out_of_memory(struct oom_control * oc)1103 bool out_of_memory(struct oom_control *oc)
1104 {
1105 unsigned long freed = 0;
1106
1107 if (oom_killer_disabled)
1108 return false;
1109
1110 if (!is_memcg_oom(oc)) {
1111 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1112 if (freed > 0 && !is_sysrq_oom(oc))
1113 /* Got some memory back in the last second. */
1114 return true;
1115 }
1116
1117 /*
1118 * If current has a pending SIGKILL or is exiting, then automatically
1119 * select it. The goal is to allow it to allocate so that it may
1120 * quickly exit and free its memory.
1121 */
1122 if (task_will_free_mem(current)) {
1123 mark_oom_victim(current);
1124 queue_oom_reaper(current);
1125 return true;
1126 }
1127
1128 /*
1129 * The OOM killer does not compensate for IO-less reclaim.
1130 * But mem_cgroup_oom() has to invoke the OOM killer even
1131 * if it is a GFP_NOFS allocation.
1132 */
1133 if (!(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1134 return true;
1135
1136 /*
1137 * Check if there were limitations on the allocation (only relevant for
1138 * NUMA and memcg) that may require different handling.
1139 */
1140 oc->constraint = constrained_alloc(oc);
1141 if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1142 oc->nodemask = NULL;
1143 check_panic_on_oom(oc);
1144
1145 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1146 current->mm && !oom_unkillable_task(current) &&
1147 oom_cpuset_eligible(current, oc) &&
1148 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1149 get_task_struct(current);
1150 oc->chosen = current;
1151 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1152 return true;
1153 }
1154
1155 select_bad_process(oc);
1156 /* Found nothing?!?! */
1157 if (!oc->chosen) {
1158 dump_header(oc, NULL);
1159 pr_warn("Out of memory and no killable processes...\n");
1160 /*
1161 * If we got here due to an actual allocation at the
1162 * system level, we cannot survive this and will enter
1163 * an endless loop in the allocator. Bail out now.
1164 */
1165 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1166 panic("System is deadlocked on memory\n");
1167 }
1168 if (oc->chosen && oc->chosen != (void *)-1UL)
1169 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1170 "Memory cgroup out of memory");
1171 return !!oc->chosen;
1172 }
1173
1174 /*
1175 * The pagefault handler calls here because some allocation has failed. We have
1176 * to take care of the memcg OOM here because this is the only safe context without
1177 * any locks held but let the oom killer triggered from the allocation context care
1178 * about the global OOM.
1179 */
pagefault_out_of_memory(void)1180 void pagefault_out_of_memory(void)
1181 {
1182 static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL,
1183 DEFAULT_RATELIMIT_BURST);
1184
1185 if (mem_cgroup_oom_synchronize(true))
1186 return;
1187
1188 if (fatal_signal_pending(current))
1189 return;
1190
1191 if (__ratelimit(&pfoom_rs))
1192 pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
1193 }
1194
SYSCALL_DEFINE2(process_mrelease,int,pidfd,unsigned int,flags)1195 SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags)
1196 {
1197 #ifdef CONFIG_MMU
1198 struct mm_struct *mm = NULL;
1199 struct task_struct *task;
1200 struct task_struct *p;
1201 unsigned int f_flags;
1202 bool reap = false;
1203 long ret = 0;
1204
1205 if (flags)
1206 return -EINVAL;
1207
1208 task = pidfd_get_task(pidfd, &f_flags);
1209 if (IS_ERR(task))
1210 return PTR_ERR(task);
1211
1212 /*
1213 * Make sure to choose a thread which still has a reference to mm
1214 * during the group exit
1215 */
1216 p = find_lock_task_mm(task);
1217 if (!p) {
1218 ret = -ESRCH;
1219 goto put_task;
1220 }
1221
1222 mm = p->mm;
1223 mmgrab(mm);
1224
1225 if (task_will_free_mem(p))
1226 reap = true;
1227 else {
1228 /* Error only if the work has not been done already */
1229 if (!test_bit(MMF_OOM_SKIP, &mm->flags))
1230 ret = -EINVAL;
1231 }
1232 task_unlock(p);
1233
1234 if (!reap)
1235 goto drop_mm;
1236
1237 if (mmap_read_lock_killable(mm)) {
1238 ret = -EINTR;
1239 goto drop_mm;
1240 }
1241 /*
1242 * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure
1243 * possible change in exit_mmap is seen
1244 */
1245 if (!test_bit(MMF_OOM_SKIP, &mm->flags) && !__oom_reap_task_mm(mm))
1246 ret = -EAGAIN;
1247 mmap_read_unlock(mm);
1248
1249 drop_mm:
1250 mmdrop(mm);
1251 put_task:
1252 put_task_struct(task);
1253 return ret;
1254 #else
1255 return -ENOSYS;
1256 #endif /* CONFIG_MMU */
1257 }
1258