1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/nommu.c 4 * 5 * Replacement code for mm functions to support CPU's that don't 6 * have any form of memory management unit (thus no virtual memory). 7 * 8 * See Documentation/nommu-mmap.txt 9 * 10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/export.h> 20 #include <linux/mm.h> 21 #include <linux/sched/mm.h> 22 #include <linux/vmacache.h> 23 #include <linux/mman.h> 24 #include <linux/swap.h> 25 #include <linux/file.h> 26 #include <linux/highmem.h> 27 #include <linux/pagemap.h> 28 #include <linux/slab.h> 29 #include <linux/vmalloc.h> 30 #include <linux/blkdev.h> 31 #include <linux/backing-dev.h> 32 #include <linux/compiler.h> 33 #include <linux/mount.h> 34 #include <linux/personality.h> 35 #include <linux/security.h> 36 #include <linux/syscalls.h> 37 #include <linux/audit.h> 38 #include <linux/printk.h> 39 40 #include <linux/uaccess.h> 41 #include <asm/tlb.h> 42 #include <asm/tlbflush.h> 43 #include <asm/mmu_context.h> 44 #include "internal.h" 45 46 void *high_memory; 47 EXPORT_SYMBOL(high_memory); 48 struct page *mem_map; 49 unsigned long max_mapnr; 50 EXPORT_SYMBOL(max_mapnr); 51 unsigned long highest_memmap_pfn; 52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 53 int heap_stack_gap = 0; 54 55 atomic_long_t mmap_pages_allocated; 56 57 EXPORT_SYMBOL(mem_map); 58 59 /* list of mapped, potentially shareable regions */ 60 static struct kmem_cache *vm_region_jar; 61 struct rb_root nommu_region_tree = RB_ROOT; 62 DECLARE_RWSEM(nommu_region_sem); 63 64 const struct vm_operations_struct generic_file_vm_ops = { 65 }; 66 67 /* 68 * Return the total memory allocated for this pointer, not 69 * just what the caller asked for. 70 * 71 * Doesn't have to be accurate, i.e. may have races. 72 */ 73 unsigned int kobjsize(const void *objp) 74 { 75 struct page *page; 76 77 /* 78 * If the object we have should not have ksize performed on it, 79 * return size of 0 80 */ 81 if (!objp || !virt_addr_valid(objp)) 82 return 0; 83 84 page = virt_to_head_page(objp); 85 86 /* 87 * If the allocator sets PageSlab, we know the pointer came from 88 * kmalloc(). 89 */ 90 if (PageSlab(page)) 91 return ksize(objp); 92 93 /* 94 * If it's not a compound page, see if we have a matching VMA 95 * region. This test is intentionally done in reverse order, 96 * so if there's no VMA, we still fall through and hand back 97 * PAGE_SIZE for 0-order pages. 98 */ 99 if (!PageCompound(page)) { 100 struct vm_area_struct *vma; 101 102 vma = find_vma(current->mm, (unsigned long)objp); 103 if (vma) 104 return vma->vm_end - vma->vm_start; 105 } 106 107 /* 108 * The ksize() function is only guaranteed to work for pointers 109 * returned by kmalloc(). So handle arbitrary pointers here. 110 */ 111 return page_size(page); 112 } 113 114 /** 115 * follow_pfn - look up PFN at a user virtual address 116 * @vma: memory mapping 117 * @address: user virtual address 118 * @pfn: location to store found PFN 119 * 120 * Only IO mappings and raw PFN mappings are allowed. 121 * 122 * Returns zero and the pfn at @pfn on success, -ve otherwise. 123 */ 124 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 125 unsigned long *pfn) 126 { 127 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 128 return -EINVAL; 129 130 *pfn = address >> PAGE_SHIFT; 131 return 0; 132 } 133 EXPORT_SYMBOL(follow_pfn); 134 135 LIST_HEAD(vmap_area_list); 136 137 void vfree(const void *addr) 138 { 139 kfree(addr); 140 } 141 EXPORT_SYMBOL(vfree); 142 143 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 144 { 145 /* 146 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 147 * returns only a logical address. 148 */ 149 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 150 } 151 EXPORT_SYMBOL(__vmalloc); 152 153 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags) 154 { 155 return __vmalloc(size, flags, PAGE_KERNEL); 156 } 157 158 void *vmalloc_user(unsigned long size) 159 { 160 void *ret; 161 162 ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL); 163 if (ret) { 164 struct vm_area_struct *vma; 165 166 down_write(¤t->mm->mmap_sem); 167 vma = find_vma(current->mm, (unsigned long)ret); 168 if (vma) 169 vma->vm_flags |= VM_USERMAP; 170 up_write(¤t->mm->mmap_sem); 171 } 172 173 return ret; 174 } 175 EXPORT_SYMBOL(vmalloc_user); 176 177 struct page *vmalloc_to_page(const void *addr) 178 { 179 return virt_to_page(addr); 180 } 181 EXPORT_SYMBOL(vmalloc_to_page); 182 183 unsigned long vmalloc_to_pfn(const void *addr) 184 { 185 return page_to_pfn(virt_to_page(addr)); 186 } 187 EXPORT_SYMBOL(vmalloc_to_pfn); 188 189 long vread(char *buf, char *addr, unsigned long count) 190 { 191 /* Don't allow overflow */ 192 if ((unsigned long) buf + count < count) 193 count = -(unsigned long) buf; 194 195 memcpy(buf, addr, count); 196 return count; 197 } 198 199 long vwrite(char *buf, char *addr, unsigned long count) 200 { 201 /* Don't allow overflow */ 202 if ((unsigned long) addr + count < count) 203 count = -(unsigned long) addr; 204 205 memcpy(addr, buf, count); 206 return count; 207 } 208 209 /* 210 * vmalloc - allocate virtually contiguous memory 211 * 212 * @size: allocation size 213 * 214 * Allocate enough pages to cover @size from the page level 215 * allocator and map them into contiguous kernel virtual space. 216 * 217 * For tight control over page level allocator and protection flags 218 * use __vmalloc() instead. 219 */ 220 void *vmalloc(unsigned long size) 221 { 222 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 223 } 224 EXPORT_SYMBOL(vmalloc); 225 226 /* 227 * vzalloc - allocate virtually contiguous memory with zero fill 228 * 229 * @size: allocation size 230 * 231 * Allocate enough pages to cover @size from the page level 232 * allocator and map them into contiguous kernel virtual space. 233 * The memory allocated is set to zero. 234 * 235 * For tight control over page level allocator and protection flags 236 * use __vmalloc() instead. 237 */ 238 void *vzalloc(unsigned long size) 239 { 240 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 241 PAGE_KERNEL); 242 } 243 EXPORT_SYMBOL(vzalloc); 244 245 /** 246 * vmalloc_node - allocate memory on a specific node 247 * @size: allocation size 248 * @node: numa node 249 * 250 * Allocate enough pages to cover @size from the page level 251 * allocator and map them into contiguous kernel virtual space. 252 * 253 * For tight control over page level allocator and protection flags 254 * use __vmalloc() instead. 255 */ 256 void *vmalloc_node(unsigned long size, int node) 257 { 258 return vmalloc(size); 259 } 260 EXPORT_SYMBOL(vmalloc_node); 261 262 /** 263 * vzalloc_node - allocate memory on a specific node with zero fill 264 * @size: allocation size 265 * @node: numa node 266 * 267 * Allocate enough pages to cover @size from the page level 268 * allocator and map them into contiguous kernel virtual space. 269 * The memory allocated is set to zero. 270 * 271 * For tight control over page level allocator and protection flags 272 * use __vmalloc() instead. 273 */ 274 void *vzalloc_node(unsigned long size, int node) 275 { 276 return vzalloc(size); 277 } 278 EXPORT_SYMBOL(vzalloc_node); 279 280 /** 281 * vmalloc_exec - allocate virtually contiguous, executable memory 282 * @size: allocation size 283 * 284 * Kernel-internal function to allocate enough pages to cover @size 285 * the page level allocator and map them into contiguous and 286 * executable kernel virtual space. 287 * 288 * For tight control over page level allocator and protection flags 289 * use __vmalloc() instead. 290 */ 291 292 void *vmalloc_exec(unsigned long size) 293 { 294 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 295 } 296 297 /** 298 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 299 * @size: allocation size 300 * 301 * Allocate enough 32bit PA addressable pages to cover @size from the 302 * page level allocator and map them into contiguous kernel virtual space. 303 */ 304 void *vmalloc_32(unsigned long size) 305 { 306 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 307 } 308 EXPORT_SYMBOL(vmalloc_32); 309 310 /** 311 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 312 * @size: allocation size 313 * 314 * The resulting memory area is 32bit addressable and zeroed so it can be 315 * mapped to userspace without leaking data. 316 * 317 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 318 * remap_vmalloc_range() are permissible. 319 */ 320 void *vmalloc_32_user(unsigned long size) 321 { 322 /* 323 * We'll have to sort out the ZONE_DMA bits for 64-bit, 324 * but for now this can simply use vmalloc_user() directly. 325 */ 326 return vmalloc_user(size); 327 } 328 EXPORT_SYMBOL(vmalloc_32_user); 329 330 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 331 { 332 BUG(); 333 return NULL; 334 } 335 EXPORT_SYMBOL(vmap); 336 337 void vunmap(const void *addr) 338 { 339 BUG(); 340 } 341 EXPORT_SYMBOL(vunmap); 342 343 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 344 { 345 BUG(); 346 return NULL; 347 } 348 EXPORT_SYMBOL(vm_map_ram); 349 350 void vm_unmap_ram(const void *mem, unsigned int count) 351 { 352 BUG(); 353 } 354 EXPORT_SYMBOL(vm_unmap_ram); 355 356 void vm_unmap_aliases(void) 357 { 358 } 359 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 360 361 /* 362 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 363 * have one. 364 */ 365 void __weak vmalloc_sync_all(void) 366 { 367 } 368 369 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 370 { 371 BUG(); 372 return NULL; 373 } 374 EXPORT_SYMBOL_GPL(alloc_vm_area); 375 376 void free_vm_area(struct vm_struct *area) 377 { 378 BUG(); 379 } 380 EXPORT_SYMBOL_GPL(free_vm_area); 381 382 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 383 struct page *page) 384 { 385 return -EINVAL; 386 } 387 EXPORT_SYMBOL(vm_insert_page); 388 389 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 390 unsigned long num) 391 { 392 return -EINVAL; 393 } 394 EXPORT_SYMBOL(vm_map_pages); 395 396 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 397 unsigned long num) 398 { 399 return -EINVAL; 400 } 401 EXPORT_SYMBOL(vm_map_pages_zero); 402 403 /* 404 * sys_brk() for the most part doesn't need the global kernel 405 * lock, except when an application is doing something nasty 406 * like trying to un-brk an area that has already been mapped 407 * to a regular file. in this case, the unmapping will need 408 * to invoke file system routines that need the global lock. 409 */ 410 SYSCALL_DEFINE1(brk, unsigned long, brk) 411 { 412 struct mm_struct *mm = current->mm; 413 414 if (brk < mm->start_brk || brk > mm->context.end_brk) 415 return mm->brk; 416 417 if (mm->brk == brk) 418 return mm->brk; 419 420 /* 421 * Always allow shrinking brk 422 */ 423 if (brk <= mm->brk) { 424 mm->brk = brk; 425 return brk; 426 } 427 428 /* 429 * Ok, looks good - let it rip. 430 */ 431 flush_icache_range(mm->brk, brk); 432 return mm->brk = brk; 433 } 434 435 /* 436 * initialise the percpu counter for VM and region record slabs 437 */ 438 void __init mmap_init(void) 439 { 440 int ret; 441 442 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 443 VM_BUG_ON(ret); 444 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 445 } 446 447 /* 448 * validate the region tree 449 * - the caller must hold the region lock 450 */ 451 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 452 static noinline void validate_nommu_regions(void) 453 { 454 struct vm_region *region, *last; 455 struct rb_node *p, *lastp; 456 457 lastp = rb_first(&nommu_region_tree); 458 if (!lastp) 459 return; 460 461 last = rb_entry(lastp, struct vm_region, vm_rb); 462 BUG_ON(last->vm_end <= last->vm_start); 463 BUG_ON(last->vm_top < last->vm_end); 464 465 while ((p = rb_next(lastp))) { 466 region = rb_entry(p, struct vm_region, vm_rb); 467 last = rb_entry(lastp, struct vm_region, vm_rb); 468 469 BUG_ON(region->vm_end <= region->vm_start); 470 BUG_ON(region->vm_top < region->vm_end); 471 BUG_ON(region->vm_start < last->vm_top); 472 473 lastp = p; 474 } 475 } 476 #else 477 static void validate_nommu_regions(void) 478 { 479 } 480 #endif 481 482 /* 483 * add a region into the global tree 484 */ 485 static void add_nommu_region(struct vm_region *region) 486 { 487 struct vm_region *pregion; 488 struct rb_node **p, *parent; 489 490 validate_nommu_regions(); 491 492 parent = NULL; 493 p = &nommu_region_tree.rb_node; 494 while (*p) { 495 parent = *p; 496 pregion = rb_entry(parent, struct vm_region, vm_rb); 497 if (region->vm_start < pregion->vm_start) 498 p = &(*p)->rb_left; 499 else if (region->vm_start > pregion->vm_start) 500 p = &(*p)->rb_right; 501 else if (pregion == region) 502 return; 503 else 504 BUG(); 505 } 506 507 rb_link_node(®ion->vm_rb, parent, p); 508 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 509 510 validate_nommu_regions(); 511 } 512 513 /* 514 * delete a region from the global tree 515 */ 516 static void delete_nommu_region(struct vm_region *region) 517 { 518 BUG_ON(!nommu_region_tree.rb_node); 519 520 validate_nommu_regions(); 521 rb_erase(®ion->vm_rb, &nommu_region_tree); 522 validate_nommu_regions(); 523 } 524 525 /* 526 * free a contiguous series of pages 527 */ 528 static void free_page_series(unsigned long from, unsigned long to) 529 { 530 for (; from < to; from += PAGE_SIZE) { 531 struct page *page = virt_to_page(from); 532 533 atomic_long_dec(&mmap_pages_allocated); 534 put_page(page); 535 } 536 } 537 538 /* 539 * release a reference to a region 540 * - the caller must hold the region semaphore for writing, which this releases 541 * - the region may not have been added to the tree yet, in which case vm_top 542 * will equal vm_start 543 */ 544 static void __put_nommu_region(struct vm_region *region) 545 __releases(nommu_region_sem) 546 { 547 BUG_ON(!nommu_region_tree.rb_node); 548 549 if (--region->vm_usage == 0) { 550 if (region->vm_top > region->vm_start) 551 delete_nommu_region(region); 552 up_write(&nommu_region_sem); 553 554 if (region->vm_file) 555 fput(region->vm_file); 556 557 /* IO memory and memory shared directly out of the pagecache 558 * from ramfs/tmpfs mustn't be released here */ 559 if (region->vm_flags & VM_MAPPED_COPY) 560 free_page_series(region->vm_start, region->vm_top); 561 kmem_cache_free(vm_region_jar, region); 562 } else { 563 up_write(&nommu_region_sem); 564 } 565 } 566 567 /* 568 * release a reference to a region 569 */ 570 static void put_nommu_region(struct vm_region *region) 571 { 572 down_write(&nommu_region_sem); 573 __put_nommu_region(region); 574 } 575 576 /* 577 * add a VMA into a process's mm_struct in the appropriate place in the list 578 * and tree and add to the address space's page tree also if not an anonymous 579 * page 580 * - should be called with mm->mmap_sem held writelocked 581 */ 582 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 583 { 584 struct vm_area_struct *pvma, *prev; 585 struct address_space *mapping; 586 struct rb_node **p, *parent, *rb_prev; 587 588 BUG_ON(!vma->vm_region); 589 590 mm->map_count++; 591 vma->vm_mm = mm; 592 593 /* add the VMA to the mapping */ 594 if (vma->vm_file) { 595 mapping = vma->vm_file->f_mapping; 596 597 i_mmap_lock_write(mapping); 598 flush_dcache_mmap_lock(mapping); 599 vma_interval_tree_insert(vma, &mapping->i_mmap); 600 flush_dcache_mmap_unlock(mapping); 601 i_mmap_unlock_write(mapping); 602 } 603 604 /* add the VMA to the tree */ 605 parent = rb_prev = NULL; 606 p = &mm->mm_rb.rb_node; 607 while (*p) { 608 parent = *p; 609 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 610 611 /* sort by: start addr, end addr, VMA struct addr in that order 612 * (the latter is necessary as we may get identical VMAs) */ 613 if (vma->vm_start < pvma->vm_start) 614 p = &(*p)->rb_left; 615 else if (vma->vm_start > pvma->vm_start) { 616 rb_prev = parent; 617 p = &(*p)->rb_right; 618 } else if (vma->vm_end < pvma->vm_end) 619 p = &(*p)->rb_left; 620 else if (vma->vm_end > pvma->vm_end) { 621 rb_prev = parent; 622 p = &(*p)->rb_right; 623 } else if (vma < pvma) 624 p = &(*p)->rb_left; 625 else if (vma > pvma) { 626 rb_prev = parent; 627 p = &(*p)->rb_right; 628 } else 629 BUG(); 630 } 631 632 rb_link_node(&vma->vm_rb, parent, p); 633 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 634 635 /* add VMA to the VMA list also */ 636 prev = NULL; 637 if (rb_prev) 638 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 639 640 __vma_link_list(mm, vma, prev, parent); 641 } 642 643 /* 644 * delete a VMA from its owning mm_struct and address space 645 */ 646 static void delete_vma_from_mm(struct vm_area_struct *vma) 647 { 648 int i; 649 struct address_space *mapping; 650 struct mm_struct *mm = vma->vm_mm; 651 struct task_struct *curr = current; 652 653 mm->map_count--; 654 for (i = 0; i < VMACACHE_SIZE; i++) { 655 /* if the vma is cached, invalidate the entire cache */ 656 if (curr->vmacache.vmas[i] == vma) { 657 vmacache_invalidate(mm); 658 break; 659 } 660 } 661 662 /* remove the VMA from the mapping */ 663 if (vma->vm_file) { 664 mapping = vma->vm_file->f_mapping; 665 666 i_mmap_lock_write(mapping); 667 flush_dcache_mmap_lock(mapping); 668 vma_interval_tree_remove(vma, &mapping->i_mmap); 669 flush_dcache_mmap_unlock(mapping); 670 i_mmap_unlock_write(mapping); 671 } 672 673 /* remove from the MM's tree and list */ 674 rb_erase(&vma->vm_rb, &mm->mm_rb); 675 676 if (vma->vm_prev) 677 vma->vm_prev->vm_next = vma->vm_next; 678 else 679 mm->mmap = vma->vm_next; 680 681 if (vma->vm_next) 682 vma->vm_next->vm_prev = vma->vm_prev; 683 } 684 685 /* 686 * destroy a VMA record 687 */ 688 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 689 { 690 if (vma->vm_ops && vma->vm_ops->close) 691 vma->vm_ops->close(vma); 692 if (vma->vm_file) 693 fput(vma->vm_file); 694 put_nommu_region(vma->vm_region); 695 vm_area_free(vma); 696 } 697 698 /* 699 * look up the first VMA in which addr resides, NULL if none 700 * - should be called with mm->mmap_sem at least held readlocked 701 */ 702 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 703 { 704 struct vm_area_struct *vma; 705 706 /* check the cache first */ 707 vma = vmacache_find(mm, addr); 708 if (likely(vma)) 709 return vma; 710 711 /* trawl the list (there may be multiple mappings in which addr 712 * resides) */ 713 for (vma = mm->mmap; vma; vma = vma->vm_next) { 714 if (vma->vm_start > addr) 715 return NULL; 716 if (vma->vm_end > addr) { 717 vmacache_update(addr, vma); 718 return vma; 719 } 720 } 721 722 return NULL; 723 } 724 EXPORT_SYMBOL(find_vma); 725 726 /* 727 * find a VMA 728 * - we don't extend stack VMAs under NOMMU conditions 729 */ 730 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 731 { 732 return find_vma(mm, addr); 733 } 734 735 /* 736 * expand a stack to a given address 737 * - not supported under NOMMU conditions 738 */ 739 int expand_stack(struct vm_area_struct *vma, unsigned long address) 740 { 741 return -ENOMEM; 742 } 743 744 /* 745 * look up the first VMA exactly that exactly matches addr 746 * - should be called with mm->mmap_sem at least held readlocked 747 */ 748 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 749 unsigned long addr, 750 unsigned long len) 751 { 752 struct vm_area_struct *vma; 753 unsigned long end = addr + len; 754 755 /* check the cache first */ 756 vma = vmacache_find_exact(mm, addr, end); 757 if (vma) 758 return vma; 759 760 /* trawl the list (there may be multiple mappings in which addr 761 * resides) */ 762 for (vma = mm->mmap; vma; vma = vma->vm_next) { 763 if (vma->vm_start < addr) 764 continue; 765 if (vma->vm_start > addr) 766 return NULL; 767 if (vma->vm_end == end) { 768 vmacache_update(addr, vma); 769 return vma; 770 } 771 } 772 773 return NULL; 774 } 775 776 /* 777 * determine whether a mapping should be permitted and, if so, what sort of 778 * mapping we're capable of supporting 779 */ 780 static int validate_mmap_request(struct file *file, 781 unsigned long addr, 782 unsigned long len, 783 unsigned long prot, 784 unsigned long flags, 785 unsigned long pgoff, 786 unsigned long *_capabilities) 787 { 788 unsigned long capabilities, rlen; 789 int ret; 790 791 /* do the simple checks first */ 792 if (flags & MAP_FIXED) 793 return -EINVAL; 794 795 if ((flags & MAP_TYPE) != MAP_PRIVATE && 796 (flags & MAP_TYPE) != MAP_SHARED) 797 return -EINVAL; 798 799 if (!len) 800 return -EINVAL; 801 802 /* Careful about overflows.. */ 803 rlen = PAGE_ALIGN(len); 804 if (!rlen || rlen > TASK_SIZE) 805 return -ENOMEM; 806 807 /* offset overflow? */ 808 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 809 return -EOVERFLOW; 810 811 if (file) { 812 /* files must support mmap */ 813 if (!file->f_op->mmap) 814 return -ENODEV; 815 816 /* work out if what we've got could possibly be shared 817 * - we support chardevs that provide their own "memory" 818 * - we support files/blockdevs that are memory backed 819 */ 820 if (file->f_op->mmap_capabilities) { 821 capabilities = file->f_op->mmap_capabilities(file); 822 } else { 823 /* no explicit capabilities set, so assume some 824 * defaults */ 825 switch (file_inode(file)->i_mode & S_IFMT) { 826 case S_IFREG: 827 case S_IFBLK: 828 capabilities = NOMMU_MAP_COPY; 829 break; 830 831 case S_IFCHR: 832 capabilities = 833 NOMMU_MAP_DIRECT | 834 NOMMU_MAP_READ | 835 NOMMU_MAP_WRITE; 836 break; 837 838 default: 839 return -EINVAL; 840 } 841 } 842 843 /* eliminate any capabilities that we can't support on this 844 * device */ 845 if (!file->f_op->get_unmapped_area) 846 capabilities &= ~NOMMU_MAP_DIRECT; 847 if (!(file->f_mode & FMODE_CAN_READ)) 848 capabilities &= ~NOMMU_MAP_COPY; 849 850 /* The file shall have been opened with read permission. */ 851 if (!(file->f_mode & FMODE_READ)) 852 return -EACCES; 853 854 if (flags & MAP_SHARED) { 855 /* do checks for writing, appending and locking */ 856 if ((prot & PROT_WRITE) && 857 !(file->f_mode & FMODE_WRITE)) 858 return -EACCES; 859 860 if (IS_APPEND(file_inode(file)) && 861 (file->f_mode & FMODE_WRITE)) 862 return -EACCES; 863 864 if (locks_verify_locked(file)) 865 return -EAGAIN; 866 867 if (!(capabilities & NOMMU_MAP_DIRECT)) 868 return -ENODEV; 869 870 /* we mustn't privatise shared mappings */ 871 capabilities &= ~NOMMU_MAP_COPY; 872 } else { 873 /* we're going to read the file into private memory we 874 * allocate */ 875 if (!(capabilities & NOMMU_MAP_COPY)) 876 return -ENODEV; 877 878 /* we don't permit a private writable mapping to be 879 * shared with the backing device */ 880 if (prot & PROT_WRITE) 881 capabilities &= ~NOMMU_MAP_DIRECT; 882 } 883 884 if (capabilities & NOMMU_MAP_DIRECT) { 885 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 886 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 887 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 888 ) { 889 capabilities &= ~NOMMU_MAP_DIRECT; 890 if (flags & MAP_SHARED) { 891 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 892 return -EINVAL; 893 } 894 } 895 } 896 897 /* handle executable mappings and implied executable 898 * mappings */ 899 if (path_noexec(&file->f_path)) { 900 if (prot & PROT_EXEC) 901 return -EPERM; 902 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 903 /* handle implication of PROT_EXEC by PROT_READ */ 904 if (current->personality & READ_IMPLIES_EXEC) { 905 if (capabilities & NOMMU_MAP_EXEC) 906 prot |= PROT_EXEC; 907 } 908 } else if ((prot & PROT_READ) && 909 (prot & PROT_EXEC) && 910 !(capabilities & NOMMU_MAP_EXEC) 911 ) { 912 /* backing file is not executable, try to copy */ 913 capabilities &= ~NOMMU_MAP_DIRECT; 914 } 915 } else { 916 /* anonymous mappings are always memory backed and can be 917 * privately mapped 918 */ 919 capabilities = NOMMU_MAP_COPY; 920 921 /* handle PROT_EXEC implication by PROT_READ */ 922 if ((prot & PROT_READ) && 923 (current->personality & READ_IMPLIES_EXEC)) 924 prot |= PROT_EXEC; 925 } 926 927 /* allow the security API to have its say */ 928 ret = security_mmap_addr(addr); 929 if (ret < 0) 930 return ret; 931 932 /* looks okay */ 933 *_capabilities = capabilities; 934 return 0; 935 } 936 937 /* 938 * we've determined that we can make the mapping, now translate what we 939 * now know into VMA flags 940 */ 941 static unsigned long determine_vm_flags(struct file *file, 942 unsigned long prot, 943 unsigned long flags, 944 unsigned long capabilities) 945 { 946 unsigned long vm_flags; 947 948 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags); 949 /* vm_flags |= mm->def_flags; */ 950 951 if (!(capabilities & NOMMU_MAP_DIRECT)) { 952 /* attempt to share read-only copies of mapped file chunks */ 953 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 954 if (file && !(prot & PROT_WRITE)) 955 vm_flags |= VM_MAYSHARE; 956 } else { 957 /* overlay a shareable mapping on the backing device or inode 958 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 959 * romfs/cramfs */ 960 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS); 961 if (flags & MAP_SHARED) 962 vm_flags |= VM_SHARED; 963 } 964 965 /* refuse to let anyone share private mappings with this process if 966 * it's being traced - otherwise breakpoints set in it may interfere 967 * with another untraced process 968 */ 969 if ((flags & MAP_PRIVATE) && current->ptrace) 970 vm_flags &= ~VM_MAYSHARE; 971 972 return vm_flags; 973 } 974 975 /* 976 * set up a shared mapping on a file (the driver or filesystem provides and 977 * pins the storage) 978 */ 979 static int do_mmap_shared_file(struct vm_area_struct *vma) 980 { 981 int ret; 982 983 ret = call_mmap(vma->vm_file, vma); 984 if (ret == 0) { 985 vma->vm_region->vm_top = vma->vm_region->vm_end; 986 return 0; 987 } 988 if (ret != -ENOSYS) 989 return ret; 990 991 /* getting -ENOSYS indicates that direct mmap isn't possible (as 992 * opposed to tried but failed) so we can only give a suitable error as 993 * it's not possible to make a private copy if MAP_SHARED was given */ 994 return -ENODEV; 995 } 996 997 /* 998 * set up a private mapping or an anonymous shared mapping 999 */ 1000 static int do_mmap_private(struct vm_area_struct *vma, 1001 struct vm_region *region, 1002 unsigned long len, 1003 unsigned long capabilities) 1004 { 1005 unsigned long total, point; 1006 void *base; 1007 int ret, order; 1008 1009 /* invoke the file's mapping function so that it can keep track of 1010 * shared mappings on devices or memory 1011 * - VM_MAYSHARE will be set if it may attempt to share 1012 */ 1013 if (capabilities & NOMMU_MAP_DIRECT) { 1014 ret = call_mmap(vma->vm_file, vma); 1015 if (ret == 0) { 1016 /* shouldn't return success if we're not sharing */ 1017 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 1018 vma->vm_region->vm_top = vma->vm_region->vm_end; 1019 return 0; 1020 } 1021 if (ret != -ENOSYS) 1022 return ret; 1023 1024 /* getting an ENOSYS error indicates that direct mmap isn't 1025 * possible (as opposed to tried but failed) so we'll try to 1026 * make a private copy of the data and map that instead */ 1027 } 1028 1029 1030 /* allocate some memory to hold the mapping 1031 * - note that this may not return a page-aligned address if the object 1032 * we're allocating is smaller than a page 1033 */ 1034 order = get_order(len); 1035 total = 1 << order; 1036 point = len >> PAGE_SHIFT; 1037 1038 /* we don't want to allocate a power-of-2 sized page set */ 1039 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 1040 total = point; 1041 1042 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 1043 if (!base) 1044 goto enomem; 1045 1046 atomic_long_add(total, &mmap_pages_allocated); 1047 1048 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1049 region->vm_start = (unsigned long) base; 1050 region->vm_end = region->vm_start + len; 1051 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1052 1053 vma->vm_start = region->vm_start; 1054 vma->vm_end = region->vm_start + len; 1055 1056 if (vma->vm_file) { 1057 /* read the contents of a file into the copy */ 1058 loff_t fpos; 1059 1060 fpos = vma->vm_pgoff; 1061 fpos <<= PAGE_SHIFT; 1062 1063 ret = kernel_read(vma->vm_file, base, len, &fpos); 1064 if (ret < 0) 1065 goto error_free; 1066 1067 /* clear the last little bit */ 1068 if (ret < len) 1069 memset(base + ret, 0, len - ret); 1070 1071 } else { 1072 vma_set_anonymous(vma); 1073 } 1074 1075 return 0; 1076 1077 error_free: 1078 free_page_series(region->vm_start, region->vm_top); 1079 region->vm_start = vma->vm_start = 0; 1080 region->vm_end = vma->vm_end = 0; 1081 region->vm_top = 0; 1082 return ret; 1083 1084 enomem: 1085 pr_err("Allocation of length %lu from process %d (%s) failed\n", 1086 len, current->pid, current->comm); 1087 show_free_areas(0, NULL); 1088 return -ENOMEM; 1089 } 1090 1091 /* 1092 * handle mapping creation for uClinux 1093 */ 1094 unsigned long do_mmap(struct file *file, 1095 unsigned long addr, 1096 unsigned long len, 1097 unsigned long prot, 1098 unsigned long flags, 1099 vm_flags_t vm_flags, 1100 unsigned long pgoff, 1101 unsigned long *populate, 1102 struct list_head *uf) 1103 { 1104 struct vm_area_struct *vma; 1105 struct vm_region *region; 1106 struct rb_node *rb; 1107 unsigned long capabilities, result; 1108 int ret; 1109 1110 *populate = 0; 1111 1112 /* decide whether we should attempt the mapping, and if so what sort of 1113 * mapping */ 1114 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1115 &capabilities); 1116 if (ret < 0) 1117 return ret; 1118 1119 /* we ignore the address hint */ 1120 addr = 0; 1121 len = PAGE_ALIGN(len); 1122 1123 /* we've determined that we can make the mapping, now translate what we 1124 * now know into VMA flags */ 1125 vm_flags |= determine_vm_flags(file, prot, flags, capabilities); 1126 1127 /* we're going to need to record the mapping */ 1128 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1129 if (!region) 1130 goto error_getting_region; 1131 1132 vma = vm_area_alloc(current->mm); 1133 if (!vma) 1134 goto error_getting_vma; 1135 1136 region->vm_usage = 1; 1137 region->vm_flags = vm_flags; 1138 region->vm_pgoff = pgoff; 1139 1140 vma->vm_flags = vm_flags; 1141 vma->vm_pgoff = pgoff; 1142 1143 if (file) { 1144 region->vm_file = get_file(file); 1145 vma->vm_file = get_file(file); 1146 } 1147 1148 down_write(&nommu_region_sem); 1149 1150 /* if we want to share, we need to check for regions created by other 1151 * mmap() calls that overlap with our proposed mapping 1152 * - we can only share with a superset match on most regular files 1153 * - shared mappings on character devices and memory backed files are 1154 * permitted to overlap inexactly as far as we are concerned for in 1155 * these cases, sharing is handled in the driver or filesystem rather 1156 * than here 1157 */ 1158 if (vm_flags & VM_MAYSHARE) { 1159 struct vm_region *pregion; 1160 unsigned long pglen, rpglen, pgend, rpgend, start; 1161 1162 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1163 pgend = pgoff + pglen; 1164 1165 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1166 pregion = rb_entry(rb, struct vm_region, vm_rb); 1167 1168 if (!(pregion->vm_flags & VM_MAYSHARE)) 1169 continue; 1170 1171 /* search for overlapping mappings on the same file */ 1172 if (file_inode(pregion->vm_file) != 1173 file_inode(file)) 1174 continue; 1175 1176 if (pregion->vm_pgoff >= pgend) 1177 continue; 1178 1179 rpglen = pregion->vm_end - pregion->vm_start; 1180 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1181 rpgend = pregion->vm_pgoff + rpglen; 1182 if (pgoff >= rpgend) 1183 continue; 1184 1185 /* handle inexactly overlapping matches between 1186 * mappings */ 1187 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1188 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1189 /* new mapping is not a subset of the region */ 1190 if (!(capabilities & NOMMU_MAP_DIRECT)) 1191 goto sharing_violation; 1192 continue; 1193 } 1194 1195 /* we've found a region we can share */ 1196 pregion->vm_usage++; 1197 vma->vm_region = pregion; 1198 start = pregion->vm_start; 1199 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1200 vma->vm_start = start; 1201 vma->vm_end = start + len; 1202 1203 if (pregion->vm_flags & VM_MAPPED_COPY) 1204 vma->vm_flags |= VM_MAPPED_COPY; 1205 else { 1206 ret = do_mmap_shared_file(vma); 1207 if (ret < 0) { 1208 vma->vm_region = NULL; 1209 vma->vm_start = 0; 1210 vma->vm_end = 0; 1211 pregion->vm_usage--; 1212 pregion = NULL; 1213 goto error_just_free; 1214 } 1215 } 1216 fput(region->vm_file); 1217 kmem_cache_free(vm_region_jar, region); 1218 region = pregion; 1219 result = start; 1220 goto share; 1221 } 1222 1223 /* obtain the address at which to make a shared mapping 1224 * - this is the hook for quasi-memory character devices to 1225 * tell us the location of a shared mapping 1226 */ 1227 if (capabilities & NOMMU_MAP_DIRECT) { 1228 addr = file->f_op->get_unmapped_area(file, addr, len, 1229 pgoff, flags); 1230 if (IS_ERR_VALUE(addr)) { 1231 ret = addr; 1232 if (ret != -ENOSYS) 1233 goto error_just_free; 1234 1235 /* the driver refused to tell us where to site 1236 * the mapping so we'll have to attempt to copy 1237 * it */ 1238 ret = -ENODEV; 1239 if (!(capabilities & NOMMU_MAP_COPY)) 1240 goto error_just_free; 1241 1242 capabilities &= ~NOMMU_MAP_DIRECT; 1243 } else { 1244 vma->vm_start = region->vm_start = addr; 1245 vma->vm_end = region->vm_end = addr + len; 1246 } 1247 } 1248 } 1249 1250 vma->vm_region = region; 1251 1252 /* set up the mapping 1253 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1254 */ 1255 if (file && vma->vm_flags & VM_SHARED) 1256 ret = do_mmap_shared_file(vma); 1257 else 1258 ret = do_mmap_private(vma, region, len, capabilities); 1259 if (ret < 0) 1260 goto error_just_free; 1261 add_nommu_region(region); 1262 1263 /* clear anonymous mappings that don't ask for uninitialized data */ 1264 if (!vma->vm_file && 1265 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) || 1266 !(flags & MAP_UNINITIALIZED))) 1267 memset((void *)region->vm_start, 0, 1268 region->vm_end - region->vm_start); 1269 1270 /* okay... we have a mapping; now we have to register it */ 1271 result = vma->vm_start; 1272 1273 current->mm->total_vm += len >> PAGE_SHIFT; 1274 1275 share: 1276 add_vma_to_mm(current->mm, vma); 1277 1278 /* we flush the region from the icache only when the first executable 1279 * mapping of it is made */ 1280 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1281 flush_icache_range(region->vm_start, region->vm_end); 1282 region->vm_icache_flushed = true; 1283 } 1284 1285 up_write(&nommu_region_sem); 1286 1287 return result; 1288 1289 error_just_free: 1290 up_write(&nommu_region_sem); 1291 error: 1292 if (region->vm_file) 1293 fput(region->vm_file); 1294 kmem_cache_free(vm_region_jar, region); 1295 if (vma->vm_file) 1296 fput(vma->vm_file); 1297 vm_area_free(vma); 1298 return ret; 1299 1300 sharing_violation: 1301 up_write(&nommu_region_sem); 1302 pr_warn("Attempt to share mismatched mappings\n"); 1303 ret = -EINVAL; 1304 goto error; 1305 1306 error_getting_vma: 1307 kmem_cache_free(vm_region_jar, region); 1308 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1309 len, current->pid); 1310 show_free_areas(0, NULL); 1311 return -ENOMEM; 1312 1313 error_getting_region: 1314 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1315 len, current->pid); 1316 show_free_areas(0, NULL); 1317 return -ENOMEM; 1318 } 1319 1320 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1321 unsigned long prot, unsigned long flags, 1322 unsigned long fd, unsigned long pgoff) 1323 { 1324 struct file *file = NULL; 1325 unsigned long retval = -EBADF; 1326 1327 audit_mmap_fd(fd, flags); 1328 if (!(flags & MAP_ANONYMOUS)) { 1329 file = fget(fd); 1330 if (!file) 1331 goto out; 1332 } 1333 1334 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1335 1336 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1337 1338 if (file) 1339 fput(file); 1340 out: 1341 return retval; 1342 } 1343 1344 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1345 unsigned long, prot, unsigned long, flags, 1346 unsigned long, fd, unsigned long, pgoff) 1347 { 1348 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1349 } 1350 1351 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1352 struct mmap_arg_struct { 1353 unsigned long addr; 1354 unsigned long len; 1355 unsigned long prot; 1356 unsigned long flags; 1357 unsigned long fd; 1358 unsigned long offset; 1359 }; 1360 1361 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1362 { 1363 struct mmap_arg_struct a; 1364 1365 if (copy_from_user(&a, arg, sizeof(a))) 1366 return -EFAULT; 1367 if (offset_in_page(a.offset)) 1368 return -EINVAL; 1369 1370 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1371 a.offset >> PAGE_SHIFT); 1372 } 1373 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1374 1375 /* 1376 * split a vma into two pieces at address 'addr', a new vma is allocated either 1377 * for the first part or the tail. 1378 */ 1379 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1380 unsigned long addr, int new_below) 1381 { 1382 struct vm_area_struct *new; 1383 struct vm_region *region; 1384 unsigned long npages; 1385 1386 /* we're only permitted to split anonymous regions (these should have 1387 * only a single usage on the region) */ 1388 if (vma->vm_file) 1389 return -ENOMEM; 1390 1391 if (mm->map_count >= sysctl_max_map_count) 1392 return -ENOMEM; 1393 1394 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1395 if (!region) 1396 return -ENOMEM; 1397 1398 new = vm_area_dup(vma); 1399 if (!new) { 1400 kmem_cache_free(vm_region_jar, region); 1401 return -ENOMEM; 1402 } 1403 1404 /* most fields are the same, copy all, and then fixup */ 1405 *region = *vma->vm_region; 1406 new->vm_region = region; 1407 1408 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1409 1410 if (new_below) { 1411 region->vm_top = region->vm_end = new->vm_end = addr; 1412 } else { 1413 region->vm_start = new->vm_start = addr; 1414 region->vm_pgoff = new->vm_pgoff += npages; 1415 } 1416 1417 if (new->vm_ops && new->vm_ops->open) 1418 new->vm_ops->open(new); 1419 1420 delete_vma_from_mm(vma); 1421 down_write(&nommu_region_sem); 1422 delete_nommu_region(vma->vm_region); 1423 if (new_below) { 1424 vma->vm_region->vm_start = vma->vm_start = addr; 1425 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1426 } else { 1427 vma->vm_region->vm_end = vma->vm_end = addr; 1428 vma->vm_region->vm_top = addr; 1429 } 1430 add_nommu_region(vma->vm_region); 1431 add_nommu_region(new->vm_region); 1432 up_write(&nommu_region_sem); 1433 add_vma_to_mm(mm, vma); 1434 add_vma_to_mm(mm, new); 1435 return 0; 1436 } 1437 1438 /* 1439 * shrink a VMA by removing the specified chunk from either the beginning or 1440 * the end 1441 */ 1442 static int shrink_vma(struct mm_struct *mm, 1443 struct vm_area_struct *vma, 1444 unsigned long from, unsigned long to) 1445 { 1446 struct vm_region *region; 1447 1448 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1449 * and list */ 1450 delete_vma_from_mm(vma); 1451 if (from > vma->vm_start) 1452 vma->vm_end = from; 1453 else 1454 vma->vm_start = to; 1455 add_vma_to_mm(mm, vma); 1456 1457 /* cut the backing region down to size */ 1458 region = vma->vm_region; 1459 BUG_ON(region->vm_usage != 1); 1460 1461 down_write(&nommu_region_sem); 1462 delete_nommu_region(region); 1463 if (from > region->vm_start) { 1464 to = region->vm_top; 1465 region->vm_top = region->vm_end = from; 1466 } else { 1467 region->vm_start = to; 1468 } 1469 add_nommu_region(region); 1470 up_write(&nommu_region_sem); 1471 1472 free_page_series(from, to); 1473 return 0; 1474 } 1475 1476 /* 1477 * release a mapping 1478 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1479 * VMA, though it need not cover the whole VMA 1480 */ 1481 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf) 1482 { 1483 struct vm_area_struct *vma; 1484 unsigned long end; 1485 int ret; 1486 1487 len = PAGE_ALIGN(len); 1488 if (len == 0) 1489 return -EINVAL; 1490 1491 end = start + len; 1492 1493 /* find the first potentially overlapping VMA */ 1494 vma = find_vma(mm, start); 1495 if (!vma) { 1496 static int limit; 1497 if (limit < 5) { 1498 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1499 current->pid, current->comm, 1500 start, start + len - 1); 1501 limit++; 1502 } 1503 return -EINVAL; 1504 } 1505 1506 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1507 if (vma->vm_file) { 1508 do { 1509 if (start > vma->vm_start) 1510 return -EINVAL; 1511 if (end == vma->vm_end) 1512 goto erase_whole_vma; 1513 vma = vma->vm_next; 1514 } while (vma); 1515 return -EINVAL; 1516 } else { 1517 /* the chunk must be a subset of the VMA found */ 1518 if (start == vma->vm_start && end == vma->vm_end) 1519 goto erase_whole_vma; 1520 if (start < vma->vm_start || end > vma->vm_end) 1521 return -EINVAL; 1522 if (offset_in_page(start)) 1523 return -EINVAL; 1524 if (end != vma->vm_end && offset_in_page(end)) 1525 return -EINVAL; 1526 if (start != vma->vm_start && end != vma->vm_end) { 1527 ret = split_vma(mm, vma, start, 1); 1528 if (ret < 0) 1529 return ret; 1530 } 1531 return shrink_vma(mm, vma, start, end); 1532 } 1533 1534 erase_whole_vma: 1535 delete_vma_from_mm(vma); 1536 delete_vma(mm, vma); 1537 return 0; 1538 } 1539 EXPORT_SYMBOL(do_munmap); 1540 1541 int vm_munmap(unsigned long addr, size_t len) 1542 { 1543 struct mm_struct *mm = current->mm; 1544 int ret; 1545 1546 down_write(&mm->mmap_sem); 1547 ret = do_munmap(mm, addr, len, NULL); 1548 up_write(&mm->mmap_sem); 1549 return ret; 1550 } 1551 EXPORT_SYMBOL(vm_munmap); 1552 1553 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1554 { 1555 return vm_munmap(addr, len); 1556 } 1557 1558 /* 1559 * release all the mappings made in a process's VM space 1560 */ 1561 void exit_mmap(struct mm_struct *mm) 1562 { 1563 struct vm_area_struct *vma; 1564 1565 if (!mm) 1566 return; 1567 1568 mm->total_vm = 0; 1569 1570 while ((vma = mm->mmap)) { 1571 mm->mmap = vma->vm_next; 1572 delete_vma_from_mm(vma); 1573 delete_vma(mm, vma); 1574 cond_resched(); 1575 } 1576 } 1577 1578 int vm_brk(unsigned long addr, unsigned long len) 1579 { 1580 return -ENOMEM; 1581 } 1582 1583 /* 1584 * expand (or shrink) an existing mapping, potentially moving it at the same 1585 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1586 * 1587 * under NOMMU conditions, we only permit changing a mapping's size, and only 1588 * as long as it stays within the region allocated by do_mmap_private() and the 1589 * block is not shareable 1590 * 1591 * MREMAP_FIXED is not supported under NOMMU conditions 1592 */ 1593 static unsigned long do_mremap(unsigned long addr, 1594 unsigned long old_len, unsigned long new_len, 1595 unsigned long flags, unsigned long new_addr) 1596 { 1597 struct vm_area_struct *vma; 1598 1599 /* insanity checks first */ 1600 old_len = PAGE_ALIGN(old_len); 1601 new_len = PAGE_ALIGN(new_len); 1602 if (old_len == 0 || new_len == 0) 1603 return (unsigned long) -EINVAL; 1604 1605 if (offset_in_page(addr)) 1606 return -EINVAL; 1607 1608 if (flags & MREMAP_FIXED && new_addr != addr) 1609 return (unsigned long) -EINVAL; 1610 1611 vma = find_vma_exact(current->mm, addr, old_len); 1612 if (!vma) 1613 return (unsigned long) -EINVAL; 1614 1615 if (vma->vm_end != vma->vm_start + old_len) 1616 return (unsigned long) -EFAULT; 1617 1618 if (vma->vm_flags & VM_MAYSHARE) 1619 return (unsigned long) -EPERM; 1620 1621 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1622 return (unsigned long) -ENOMEM; 1623 1624 /* all checks complete - do it */ 1625 vma->vm_end = vma->vm_start + new_len; 1626 return vma->vm_start; 1627 } 1628 1629 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1630 unsigned long, new_len, unsigned long, flags, 1631 unsigned long, new_addr) 1632 { 1633 unsigned long ret; 1634 1635 down_write(¤t->mm->mmap_sem); 1636 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1637 up_write(¤t->mm->mmap_sem); 1638 return ret; 1639 } 1640 1641 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1642 unsigned int foll_flags) 1643 { 1644 return NULL; 1645 } 1646 1647 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1648 unsigned long pfn, unsigned long size, pgprot_t prot) 1649 { 1650 if (addr != (pfn << PAGE_SHIFT)) 1651 return -EINVAL; 1652 1653 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1654 return 0; 1655 } 1656 EXPORT_SYMBOL(remap_pfn_range); 1657 1658 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1659 { 1660 unsigned long pfn = start >> PAGE_SHIFT; 1661 unsigned long vm_len = vma->vm_end - vma->vm_start; 1662 1663 pfn += vma->vm_pgoff; 1664 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1665 } 1666 EXPORT_SYMBOL(vm_iomap_memory); 1667 1668 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1669 unsigned long pgoff) 1670 { 1671 unsigned int size = vma->vm_end - vma->vm_start; 1672 1673 if (!(vma->vm_flags & VM_USERMAP)) 1674 return -EINVAL; 1675 1676 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1677 vma->vm_end = vma->vm_start + size; 1678 1679 return 0; 1680 } 1681 EXPORT_SYMBOL(remap_vmalloc_range); 1682 1683 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, 1684 unsigned long len, unsigned long pgoff, unsigned long flags) 1685 { 1686 return -ENOMEM; 1687 } 1688 1689 vm_fault_t filemap_fault(struct vm_fault *vmf) 1690 { 1691 BUG(); 1692 return 0; 1693 } 1694 EXPORT_SYMBOL(filemap_fault); 1695 1696 void filemap_map_pages(struct vm_fault *vmf, 1697 pgoff_t start_pgoff, pgoff_t end_pgoff) 1698 { 1699 BUG(); 1700 } 1701 EXPORT_SYMBOL(filemap_map_pages); 1702 1703 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1704 unsigned long addr, void *buf, int len, unsigned int gup_flags) 1705 { 1706 struct vm_area_struct *vma; 1707 int write = gup_flags & FOLL_WRITE; 1708 1709 if (down_read_killable(&mm->mmap_sem)) 1710 return 0; 1711 1712 /* the access must start within one of the target process's mappings */ 1713 vma = find_vma(mm, addr); 1714 if (vma) { 1715 /* don't overrun this mapping */ 1716 if (addr + len >= vma->vm_end) 1717 len = vma->vm_end - addr; 1718 1719 /* only read or write mappings where it is permitted */ 1720 if (write && vma->vm_flags & VM_MAYWRITE) 1721 copy_to_user_page(vma, NULL, addr, 1722 (void *) addr, buf, len); 1723 else if (!write && vma->vm_flags & VM_MAYREAD) 1724 copy_from_user_page(vma, NULL, addr, 1725 buf, (void *) addr, len); 1726 else 1727 len = 0; 1728 } else { 1729 len = 0; 1730 } 1731 1732 up_read(&mm->mmap_sem); 1733 1734 return len; 1735 } 1736 1737 /** 1738 * access_remote_vm - access another process' address space 1739 * @mm: the mm_struct of the target address space 1740 * @addr: start address to access 1741 * @buf: source or destination buffer 1742 * @len: number of bytes to transfer 1743 * @gup_flags: flags modifying lookup behaviour 1744 * 1745 * The caller must hold a reference on @mm. 1746 */ 1747 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1748 void *buf, int len, unsigned int gup_flags) 1749 { 1750 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 1751 } 1752 1753 /* 1754 * Access another process' address space. 1755 * - source/target buffer must be kernel space 1756 */ 1757 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1758 unsigned int gup_flags) 1759 { 1760 struct mm_struct *mm; 1761 1762 if (addr + len < addr) 1763 return 0; 1764 1765 mm = get_task_mm(tsk); 1766 if (!mm) 1767 return 0; 1768 1769 len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 1770 1771 mmput(mm); 1772 return len; 1773 } 1774 EXPORT_SYMBOL_GPL(access_process_vm); 1775 1776 /** 1777 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1778 * @inode: The inode to check 1779 * @size: The current filesize of the inode 1780 * @newsize: The proposed filesize of the inode 1781 * 1782 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1783 * make sure that that any outstanding VMAs aren't broken and then shrink the 1784 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't 1785 * automatically grant mappings that are too large. 1786 */ 1787 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1788 size_t newsize) 1789 { 1790 struct vm_area_struct *vma; 1791 struct vm_region *region; 1792 pgoff_t low, high; 1793 size_t r_size, r_top; 1794 1795 low = newsize >> PAGE_SHIFT; 1796 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1797 1798 down_write(&nommu_region_sem); 1799 i_mmap_lock_read(inode->i_mapping); 1800 1801 /* search for VMAs that fall within the dead zone */ 1802 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1803 /* found one - only interested if it's shared out of the page 1804 * cache */ 1805 if (vma->vm_flags & VM_SHARED) { 1806 i_mmap_unlock_read(inode->i_mapping); 1807 up_write(&nommu_region_sem); 1808 return -ETXTBSY; /* not quite true, but near enough */ 1809 } 1810 } 1811 1812 /* reduce any regions that overlap the dead zone - if in existence, 1813 * these will be pointed to by VMAs that don't overlap the dead zone 1814 * 1815 * we don't check for any regions that start beyond the EOF as there 1816 * shouldn't be any 1817 */ 1818 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1819 if (!(vma->vm_flags & VM_SHARED)) 1820 continue; 1821 1822 region = vma->vm_region; 1823 r_size = region->vm_top - region->vm_start; 1824 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1825 1826 if (r_top > newsize) { 1827 region->vm_top -= r_top - newsize; 1828 if (region->vm_end > region->vm_top) 1829 region->vm_end = region->vm_top; 1830 } 1831 } 1832 1833 i_mmap_unlock_read(inode->i_mapping); 1834 up_write(&nommu_region_sem); 1835 return 0; 1836 } 1837 1838 /* 1839 * Initialise sysctl_user_reserve_kbytes. 1840 * 1841 * This is intended to prevent a user from starting a single memory hogging 1842 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1843 * mode. 1844 * 1845 * The default value is min(3% of free memory, 128MB) 1846 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1847 */ 1848 static int __meminit init_user_reserve(void) 1849 { 1850 unsigned long free_kbytes; 1851 1852 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1853 1854 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1855 return 0; 1856 } 1857 subsys_initcall(init_user_reserve); 1858 1859 /* 1860 * Initialise sysctl_admin_reserve_kbytes. 1861 * 1862 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1863 * to log in and kill a memory hogging process. 1864 * 1865 * Systems with more than 256MB will reserve 8MB, enough to recover 1866 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1867 * only reserve 3% of free pages by default. 1868 */ 1869 static int __meminit init_admin_reserve(void) 1870 { 1871 unsigned long free_kbytes; 1872 1873 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1874 1875 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1876 return 0; 1877 } 1878 subsys_initcall(init_admin_reserve); 1879