1 /* 2 * linux/mm/nommu.c 3 * 4 * Replacement code for mm functions to support CPU's that don't 5 * have any form of memory management unit (thus no virtual memory). 6 * 7 * See Documentation/nommu-mmap.txt 8 * 9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 13 * Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org> 14 */ 15 16 #include <linux/module.h> 17 #include <linux/mm.h> 18 #include <linux/mman.h> 19 #include <linux/swap.h> 20 #include <linux/file.h> 21 #include <linux/highmem.h> 22 #include <linux/pagemap.h> 23 #include <linux/slab.h> 24 #include <linux/vmalloc.h> 25 #include <linux/tracehook.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/mount.h> 29 #include <linux/personality.h> 30 #include <linux/security.h> 31 #include <linux/syscalls.h> 32 33 #include <asm/uaccess.h> 34 #include <asm/tlb.h> 35 #include <asm/tlbflush.h> 36 #include "internal.h" 37 38 static inline __attribute__((format(printf, 1, 2))) 39 void no_printk(const char *fmt, ...) 40 { 41 } 42 43 #if 0 44 #define kenter(FMT, ...) \ 45 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) 46 #define kleave(FMT, ...) \ 47 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) 48 #define kdebug(FMT, ...) \ 49 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__) 50 #else 51 #define kenter(FMT, ...) \ 52 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) 53 #define kleave(FMT, ...) \ 54 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) 55 #define kdebug(FMT, ...) \ 56 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__) 57 #endif 58 59 #include "internal.h" 60 61 void *high_memory; 62 struct page *mem_map; 63 unsigned long max_mapnr; 64 unsigned long num_physpages; 65 struct percpu_counter vm_committed_as; 66 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 67 int sysctl_overcommit_ratio = 50; /* default is 50% */ 68 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT; 69 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 70 int heap_stack_gap = 0; 71 72 atomic_long_t mmap_pages_allocated; 73 74 EXPORT_SYMBOL(mem_map); 75 EXPORT_SYMBOL(num_physpages); 76 77 /* list of mapped, potentially shareable regions */ 78 static struct kmem_cache *vm_region_jar; 79 struct rb_root nommu_region_tree = RB_ROOT; 80 DECLARE_RWSEM(nommu_region_sem); 81 82 struct vm_operations_struct generic_file_vm_ops = { 83 }; 84 85 /* 86 * Handle all mappings that got truncated by a "truncate()" 87 * system call. 88 * 89 * NOTE! We have to be ready to update the memory sharing 90 * between the file and the memory map for a potential last 91 * incomplete page. Ugly, but necessary. 92 */ 93 int vmtruncate(struct inode *inode, loff_t offset) 94 { 95 struct address_space *mapping = inode->i_mapping; 96 unsigned long limit; 97 98 if (inode->i_size < offset) 99 goto do_expand; 100 i_size_write(inode, offset); 101 102 truncate_inode_pages(mapping, offset); 103 goto out_truncate; 104 105 do_expand: 106 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 107 if (limit != RLIM_INFINITY && offset > limit) 108 goto out_sig; 109 if (offset > inode->i_sb->s_maxbytes) 110 goto out; 111 i_size_write(inode, offset); 112 113 out_truncate: 114 if (inode->i_op->truncate) 115 inode->i_op->truncate(inode); 116 return 0; 117 out_sig: 118 send_sig(SIGXFSZ, current, 0); 119 out: 120 return -EFBIG; 121 } 122 123 EXPORT_SYMBOL(vmtruncate); 124 125 /* 126 * Return the total memory allocated for this pointer, not 127 * just what the caller asked for. 128 * 129 * Doesn't have to be accurate, i.e. may have races. 130 */ 131 unsigned int kobjsize(const void *objp) 132 { 133 struct page *page; 134 135 /* 136 * If the object we have should not have ksize performed on it, 137 * return size of 0 138 */ 139 if (!objp || !virt_addr_valid(objp)) 140 return 0; 141 142 page = virt_to_head_page(objp); 143 144 /* 145 * If the allocator sets PageSlab, we know the pointer came from 146 * kmalloc(). 147 */ 148 if (PageSlab(page)) 149 return ksize(objp); 150 151 /* 152 * If it's not a compound page, see if we have a matching VMA 153 * region. This test is intentionally done in reverse order, 154 * so if there's no VMA, we still fall through and hand back 155 * PAGE_SIZE for 0-order pages. 156 */ 157 if (!PageCompound(page)) { 158 struct vm_area_struct *vma; 159 160 vma = find_vma(current->mm, (unsigned long)objp); 161 if (vma) 162 return vma->vm_end - vma->vm_start; 163 } 164 165 /* 166 * The ksize() function is only guaranteed to work for pointers 167 * returned by kmalloc(). So handle arbitrary pointers here. 168 */ 169 return PAGE_SIZE << compound_order(page); 170 } 171 172 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 173 unsigned long start, int nr_pages, int flags, 174 struct page **pages, struct vm_area_struct **vmas) 175 { 176 struct vm_area_struct *vma; 177 unsigned long vm_flags; 178 int i; 179 int write = !!(flags & GUP_FLAGS_WRITE); 180 int force = !!(flags & GUP_FLAGS_FORCE); 181 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS); 182 183 /* calculate required read or write permissions. 184 * - if 'force' is set, we only require the "MAY" flags. 185 */ 186 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 187 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 188 189 for (i = 0; i < nr_pages; i++) { 190 vma = find_vma(mm, start); 191 if (!vma) 192 goto finish_or_fault; 193 194 /* protect what we can, including chardevs */ 195 if (vma->vm_flags & (VM_IO | VM_PFNMAP) || 196 (!ignore && !(vm_flags & vma->vm_flags))) 197 goto finish_or_fault; 198 199 if (pages) { 200 pages[i] = virt_to_page(start); 201 if (pages[i]) 202 page_cache_get(pages[i]); 203 } 204 if (vmas) 205 vmas[i] = vma; 206 start += PAGE_SIZE; 207 } 208 209 return i; 210 211 finish_or_fault: 212 return i ? : -EFAULT; 213 } 214 215 216 /* 217 * get a list of pages in an address range belonging to the specified process 218 * and indicate the VMA that covers each page 219 * - this is potentially dodgy as we may end incrementing the page count of a 220 * slab page or a secondary page from a compound page 221 * - don't permit access to VMAs that don't support it, such as I/O mappings 222 */ 223 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 224 unsigned long start, int nr_pages, int write, int force, 225 struct page **pages, struct vm_area_struct **vmas) 226 { 227 int flags = 0; 228 229 if (write) 230 flags |= GUP_FLAGS_WRITE; 231 if (force) 232 flags |= GUP_FLAGS_FORCE; 233 234 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas); 235 } 236 EXPORT_SYMBOL(get_user_pages); 237 238 /** 239 * follow_pfn - look up PFN at a user virtual address 240 * @vma: memory mapping 241 * @address: user virtual address 242 * @pfn: location to store found PFN 243 * 244 * Only IO mappings and raw PFN mappings are allowed. 245 * 246 * Returns zero and the pfn at @pfn on success, -ve otherwise. 247 */ 248 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 249 unsigned long *pfn) 250 { 251 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 252 return -EINVAL; 253 254 *pfn = address >> PAGE_SHIFT; 255 return 0; 256 } 257 EXPORT_SYMBOL(follow_pfn); 258 259 DEFINE_RWLOCK(vmlist_lock); 260 struct vm_struct *vmlist; 261 262 void vfree(const void *addr) 263 { 264 kfree(addr); 265 } 266 EXPORT_SYMBOL(vfree); 267 268 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 269 { 270 /* 271 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 272 * returns only a logical address. 273 */ 274 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 275 } 276 EXPORT_SYMBOL(__vmalloc); 277 278 void *vmalloc_user(unsigned long size) 279 { 280 void *ret; 281 282 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 283 PAGE_KERNEL); 284 if (ret) { 285 struct vm_area_struct *vma; 286 287 down_write(¤t->mm->mmap_sem); 288 vma = find_vma(current->mm, (unsigned long)ret); 289 if (vma) 290 vma->vm_flags |= VM_USERMAP; 291 up_write(¤t->mm->mmap_sem); 292 } 293 294 return ret; 295 } 296 EXPORT_SYMBOL(vmalloc_user); 297 298 struct page *vmalloc_to_page(const void *addr) 299 { 300 return virt_to_page(addr); 301 } 302 EXPORT_SYMBOL(vmalloc_to_page); 303 304 unsigned long vmalloc_to_pfn(const void *addr) 305 { 306 return page_to_pfn(virt_to_page(addr)); 307 } 308 EXPORT_SYMBOL(vmalloc_to_pfn); 309 310 long vread(char *buf, char *addr, unsigned long count) 311 { 312 memcpy(buf, addr, count); 313 return count; 314 } 315 316 long vwrite(char *buf, char *addr, unsigned long count) 317 { 318 /* Don't allow overflow */ 319 if ((unsigned long) addr + count < count) 320 count = -(unsigned long) addr; 321 322 memcpy(addr, buf, count); 323 return(count); 324 } 325 326 /* 327 * vmalloc - allocate virtually continguos memory 328 * 329 * @size: allocation size 330 * 331 * Allocate enough pages to cover @size from the page level 332 * allocator and map them into continguos kernel virtual space. 333 * 334 * For tight control over page level allocator and protection flags 335 * use __vmalloc() instead. 336 */ 337 void *vmalloc(unsigned long size) 338 { 339 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 340 } 341 EXPORT_SYMBOL(vmalloc); 342 343 void *vmalloc_node(unsigned long size, int node) 344 { 345 return vmalloc(size); 346 } 347 EXPORT_SYMBOL(vmalloc_node); 348 349 #ifndef PAGE_KERNEL_EXEC 350 # define PAGE_KERNEL_EXEC PAGE_KERNEL 351 #endif 352 353 /** 354 * vmalloc_exec - allocate virtually contiguous, executable memory 355 * @size: allocation size 356 * 357 * Kernel-internal function to allocate enough pages to cover @size 358 * the page level allocator and map them into contiguous and 359 * executable kernel virtual space. 360 * 361 * For tight control over page level allocator and protection flags 362 * use __vmalloc() instead. 363 */ 364 365 void *vmalloc_exec(unsigned long size) 366 { 367 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 368 } 369 370 /** 371 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 372 * @size: allocation size 373 * 374 * Allocate enough 32bit PA addressable pages to cover @size from the 375 * page level allocator and map them into continguos kernel virtual space. 376 */ 377 void *vmalloc_32(unsigned long size) 378 { 379 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 380 } 381 EXPORT_SYMBOL(vmalloc_32); 382 383 /** 384 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 385 * @size: allocation size 386 * 387 * The resulting memory area is 32bit addressable and zeroed so it can be 388 * mapped to userspace without leaking data. 389 * 390 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 391 * remap_vmalloc_range() are permissible. 392 */ 393 void *vmalloc_32_user(unsigned long size) 394 { 395 /* 396 * We'll have to sort out the ZONE_DMA bits for 64-bit, 397 * but for now this can simply use vmalloc_user() directly. 398 */ 399 return vmalloc_user(size); 400 } 401 EXPORT_SYMBOL(vmalloc_32_user); 402 403 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 404 { 405 BUG(); 406 return NULL; 407 } 408 EXPORT_SYMBOL(vmap); 409 410 void vunmap(const void *addr) 411 { 412 BUG(); 413 } 414 EXPORT_SYMBOL(vunmap); 415 416 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 417 { 418 BUG(); 419 return NULL; 420 } 421 EXPORT_SYMBOL(vm_map_ram); 422 423 void vm_unmap_ram(const void *mem, unsigned int count) 424 { 425 BUG(); 426 } 427 EXPORT_SYMBOL(vm_unmap_ram); 428 429 void vm_unmap_aliases(void) 430 { 431 } 432 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 433 434 /* 435 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 436 * have one. 437 */ 438 void __attribute__((weak)) vmalloc_sync_all(void) 439 { 440 } 441 442 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 443 struct page *page) 444 { 445 return -EINVAL; 446 } 447 EXPORT_SYMBOL(vm_insert_page); 448 449 /* 450 * sys_brk() for the most part doesn't need the global kernel 451 * lock, except when an application is doing something nasty 452 * like trying to un-brk an area that has already been mapped 453 * to a regular file. in this case, the unmapping will need 454 * to invoke file system routines that need the global lock. 455 */ 456 SYSCALL_DEFINE1(brk, unsigned long, brk) 457 { 458 struct mm_struct *mm = current->mm; 459 460 if (brk < mm->start_brk || brk > mm->context.end_brk) 461 return mm->brk; 462 463 if (mm->brk == brk) 464 return mm->brk; 465 466 /* 467 * Always allow shrinking brk 468 */ 469 if (brk <= mm->brk) { 470 mm->brk = brk; 471 return brk; 472 } 473 474 /* 475 * Ok, looks good - let it rip. 476 */ 477 return mm->brk = brk; 478 } 479 480 /* 481 * initialise the VMA and region record slabs 482 */ 483 void __init mmap_init(void) 484 { 485 int ret; 486 487 ret = percpu_counter_init(&vm_committed_as, 0); 488 VM_BUG_ON(ret); 489 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC); 490 } 491 492 /* 493 * validate the region tree 494 * - the caller must hold the region lock 495 */ 496 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 497 static noinline void validate_nommu_regions(void) 498 { 499 struct vm_region *region, *last; 500 struct rb_node *p, *lastp; 501 502 lastp = rb_first(&nommu_region_tree); 503 if (!lastp) 504 return; 505 506 last = rb_entry(lastp, struct vm_region, vm_rb); 507 BUG_ON(unlikely(last->vm_end <= last->vm_start)); 508 BUG_ON(unlikely(last->vm_top < last->vm_end)); 509 510 while ((p = rb_next(lastp))) { 511 region = rb_entry(p, struct vm_region, vm_rb); 512 last = rb_entry(lastp, struct vm_region, vm_rb); 513 514 BUG_ON(unlikely(region->vm_end <= region->vm_start)); 515 BUG_ON(unlikely(region->vm_top < region->vm_end)); 516 BUG_ON(unlikely(region->vm_start < last->vm_top)); 517 518 lastp = p; 519 } 520 } 521 #else 522 static void validate_nommu_regions(void) 523 { 524 } 525 #endif 526 527 /* 528 * add a region into the global tree 529 */ 530 static void add_nommu_region(struct vm_region *region) 531 { 532 struct vm_region *pregion; 533 struct rb_node **p, *parent; 534 535 validate_nommu_regions(); 536 537 parent = NULL; 538 p = &nommu_region_tree.rb_node; 539 while (*p) { 540 parent = *p; 541 pregion = rb_entry(parent, struct vm_region, vm_rb); 542 if (region->vm_start < pregion->vm_start) 543 p = &(*p)->rb_left; 544 else if (region->vm_start > pregion->vm_start) 545 p = &(*p)->rb_right; 546 else if (pregion == region) 547 return; 548 else 549 BUG(); 550 } 551 552 rb_link_node(®ion->vm_rb, parent, p); 553 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 554 555 validate_nommu_regions(); 556 } 557 558 /* 559 * delete a region from the global tree 560 */ 561 static void delete_nommu_region(struct vm_region *region) 562 { 563 BUG_ON(!nommu_region_tree.rb_node); 564 565 validate_nommu_regions(); 566 rb_erase(®ion->vm_rb, &nommu_region_tree); 567 validate_nommu_regions(); 568 } 569 570 /* 571 * free a contiguous series of pages 572 */ 573 static void free_page_series(unsigned long from, unsigned long to) 574 { 575 for (; from < to; from += PAGE_SIZE) { 576 struct page *page = virt_to_page(from); 577 578 kdebug("- free %lx", from); 579 atomic_long_dec(&mmap_pages_allocated); 580 if (page_count(page) != 1) 581 kdebug("free page %p: refcount not one: %d", 582 page, page_count(page)); 583 put_page(page); 584 } 585 } 586 587 /* 588 * release a reference to a region 589 * - the caller must hold the region semaphore for writing, which this releases 590 * - the region may not have been added to the tree yet, in which case vm_top 591 * will equal vm_start 592 */ 593 static void __put_nommu_region(struct vm_region *region) 594 __releases(nommu_region_sem) 595 { 596 kenter("%p{%d}", region, atomic_read(®ion->vm_usage)); 597 598 BUG_ON(!nommu_region_tree.rb_node); 599 600 if (atomic_dec_and_test(®ion->vm_usage)) { 601 if (region->vm_top > region->vm_start) 602 delete_nommu_region(region); 603 up_write(&nommu_region_sem); 604 605 if (region->vm_file) 606 fput(region->vm_file); 607 608 /* IO memory and memory shared directly out of the pagecache 609 * from ramfs/tmpfs mustn't be released here */ 610 if (region->vm_flags & VM_MAPPED_COPY) { 611 kdebug("free series"); 612 free_page_series(region->vm_start, region->vm_top); 613 } 614 kmem_cache_free(vm_region_jar, region); 615 } else { 616 up_write(&nommu_region_sem); 617 } 618 } 619 620 /* 621 * release a reference to a region 622 */ 623 static void put_nommu_region(struct vm_region *region) 624 { 625 down_write(&nommu_region_sem); 626 __put_nommu_region(region); 627 } 628 629 /* 630 * add a VMA into a process's mm_struct in the appropriate place in the list 631 * and tree and add to the address space's page tree also if not an anonymous 632 * page 633 * - should be called with mm->mmap_sem held writelocked 634 */ 635 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 636 { 637 struct vm_area_struct *pvma, **pp; 638 struct address_space *mapping; 639 struct rb_node **p, *parent; 640 641 kenter(",%p", vma); 642 643 BUG_ON(!vma->vm_region); 644 645 mm->map_count++; 646 vma->vm_mm = mm; 647 648 /* add the VMA to the mapping */ 649 if (vma->vm_file) { 650 mapping = vma->vm_file->f_mapping; 651 652 flush_dcache_mmap_lock(mapping); 653 vma_prio_tree_insert(vma, &mapping->i_mmap); 654 flush_dcache_mmap_unlock(mapping); 655 } 656 657 /* add the VMA to the tree */ 658 parent = NULL; 659 p = &mm->mm_rb.rb_node; 660 while (*p) { 661 parent = *p; 662 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 663 664 /* sort by: start addr, end addr, VMA struct addr in that order 665 * (the latter is necessary as we may get identical VMAs) */ 666 if (vma->vm_start < pvma->vm_start) 667 p = &(*p)->rb_left; 668 else if (vma->vm_start > pvma->vm_start) 669 p = &(*p)->rb_right; 670 else if (vma->vm_end < pvma->vm_end) 671 p = &(*p)->rb_left; 672 else if (vma->vm_end > pvma->vm_end) 673 p = &(*p)->rb_right; 674 else if (vma < pvma) 675 p = &(*p)->rb_left; 676 else if (vma > pvma) 677 p = &(*p)->rb_right; 678 else 679 BUG(); 680 } 681 682 rb_link_node(&vma->vm_rb, parent, p); 683 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 684 685 /* add VMA to the VMA list also */ 686 for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) { 687 if (pvma->vm_start > vma->vm_start) 688 break; 689 if (pvma->vm_start < vma->vm_start) 690 continue; 691 if (pvma->vm_end < vma->vm_end) 692 break; 693 } 694 695 vma->vm_next = *pp; 696 *pp = vma; 697 } 698 699 /* 700 * delete a VMA from its owning mm_struct and address space 701 */ 702 static void delete_vma_from_mm(struct vm_area_struct *vma) 703 { 704 struct vm_area_struct **pp; 705 struct address_space *mapping; 706 struct mm_struct *mm = vma->vm_mm; 707 708 kenter("%p", vma); 709 710 mm->map_count--; 711 if (mm->mmap_cache == vma) 712 mm->mmap_cache = NULL; 713 714 /* remove the VMA from the mapping */ 715 if (vma->vm_file) { 716 mapping = vma->vm_file->f_mapping; 717 718 flush_dcache_mmap_lock(mapping); 719 vma_prio_tree_remove(vma, &mapping->i_mmap); 720 flush_dcache_mmap_unlock(mapping); 721 } 722 723 /* remove from the MM's tree and list */ 724 rb_erase(&vma->vm_rb, &mm->mm_rb); 725 for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) { 726 if (*pp == vma) { 727 *pp = vma->vm_next; 728 break; 729 } 730 } 731 732 vma->vm_mm = NULL; 733 } 734 735 /* 736 * destroy a VMA record 737 */ 738 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 739 { 740 kenter("%p", vma); 741 if (vma->vm_ops && vma->vm_ops->close) 742 vma->vm_ops->close(vma); 743 if (vma->vm_file) { 744 fput(vma->vm_file); 745 if (vma->vm_flags & VM_EXECUTABLE) 746 removed_exe_file_vma(mm); 747 } 748 put_nommu_region(vma->vm_region); 749 kmem_cache_free(vm_area_cachep, vma); 750 } 751 752 /* 753 * look up the first VMA in which addr resides, NULL if none 754 * - should be called with mm->mmap_sem at least held readlocked 755 */ 756 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 757 { 758 struct vm_area_struct *vma; 759 struct rb_node *n = mm->mm_rb.rb_node; 760 761 /* check the cache first */ 762 vma = mm->mmap_cache; 763 if (vma && vma->vm_start <= addr && vma->vm_end > addr) 764 return vma; 765 766 /* trawl the tree (there may be multiple mappings in which addr 767 * resides) */ 768 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) { 769 vma = rb_entry(n, struct vm_area_struct, vm_rb); 770 if (vma->vm_start > addr) 771 return NULL; 772 if (vma->vm_end > addr) { 773 mm->mmap_cache = vma; 774 return vma; 775 } 776 } 777 778 return NULL; 779 } 780 EXPORT_SYMBOL(find_vma); 781 782 /* 783 * find a VMA 784 * - we don't extend stack VMAs under NOMMU conditions 785 */ 786 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 787 { 788 return find_vma(mm, addr); 789 } 790 791 /* 792 * expand a stack to a given address 793 * - not supported under NOMMU conditions 794 */ 795 int expand_stack(struct vm_area_struct *vma, unsigned long address) 796 { 797 return -ENOMEM; 798 } 799 800 /* 801 * look up the first VMA exactly that exactly matches addr 802 * - should be called with mm->mmap_sem at least held readlocked 803 */ 804 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 805 unsigned long addr, 806 unsigned long len) 807 { 808 struct vm_area_struct *vma; 809 struct rb_node *n = mm->mm_rb.rb_node; 810 unsigned long end = addr + len; 811 812 /* check the cache first */ 813 vma = mm->mmap_cache; 814 if (vma && vma->vm_start == addr && vma->vm_end == end) 815 return vma; 816 817 /* trawl the tree (there may be multiple mappings in which addr 818 * resides) */ 819 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) { 820 vma = rb_entry(n, struct vm_area_struct, vm_rb); 821 if (vma->vm_start < addr) 822 continue; 823 if (vma->vm_start > addr) 824 return NULL; 825 if (vma->vm_end == end) { 826 mm->mmap_cache = vma; 827 return vma; 828 } 829 } 830 831 return NULL; 832 } 833 834 /* 835 * determine whether a mapping should be permitted and, if so, what sort of 836 * mapping we're capable of supporting 837 */ 838 static int validate_mmap_request(struct file *file, 839 unsigned long addr, 840 unsigned long len, 841 unsigned long prot, 842 unsigned long flags, 843 unsigned long pgoff, 844 unsigned long *_capabilities) 845 { 846 unsigned long capabilities, rlen; 847 unsigned long reqprot = prot; 848 int ret; 849 850 /* do the simple checks first */ 851 if (flags & MAP_FIXED || addr) { 852 printk(KERN_DEBUG 853 "%d: Can't do fixed-address/overlay mmap of RAM\n", 854 current->pid); 855 return -EINVAL; 856 } 857 858 if ((flags & MAP_TYPE) != MAP_PRIVATE && 859 (flags & MAP_TYPE) != MAP_SHARED) 860 return -EINVAL; 861 862 if (!len) 863 return -EINVAL; 864 865 /* Careful about overflows.. */ 866 rlen = PAGE_ALIGN(len); 867 if (!rlen || rlen > TASK_SIZE) 868 return -ENOMEM; 869 870 /* offset overflow? */ 871 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 872 return -EOVERFLOW; 873 874 if (file) { 875 /* validate file mapping requests */ 876 struct address_space *mapping; 877 878 /* files must support mmap */ 879 if (!file->f_op || !file->f_op->mmap) 880 return -ENODEV; 881 882 /* work out if what we've got could possibly be shared 883 * - we support chardevs that provide their own "memory" 884 * - we support files/blockdevs that are memory backed 885 */ 886 mapping = file->f_mapping; 887 if (!mapping) 888 mapping = file->f_path.dentry->d_inode->i_mapping; 889 890 capabilities = 0; 891 if (mapping && mapping->backing_dev_info) 892 capabilities = mapping->backing_dev_info->capabilities; 893 894 if (!capabilities) { 895 /* no explicit capabilities set, so assume some 896 * defaults */ 897 switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) { 898 case S_IFREG: 899 case S_IFBLK: 900 capabilities = BDI_CAP_MAP_COPY; 901 break; 902 903 case S_IFCHR: 904 capabilities = 905 BDI_CAP_MAP_DIRECT | 906 BDI_CAP_READ_MAP | 907 BDI_CAP_WRITE_MAP; 908 break; 909 910 default: 911 return -EINVAL; 912 } 913 } 914 915 /* eliminate any capabilities that we can't support on this 916 * device */ 917 if (!file->f_op->get_unmapped_area) 918 capabilities &= ~BDI_CAP_MAP_DIRECT; 919 if (!file->f_op->read) 920 capabilities &= ~BDI_CAP_MAP_COPY; 921 922 /* The file shall have been opened with read permission. */ 923 if (!(file->f_mode & FMODE_READ)) 924 return -EACCES; 925 926 if (flags & MAP_SHARED) { 927 /* do checks for writing, appending and locking */ 928 if ((prot & PROT_WRITE) && 929 !(file->f_mode & FMODE_WRITE)) 930 return -EACCES; 931 932 if (IS_APPEND(file->f_path.dentry->d_inode) && 933 (file->f_mode & FMODE_WRITE)) 934 return -EACCES; 935 936 if (locks_verify_locked(file->f_path.dentry->d_inode)) 937 return -EAGAIN; 938 939 if (!(capabilities & BDI_CAP_MAP_DIRECT)) 940 return -ENODEV; 941 942 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) || 943 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) || 944 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP)) 945 ) { 946 printk("MAP_SHARED not completely supported on !MMU\n"); 947 return -EINVAL; 948 } 949 950 /* we mustn't privatise shared mappings */ 951 capabilities &= ~BDI_CAP_MAP_COPY; 952 } 953 else { 954 /* we're going to read the file into private memory we 955 * allocate */ 956 if (!(capabilities & BDI_CAP_MAP_COPY)) 957 return -ENODEV; 958 959 /* we don't permit a private writable mapping to be 960 * shared with the backing device */ 961 if (prot & PROT_WRITE) 962 capabilities &= ~BDI_CAP_MAP_DIRECT; 963 } 964 965 /* handle executable mappings and implied executable 966 * mappings */ 967 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 968 if (prot & PROT_EXEC) 969 return -EPERM; 970 } 971 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 972 /* handle implication of PROT_EXEC by PROT_READ */ 973 if (current->personality & READ_IMPLIES_EXEC) { 974 if (capabilities & BDI_CAP_EXEC_MAP) 975 prot |= PROT_EXEC; 976 } 977 } 978 else if ((prot & PROT_READ) && 979 (prot & PROT_EXEC) && 980 !(capabilities & BDI_CAP_EXEC_MAP) 981 ) { 982 /* backing file is not executable, try to copy */ 983 capabilities &= ~BDI_CAP_MAP_DIRECT; 984 } 985 } 986 else { 987 /* anonymous mappings are always memory backed and can be 988 * privately mapped 989 */ 990 capabilities = BDI_CAP_MAP_COPY; 991 992 /* handle PROT_EXEC implication by PROT_READ */ 993 if ((prot & PROT_READ) && 994 (current->personality & READ_IMPLIES_EXEC)) 995 prot |= PROT_EXEC; 996 } 997 998 /* allow the security API to have its say */ 999 ret = security_file_mmap(file, reqprot, prot, flags, addr, 0); 1000 if (ret < 0) 1001 return ret; 1002 1003 /* looks okay */ 1004 *_capabilities = capabilities; 1005 return 0; 1006 } 1007 1008 /* 1009 * we've determined that we can make the mapping, now translate what we 1010 * now know into VMA flags 1011 */ 1012 static unsigned long determine_vm_flags(struct file *file, 1013 unsigned long prot, 1014 unsigned long flags, 1015 unsigned long capabilities) 1016 { 1017 unsigned long vm_flags; 1018 1019 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags); 1020 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1021 /* vm_flags |= mm->def_flags; */ 1022 1023 if (!(capabilities & BDI_CAP_MAP_DIRECT)) { 1024 /* attempt to share read-only copies of mapped file chunks */ 1025 if (file && !(prot & PROT_WRITE)) 1026 vm_flags |= VM_MAYSHARE; 1027 } 1028 else { 1029 /* overlay a shareable mapping on the backing device or inode 1030 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 1031 * romfs/cramfs */ 1032 if (flags & MAP_SHARED) 1033 vm_flags |= VM_MAYSHARE | VM_SHARED; 1034 else if ((((vm_flags & capabilities) ^ vm_flags) & BDI_CAP_VMFLAGS) == 0) 1035 vm_flags |= VM_MAYSHARE; 1036 } 1037 1038 /* refuse to let anyone share private mappings with this process if 1039 * it's being traced - otherwise breakpoints set in it may interfere 1040 * with another untraced process 1041 */ 1042 if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current)) 1043 vm_flags &= ~VM_MAYSHARE; 1044 1045 return vm_flags; 1046 } 1047 1048 /* 1049 * set up a shared mapping on a file (the driver or filesystem provides and 1050 * pins the storage) 1051 */ 1052 static int do_mmap_shared_file(struct vm_area_struct *vma) 1053 { 1054 int ret; 1055 1056 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1057 if (ret == 0) { 1058 vma->vm_region->vm_top = vma->vm_region->vm_end; 1059 return ret; 1060 } 1061 if (ret != -ENOSYS) 1062 return ret; 1063 1064 /* getting an ENOSYS error indicates that direct mmap isn't 1065 * possible (as opposed to tried but failed) so we'll fall 1066 * through to making a private copy of the data and mapping 1067 * that if we can */ 1068 return -ENODEV; 1069 } 1070 1071 /* 1072 * set up a private mapping or an anonymous shared mapping 1073 */ 1074 static int do_mmap_private(struct vm_area_struct *vma, 1075 struct vm_region *region, 1076 unsigned long len) 1077 { 1078 struct page *pages; 1079 unsigned long total, point, n, rlen; 1080 void *base; 1081 int ret, order; 1082 1083 /* invoke the file's mapping function so that it can keep track of 1084 * shared mappings on devices or memory 1085 * - VM_MAYSHARE will be set if it may attempt to share 1086 */ 1087 if (vma->vm_file) { 1088 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1089 if (ret == 0) { 1090 /* shouldn't return success if we're not sharing */ 1091 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 1092 vma->vm_region->vm_top = vma->vm_region->vm_end; 1093 return ret; 1094 } 1095 if (ret != -ENOSYS) 1096 return ret; 1097 1098 /* getting an ENOSYS error indicates that direct mmap isn't 1099 * possible (as opposed to tried but failed) so we'll try to 1100 * make a private copy of the data and map that instead */ 1101 } 1102 1103 rlen = PAGE_ALIGN(len); 1104 1105 /* allocate some memory to hold the mapping 1106 * - note that this may not return a page-aligned address if the object 1107 * we're allocating is smaller than a page 1108 */ 1109 order = get_order(rlen); 1110 kdebug("alloc order %d for %lx", order, len); 1111 1112 pages = alloc_pages(GFP_KERNEL, order); 1113 if (!pages) 1114 goto enomem; 1115 1116 total = 1 << order; 1117 atomic_long_add(total, &mmap_pages_allocated); 1118 1119 point = rlen >> PAGE_SHIFT; 1120 1121 /* we allocated a power-of-2 sized page set, so we may want to trim off 1122 * the excess */ 1123 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) { 1124 while (total > point) { 1125 order = ilog2(total - point); 1126 n = 1 << order; 1127 kdebug("shave %lu/%lu @%lu", n, total - point, total); 1128 atomic_long_sub(n, &mmap_pages_allocated); 1129 total -= n; 1130 set_page_refcounted(pages + total); 1131 __free_pages(pages + total, order); 1132 } 1133 } 1134 1135 for (point = 1; point < total; point++) 1136 set_page_refcounted(&pages[point]); 1137 1138 base = page_address(pages); 1139 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1140 region->vm_start = (unsigned long) base; 1141 region->vm_end = region->vm_start + rlen; 1142 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1143 1144 vma->vm_start = region->vm_start; 1145 vma->vm_end = region->vm_start + len; 1146 1147 if (vma->vm_file) { 1148 /* read the contents of a file into the copy */ 1149 mm_segment_t old_fs; 1150 loff_t fpos; 1151 1152 fpos = vma->vm_pgoff; 1153 fpos <<= PAGE_SHIFT; 1154 1155 old_fs = get_fs(); 1156 set_fs(KERNEL_DS); 1157 ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos); 1158 set_fs(old_fs); 1159 1160 if (ret < 0) 1161 goto error_free; 1162 1163 /* clear the last little bit */ 1164 if (ret < rlen) 1165 memset(base + ret, 0, rlen - ret); 1166 1167 } else { 1168 /* if it's an anonymous mapping, then just clear it */ 1169 memset(base, 0, rlen); 1170 } 1171 1172 return 0; 1173 1174 error_free: 1175 free_page_series(region->vm_start, region->vm_end); 1176 region->vm_start = vma->vm_start = 0; 1177 region->vm_end = vma->vm_end = 0; 1178 region->vm_top = 0; 1179 return ret; 1180 1181 enomem: 1182 printk("Allocation of length %lu from process %d (%s) failed\n", 1183 len, current->pid, current->comm); 1184 show_free_areas(); 1185 return -ENOMEM; 1186 } 1187 1188 /* 1189 * handle mapping creation for uClinux 1190 */ 1191 unsigned long do_mmap_pgoff(struct file *file, 1192 unsigned long addr, 1193 unsigned long len, 1194 unsigned long prot, 1195 unsigned long flags, 1196 unsigned long pgoff) 1197 { 1198 struct vm_area_struct *vma; 1199 struct vm_region *region; 1200 struct rb_node *rb; 1201 unsigned long capabilities, vm_flags, result; 1202 int ret; 1203 1204 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff); 1205 1206 if (!(flags & MAP_FIXED)) 1207 addr = round_hint_to_min(addr); 1208 1209 /* decide whether we should attempt the mapping, and if so what sort of 1210 * mapping */ 1211 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1212 &capabilities); 1213 if (ret < 0) { 1214 kleave(" = %d [val]", ret); 1215 return ret; 1216 } 1217 1218 /* we've determined that we can make the mapping, now translate what we 1219 * now know into VMA flags */ 1220 vm_flags = determine_vm_flags(file, prot, flags, capabilities); 1221 1222 /* we're going to need to record the mapping */ 1223 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1224 if (!region) 1225 goto error_getting_region; 1226 1227 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1228 if (!vma) 1229 goto error_getting_vma; 1230 1231 atomic_set(®ion->vm_usage, 1); 1232 region->vm_flags = vm_flags; 1233 region->vm_pgoff = pgoff; 1234 1235 INIT_LIST_HEAD(&vma->anon_vma_node); 1236 vma->vm_flags = vm_flags; 1237 vma->vm_pgoff = pgoff; 1238 1239 if (file) { 1240 region->vm_file = file; 1241 get_file(file); 1242 vma->vm_file = file; 1243 get_file(file); 1244 if (vm_flags & VM_EXECUTABLE) { 1245 added_exe_file_vma(current->mm); 1246 vma->vm_mm = current->mm; 1247 } 1248 } 1249 1250 down_write(&nommu_region_sem); 1251 1252 /* if we want to share, we need to check for regions created by other 1253 * mmap() calls that overlap with our proposed mapping 1254 * - we can only share with a superset match on most regular files 1255 * - shared mappings on character devices and memory backed files are 1256 * permitted to overlap inexactly as far as we are concerned for in 1257 * these cases, sharing is handled in the driver or filesystem rather 1258 * than here 1259 */ 1260 if (vm_flags & VM_MAYSHARE) { 1261 struct vm_region *pregion; 1262 unsigned long pglen, rpglen, pgend, rpgend, start; 1263 1264 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1265 pgend = pgoff + pglen; 1266 1267 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1268 pregion = rb_entry(rb, struct vm_region, vm_rb); 1269 1270 if (!(pregion->vm_flags & VM_MAYSHARE)) 1271 continue; 1272 1273 /* search for overlapping mappings on the same file */ 1274 if (pregion->vm_file->f_path.dentry->d_inode != 1275 file->f_path.dentry->d_inode) 1276 continue; 1277 1278 if (pregion->vm_pgoff >= pgend) 1279 continue; 1280 1281 rpglen = pregion->vm_end - pregion->vm_start; 1282 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1283 rpgend = pregion->vm_pgoff + rpglen; 1284 if (pgoff >= rpgend) 1285 continue; 1286 1287 /* handle inexactly overlapping matches between 1288 * mappings */ 1289 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1290 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1291 /* new mapping is not a subset of the region */ 1292 if (!(capabilities & BDI_CAP_MAP_DIRECT)) 1293 goto sharing_violation; 1294 continue; 1295 } 1296 1297 /* we've found a region we can share */ 1298 atomic_inc(&pregion->vm_usage); 1299 vma->vm_region = pregion; 1300 start = pregion->vm_start; 1301 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1302 vma->vm_start = start; 1303 vma->vm_end = start + len; 1304 1305 if (pregion->vm_flags & VM_MAPPED_COPY) { 1306 kdebug("share copy"); 1307 vma->vm_flags |= VM_MAPPED_COPY; 1308 } else { 1309 kdebug("share mmap"); 1310 ret = do_mmap_shared_file(vma); 1311 if (ret < 0) { 1312 vma->vm_region = NULL; 1313 vma->vm_start = 0; 1314 vma->vm_end = 0; 1315 atomic_dec(&pregion->vm_usage); 1316 pregion = NULL; 1317 goto error_just_free; 1318 } 1319 } 1320 fput(region->vm_file); 1321 kmem_cache_free(vm_region_jar, region); 1322 region = pregion; 1323 result = start; 1324 goto share; 1325 } 1326 1327 /* obtain the address at which to make a shared mapping 1328 * - this is the hook for quasi-memory character devices to 1329 * tell us the location of a shared mapping 1330 */ 1331 if (file && file->f_op->get_unmapped_area) { 1332 addr = file->f_op->get_unmapped_area(file, addr, len, 1333 pgoff, flags); 1334 if (IS_ERR((void *) addr)) { 1335 ret = addr; 1336 if (ret != (unsigned long) -ENOSYS) 1337 goto error_just_free; 1338 1339 /* the driver refused to tell us where to site 1340 * the mapping so we'll have to attempt to copy 1341 * it */ 1342 ret = (unsigned long) -ENODEV; 1343 if (!(capabilities & BDI_CAP_MAP_COPY)) 1344 goto error_just_free; 1345 1346 capabilities &= ~BDI_CAP_MAP_DIRECT; 1347 } else { 1348 vma->vm_start = region->vm_start = addr; 1349 vma->vm_end = region->vm_end = addr + len; 1350 } 1351 } 1352 } 1353 1354 vma->vm_region = region; 1355 add_nommu_region(region); 1356 1357 /* set up the mapping */ 1358 if (file && vma->vm_flags & VM_SHARED) 1359 ret = do_mmap_shared_file(vma); 1360 else 1361 ret = do_mmap_private(vma, region, len); 1362 if (ret < 0) 1363 goto error_put_region; 1364 1365 /* okay... we have a mapping; now we have to register it */ 1366 result = vma->vm_start; 1367 1368 current->mm->total_vm += len >> PAGE_SHIFT; 1369 1370 share: 1371 add_vma_to_mm(current->mm, vma); 1372 1373 up_write(&nommu_region_sem); 1374 1375 if (prot & PROT_EXEC) 1376 flush_icache_range(result, result + len); 1377 1378 kleave(" = %lx", result); 1379 return result; 1380 1381 error_put_region: 1382 __put_nommu_region(region); 1383 if (vma) { 1384 if (vma->vm_file) { 1385 fput(vma->vm_file); 1386 if (vma->vm_flags & VM_EXECUTABLE) 1387 removed_exe_file_vma(vma->vm_mm); 1388 } 1389 kmem_cache_free(vm_area_cachep, vma); 1390 } 1391 kleave(" = %d [pr]", ret); 1392 return ret; 1393 1394 error_just_free: 1395 up_write(&nommu_region_sem); 1396 error: 1397 fput(region->vm_file); 1398 kmem_cache_free(vm_region_jar, region); 1399 fput(vma->vm_file); 1400 if (vma->vm_flags & VM_EXECUTABLE) 1401 removed_exe_file_vma(vma->vm_mm); 1402 kmem_cache_free(vm_area_cachep, vma); 1403 kleave(" = %d", ret); 1404 return ret; 1405 1406 sharing_violation: 1407 up_write(&nommu_region_sem); 1408 printk(KERN_WARNING "Attempt to share mismatched mappings\n"); 1409 ret = -EINVAL; 1410 goto error; 1411 1412 error_getting_vma: 1413 kmem_cache_free(vm_region_jar, region); 1414 printk(KERN_WARNING "Allocation of vma for %lu byte allocation" 1415 " from process %d failed\n", 1416 len, current->pid); 1417 show_free_areas(); 1418 return -ENOMEM; 1419 1420 error_getting_region: 1421 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation" 1422 " from process %d failed\n", 1423 len, current->pid); 1424 show_free_areas(); 1425 return -ENOMEM; 1426 } 1427 EXPORT_SYMBOL(do_mmap_pgoff); 1428 1429 /* 1430 * split a vma into two pieces at address 'addr', a new vma is allocated either 1431 * for the first part or the tail. 1432 */ 1433 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1434 unsigned long addr, int new_below) 1435 { 1436 struct vm_area_struct *new; 1437 struct vm_region *region; 1438 unsigned long npages; 1439 1440 kenter(""); 1441 1442 /* we're only permitted to split anonymous regions that have a single 1443 * owner */ 1444 if (vma->vm_file || 1445 atomic_read(&vma->vm_region->vm_usage) != 1) 1446 return -ENOMEM; 1447 1448 if (mm->map_count >= sysctl_max_map_count) 1449 return -ENOMEM; 1450 1451 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1452 if (!region) 1453 return -ENOMEM; 1454 1455 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1456 if (!new) { 1457 kmem_cache_free(vm_region_jar, region); 1458 return -ENOMEM; 1459 } 1460 1461 /* most fields are the same, copy all, and then fixup */ 1462 *new = *vma; 1463 *region = *vma->vm_region; 1464 new->vm_region = region; 1465 1466 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1467 1468 if (new_below) { 1469 region->vm_top = region->vm_end = new->vm_end = addr; 1470 } else { 1471 region->vm_start = new->vm_start = addr; 1472 region->vm_pgoff = new->vm_pgoff += npages; 1473 } 1474 1475 if (new->vm_ops && new->vm_ops->open) 1476 new->vm_ops->open(new); 1477 1478 delete_vma_from_mm(vma); 1479 down_write(&nommu_region_sem); 1480 delete_nommu_region(vma->vm_region); 1481 if (new_below) { 1482 vma->vm_region->vm_start = vma->vm_start = addr; 1483 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1484 } else { 1485 vma->vm_region->vm_end = vma->vm_end = addr; 1486 vma->vm_region->vm_top = addr; 1487 } 1488 add_nommu_region(vma->vm_region); 1489 add_nommu_region(new->vm_region); 1490 up_write(&nommu_region_sem); 1491 add_vma_to_mm(mm, vma); 1492 add_vma_to_mm(mm, new); 1493 return 0; 1494 } 1495 1496 /* 1497 * shrink a VMA by removing the specified chunk from either the beginning or 1498 * the end 1499 */ 1500 static int shrink_vma(struct mm_struct *mm, 1501 struct vm_area_struct *vma, 1502 unsigned long from, unsigned long to) 1503 { 1504 struct vm_region *region; 1505 1506 kenter(""); 1507 1508 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1509 * and list */ 1510 delete_vma_from_mm(vma); 1511 if (from > vma->vm_start) 1512 vma->vm_end = from; 1513 else 1514 vma->vm_start = to; 1515 add_vma_to_mm(mm, vma); 1516 1517 /* cut the backing region down to size */ 1518 region = vma->vm_region; 1519 BUG_ON(atomic_read(®ion->vm_usage) != 1); 1520 1521 down_write(&nommu_region_sem); 1522 delete_nommu_region(region); 1523 if (from > region->vm_start) { 1524 to = region->vm_top; 1525 region->vm_top = region->vm_end = from; 1526 } else { 1527 region->vm_start = to; 1528 } 1529 add_nommu_region(region); 1530 up_write(&nommu_region_sem); 1531 1532 free_page_series(from, to); 1533 return 0; 1534 } 1535 1536 /* 1537 * release a mapping 1538 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1539 * VMA, though it need not cover the whole VMA 1540 */ 1541 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 1542 { 1543 struct vm_area_struct *vma; 1544 struct rb_node *rb; 1545 unsigned long end = start + len; 1546 int ret; 1547 1548 kenter(",%lx,%zx", start, len); 1549 1550 if (len == 0) 1551 return -EINVAL; 1552 1553 /* find the first potentially overlapping VMA */ 1554 vma = find_vma(mm, start); 1555 if (!vma) { 1556 static int limit = 0; 1557 if (limit < 5) { 1558 printk(KERN_WARNING 1559 "munmap of memory not mmapped by process %d" 1560 " (%s): 0x%lx-0x%lx\n", 1561 current->pid, current->comm, 1562 start, start + len - 1); 1563 limit++; 1564 } 1565 return -EINVAL; 1566 } 1567 1568 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1569 if (vma->vm_file) { 1570 do { 1571 if (start > vma->vm_start) { 1572 kleave(" = -EINVAL [miss]"); 1573 return -EINVAL; 1574 } 1575 if (end == vma->vm_end) 1576 goto erase_whole_vma; 1577 rb = rb_next(&vma->vm_rb); 1578 vma = rb_entry(rb, struct vm_area_struct, vm_rb); 1579 } while (rb); 1580 kleave(" = -EINVAL [split file]"); 1581 return -EINVAL; 1582 } else { 1583 /* the chunk must be a subset of the VMA found */ 1584 if (start == vma->vm_start && end == vma->vm_end) 1585 goto erase_whole_vma; 1586 if (start < vma->vm_start || end > vma->vm_end) { 1587 kleave(" = -EINVAL [superset]"); 1588 return -EINVAL; 1589 } 1590 if (start & ~PAGE_MASK) { 1591 kleave(" = -EINVAL [unaligned start]"); 1592 return -EINVAL; 1593 } 1594 if (end != vma->vm_end && end & ~PAGE_MASK) { 1595 kleave(" = -EINVAL [unaligned split]"); 1596 return -EINVAL; 1597 } 1598 if (start != vma->vm_start && end != vma->vm_end) { 1599 ret = split_vma(mm, vma, start, 1); 1600 if (ret < 0) { 1601 kleave(" = %d [split]", ret); 1602 return ret; 1603 } 1604 } 1605 return shrink_vma(mm, vma, start, end); 1606 } 1607 1608 erase_whole_vma: 1609 delete_vma_from_mm(vma); 1610 delete_vma(mm, vma); 1611 kleave(" = 0"); 1612 return 0; 1613 } 1614 EXPORT_SYMBOL(do_munmap); 1615 1616 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1617 { 1618 int ret; 1619 struct mm_struct *mm = current->mm; 1620 1621 down_write(&mm->mmap_sem); 1622 ret = do_munmap(mm, addr, len); 1623 up_write(&mm->mmap_sem); 1624 return ret; 1625 } 1626 1627 /* 1628 * release all the mappings made in a process's VM space 1629 */ 1630 void exit_mmap(struct mm_struct *mm) 1631 { 1632 struct vm_area_struct *vma; 1633 1634 if (!mm) 1635 return; 1636 1637 kenter(""); 1638 1639 mm->total_vm = 0; 1640 1641 while ((vma = mm->mmap)) { 1642 mm->mmap = vma->vm_next; 1643 delete_vma_from_mm(vma); 1644 delete_vma(mm, vma); 1645 } 1646 1647 kleave(""); 1648 } 1649 1650 unsigned long do_brk(unsigned long addr, unsigned long len) 1651 { 1652 return -ENOMEM; 1653 } 1654 1655 /* 1656 * expand (or shrink) an existing mapping, potentially moving it at the same 1657 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1658 * 1659 * under NOMMU conditions, we only permit changing a mapping's size, and only 1660 * as long as it stays within the region allocated by do_mmap_private() and the 1661 * block is not shareable 1662 * 1663 * MREMAP_FIXED is not supported under NOMMU conditions 1664 */ 1665 unsigned long do_mremap(unsigned long addr, 1666 unsigned long old_len, unsigned long new_len, 1667 unsigned long flags, unsigned long new_addr) 1668 { 1669 struct vm_area_struct *vma; 1670 1671 /* insanity checks first */ 1672 if (old_len == 0 || new_len == 0) 1673 return (unsigned long) -EINVAL; 1674 1675 if (addr & ~PAGE_MASK) 1676 return -EINVAL; 1677 1678 if (flags & MREMAP_FIXED && new_addr != addr) 1679 return (unsigned long) -EINVAL; 1680 1681 vma = find_vma_exact(current->mm, addr, old_len); 1682 if (!vma) 1683 return (unsigned long) -EINVAL; 1684 1685 if (vma->vm_end != vma->vm_start + old_len) 1686 return (unsigned long) -EFAULT; 1687 1688 if (vma->vm_flags & VM_MAYSHARE) 1689 return (unsigned long) -EPERM; 1690 1691 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1692 return (unsigned long) -ENOMEM; 1693 1694 /* all checks complete - do it */ 1695 vma->vm_end = vma->vm_start + new_len; 1696 return vma->vm_start; 1697 } 1698 EXPORT_SYMBOL(do_mremap); 1699 1700 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1701 unsigned long, new_len, unsigned long, flags, 1702 unsigned long, new_addr) 1703 { 1704 unsigned long ret; 1705 1706 down_write(¤t->mm->mmap_sem); 1707 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1708 up_write(¤t->mm->mmap_sem); 1709 return ret; 1710 } 1711 1712 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1713 unsigned int foll_flags) 1714 { 1715 return NULL; 1716 } 1717 1718 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from, 1719 unsigned long to, unsigned long size, pgprot_t prot) 1720 { 1721 vma->vm_start = vma->vm_pgoff << PAGE_SHIFT; 1722 return 0; 1723 } 1724 EXPORT_SYMBOL(remap_pfn_range); 1725 1726 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1727 unsigned long pgoff) 1728 { 1729 unsigned int size = vma->vm_end - vma->vm_start; 1730 1731 if (!(vma->vm_flags & VM_USERMAP)) 1732 return -EINVAL; 1733 1734 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1735 vma->vm_end = vma->vm_start + size; 1736 1737 return 0; 1738 } 1739 EXPORT_SYMBOL(remap_vmalloc_range); 1740 1741 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1742 { 1743 } 1744 1745 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, 1746 unsigned long len, unsigned long pgoff, unsigned long flags) 1747 { 1748 return -ENOMEM; 1749 } 1750 1751 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1752 { 1753 } 1754 1755 void unmap_mapping_range(struct address_space *mapping, 1756 loff_t const holebegin, loff_t const holelen, 1757 int even_cows) 1758 { 1759 } 1760 EXPORT_SYMBOL(unmap_mapping_range); 1761 1762 /* 1763 * ask for an unmapped area at which to create a mapping on a file 1764 */ 1765 unsigned long get_unmapped_area(struct file *file, unsigned long addr, 1766 unsigned long len, unsigned long pgoff, 1767 unsigned long flags) 1768 { 1769 unsigned long (*get_area)(struct file *, unsigned long, unsigned long, 1770 unsigned long, unsigned long); 1771 1772 get_area = current->mm->get_unmapped_area; 1773 if (file && file->f_op && file->f_op->get_unmapped_area) 1774 get_area = file->f_op->get_unmapped_area; 1775 1776 if (!get_area) 1777 return -ENOSYS; 1778 1779 return get_area(file, addr, len, pgoff, flags); 1780 } 1781 EXPORT_SYMBOL(get_unmapped_area); 1782 1783 /* 1784 * Check that a process has enough memory to allocate a new virtual 1785 * mapping. 0 means there is enough memory for the allocation to 1786 * succeed and -ENOMEM implies there is not. 1787 * 1788 * We currently support three overcommit policies, which are set via the 1789 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 1790 * 1791 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 1792 * Additional code 2002 Jul 20 by Robert Love. 1793 * 1794 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 1795 * 1796 * Note this is a helper function intended to be used by LSMs which 1797 * wish to use this logic. 1798 */ 1799 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 1800 { 1801 unsigned long free, allowed; 1802 1803 vm_acct_memory(pages); 1804 1805 /* 1806 * Sometimes we want to use more memory than we have 1807 */ 1808 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 1809 return 0; 1810 1811 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 1812 unsigned long n; 1813 1814 free = global_page_state(NR_FILE_PAGES); 1815 free += nr_swap_pages; 1816 1817 /* 1818 * Any slabs which are created with the 1819 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 1820 * which are reclaimable, under pressure. The dentry 1821 * cache and most inode caches should fall into this 1822 */ 1823 free += global_page_state(NR_SLAB_RECLAIMABLE); 1824 1825 /* 1826 * Leave the last 3% for root 1827 */ 1828 if (!cap_sys_admin) 1829 free -= free / 32; 1830 1831 if (free > pages) 1832 return 0; 1833 1834 /* 1835 * nr_free_pages() is very expensive on large systems, 1836 * only call if we're about to fail. 1837 */ 1838 n = nr_free_pages(); 1839 1840 /* 1841 * Leave reserved pages. The pages are not for anonymous pages. 1842 */ 1843 if (n <= totalreserve_pages) 1844 goto error; 1845 else 1846 n -= totalreserve_pages; 1847 1848 /* 1849 * Leave the last 3% for root 1850 */ 1851 if (!cap_sys_admin) 1852 n -= n / 32; 1853 free += n; 1854 1855 if (free > pages) 1856 return 0; 1857 1858 goto error; 1859 } 1860 1861 allowed = totalram_pages * sysctl_overcommit_ratio / 100; 1862 /* 1863 * Leave the last 3% for root 1864 */ 1865 if (!cap_sys_admin) 1866 allowed -= allowed / 32; 1867 allowed += total_swap_pages; 1868 1869 /* Don't let a single process grow too big: 1870 leave 3% of the size of this process for other processes */ 1871 if (mm) 1872 allowed -= mm->total_vm / 32; 1873 1874 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 1875 return 0; 1876 1877 error: 1878 vm_unacct_memory(pages); 1879 1880 return -ENOMEM; 1881 } 1882 1883 int in_gate_area_no_task(unsigned long addr) 1884 { 1885 return 0; 1886 } 1887 1888 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1889 { 1890 BUG(); 1891 return 0; 1892 } 1893 EXPORT_SYMBOL(filemap_fault); 1894 1895 /* 1896 * Access another process' address space. 1897 * - source/target buffer must be kernel space 1898 */ 1899 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 1900 { 1901 struct vm_area_struct *vma; 1902 struct mm_struct *mm; 1903 1904 if (addr + len < addr) 1905 return 0; 1906 1907 mm = get_task_mm(tsk); 1908 if (!mm) 1909 return 0; 1910 1911 down_read(&mm->mmap_sem); 1912 1913 /* the access must start within one of the target process's mappings */ 1914 vma = find_vma(mm, addr); 1915 if (vma) { 1916 /* don't overrun this mapping */ 1917 if (addr + len >= vma->vm_end) 1918 len = vma->vm_end - addr; 1919 1920 /* only read or write mappings where it is permitted */ 1921 if (write && vma->vm_flags & VM_MAYWRITE) 1922 len -= copy_to_user((void *) addr, buf, len); 1923 else if (!write && vma->vm_flags & VM_MAYREAD) 1924 len -= copy_from_user(buf, (void *) addr, len); 1925 else 1926 len = 0; 1927 } else { 1928 len = 0; 1929 } 1930 1931 up_read(&mm->mmap_sem); 1932 mmput(mm); 1933 return len; 1934 } 1935