xref: /openbmc/linux/mm/nommu.c (revision fd589a8f)
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 
33 #include <asm/uaccess.h>
34 #include <asm/tlb.h>
35 #include <asm/tlbflush.h>
36 #include "internal.h"
37 
38 static inline __attribute__((format(printf, 1, 2)))
39 void no_printk(const char *fmt, ...)
40 {
41 }
42 
43 #if 0
44 #define kenter(FMT, ...) \
45 	printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
46 #define kleave(FMT, ...) \
47 	printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
48 #define kdebug(FMT, ...) \
49 	printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
50 #else
51 #define kenter(FMT, ...) \
52 	no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
53 #define kleave(FMT, ...) \
54 	no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
55 #define kdebug(FMT, ...) \
56 	no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
57 #endif
58 
59 #include "internal.h"
60 
61 void *high_memory;
62 struct page *mem_map;
63 unsigned long max_mapnr;
64 unsigned long num_physpages;
65 struct percpu_counter vm_committed_as;
66 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
67 int sysctl_overcommit_ratio = 50; /* default is 50% */
68 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
69 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
70 int heap_stack_gap = 0;
71 
72 atomic_long_t mmap_pages_allocated;
73 
74 EXPORT_SYMBOL(mem_map);
75 EXPORT_SYMBOL(num_physpages);
76 
77 /* list of mapped, potentially shareable regions */
78 static struct kmem_cache *vm_region_jar;
79 struct rb_root nommu_region_tree = RB_ROOT;
80 DECLARE_RWSEM(nommu_region_sem);
81 
82 struct vm_operations_struct generic_file_vm_ops = {
83 };
84 
85 /*
86  * Handle all mappings that got truncated by a "truncate()"
87  * system call.
88  *
89  * NOTE! We have to be ready to update the memory sharing
90  * between the file and the memory map for a potential last
91  * incomplete page.  Ugly, but necessary.
92  */
93 int vmtruncate(struct inode *inode, loff_t offset)
94 {
95 	struct address_space *mapping = inode->i_mapping;
96 	unsigned long limit;
97 
98 	if (inode->i_size < offset)
99 		goto do_expand;
100 	i_size_write(inode, offset);
101 
102 	truncate_inode_pages(mapping, offset);
103 	goto out_truncate;
104 
105 do_expand:
106 	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
107 	if (limit != RLIM_INFINITY && offset > limit)
108 		goto out_sig;
109 	if (offset > inode->i_sb->s_maxbytes)
110 		goto out;
111 	i_size_write(inode, offset);
112 
113 out_truncate:
114 	if (inode->i_op->truncate)
115 		inode->i_op->truncate(inode);
116 	return 0;
117 out_sig:
118 	send_sig(SIGXFSZ, current, 0);
119 out:
120 	return -EFBIG;
121 }
122 
123 EXPORT_SYMBOL(vmtruncate);
124 
125 /*
126  * Return the total memory allocated for this pointer, not
127  * just what the caller asked for.
128  *
129  * Doesn't have to be accurate, i.e. may have races.
130  */
131 unsigned int kobjsize(const void *objp)
132 {
133 	struct page *page;
134 
135 	/*
136 	 * If the object we have should not have ksize performed on it,
137 	 * return size of 0
138 	 */
139 	if (!objp || !virt_addr_valid(objp))
140 		return 0;
141 
142 	page = virt_to_head_page(objp);
143 
144 	/*
145 	 * If the allocator sets PageSlab, we know the pointer came from
146 	 * kmalloc().
147 	 */
148 	if (PageSlab(page))
149 		return ksize(objp);
150 
151 	/*
152 	 * If it's not a compound page, see if we have a matching VMA
153 	 * region. This test is intentionally done in reverse order,
154 	 * so if there's no VMA, we still fall through and hand back
155 	 * PAGE_SIZE for 0-order pages.
156 	 */
157 	if (!PageCompound(page)) {
158 		struct vm_area_struct *vma;
159 
160 		vma = find_vma(current->mm, (unsigned long)objp);
161 		if (vma)
162 			return vma->vm_end - vma->vm_start;
163 	}
164 
165 	/*
166 	 * The ksize() function is only guaranteed to work for pointers
167 	 * returned by kmalloc(). So handle arbitrary pointers here.
168 	 */
169 	return PAGE_SIZE << compound_order(page);
170 }
171 
172 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
173 		     unsigned long start, int nr_pages, int flags,
174 		     struct page **pages, struct vm_area_struct **vmas)
175 {
176 	struct vm_area_struct *vma;
177 	unsigned long vm_flags;
178 	int i;
179 	int write = !!(flags & GUP_FLAGS_WRITE);
180 	int force = !!(flags & GUP_FLAGS_FORCE);
181 	int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
182 
183 	/* calculate required read or write permissions.
184 	 * - if 'force' is set, we only require the "MAY" flags.
185 	 */
186 	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
187 	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
188 
189 	for (i = 0; i < nr_pages; i++) {
190 		vma = find_vma(mm, start);
191 		if (!vma)
192 			goto finish_or_fault;
193 
194 		/* protect what we can, including chardevs */
195 		if (vma->vm_flags & (VM_IO | VM_PFNMAP) ||
196 		    (!ignore && !(vm_flags & vma->vm_flags)))
197 			goto finish_or_fault;
198 
199 		if (pages) {
200 			pages[i] = virt_to_page(start);
201 			if (pages[i])
202 				page_cache_get(pages[i]);
203 		}
204 		if (vmas)
205 			vmas[i] = vma;
206 		start += PAGE_SIZE;
207 	}
208 
209 	return i;
210 
211 finish_or_fault:
212 	return i ? : -EFAULT;
213 }
214 
215 
216 /*
217  * get a list of pages in an address range belonging to the specified process
218  * and indicate the VMA that covers each page
219  * - this is potentially dodgy as we may end incrementing the page count of a
220  *   slab page or a secondary page from a compound page
221  * - don't permit access to VMAs that don't support it, such as I/O mappings
222  */
223 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
224 	unsigned long start, int nr_pages, int write, int force,
225 	struct page **pages, struct vm_area_struct **vmas)
226 {
227 	int flags = 0;
228 
229 	if (write)
230 		flags |= GUP_FLAGS_WRITE;
231 	if (force)
232 		flags |= GUP_FLAGS_FORCE;
233 
234 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
235 }
236 EXPORT_SYMBOL(get_user_pages);
237 
238 /**
239  * follow_pfn - look up PFN at a user virtual address
240  * @vma: memory mapping
241  * @address: user virtual address
242  * @pfn: location to store found PFN
243  *
244  * Only IO mappings and raw PFN mappings are allowed.
245  *
246  * Returns zero and the pfn at @pfn on success, -ve otherwise.
247  */
248 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
249 	unsigned long *pfn)
250 {
251 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
252 		return -EINVAL;
253 
254 	*pfn = address >> PAGE_SHIFT;
255 	return 0;
256 }
257 EXPORT_SYMBOL(follow_pfn);
258 
259 DEFINE_RWLOCK(vmlist_lock);
260 struct vm_struct *vmlist;
261 
262 void vfree(const void *addr)
263 {
264 	kfree(addr);
265 }
266 EXPORT_SYMBOL(vfree);
267 
268 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
269 {
270 	/*
271 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
272 	 * returns only a logical address.
273 	 */
274 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
275 }
276 EXPORT_SYMBOL(__vmalloc);
277 
278 void *vmalloc_user(unsigned long size)
279 {
280 	void *ret;
281 
282 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
283 			PAGE_KERNEL);
284 	if (ret) {
285 		struct vm_area_struct *vma;
286 
287 		down_write(&current->mm->mmap_sem);
288 		vma = find_vma(current->mm, (unsigned long)ret);
289 		if (vma)
290 			vma->vm_flags |= VM_USERMAP;
291 		up_write(&current->mm->mmap_sem);
292 	}
293 
294 	return ret;
295 }
296 EXPORT_SYMBOL(vmalloc_user);
297 
298 struct page *vmalloc_to_page(const void *addr)
299 {
300 	return virt_to_page(addr);
301 }
302 EXPORT_SYMBOL(vmalloc_to_page);
303 
304 unsigned long vmalloc_to_pfn(const void *addr)
305 {
306 	return page_to_pfn(virt_to_page(addr));
307 }
308 EXPORT_SYMBOL(vmalloc_to_pfn);
309 
310 long vread(char *buf, char *addr, unsigned long count)
311 {
312 	memcpy(buf, addr, count);
313 	return count;
314 }
315 
316 long vwrite(char *buf, char *addr, unsigned long count)
317 {
318 	/* Don't allow overflow */
319 	if ((unsigned long) addr + count < count)
320 		count = -(unsigned long) addr;
321 
322 	memcpy(addr, buf, count);
323 	return(count);
324 }
325 
326 /*
327  *	vmalloc  -  allocate virtually continguos memory
328  *
329  *	@size:		allocation size
330  *
331  *	Allocate enough pages to cover @size from the page level
332  *	allocator and map them into continguos kernel virtual space.
333  *
334  *	For tight control over page level allocator and protection flags
335  *	use __vmalloc() instead.
336  */
337 void *vmalloc(unsigned long size)
338 {
339        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
340 }
341 EXPORT_SYMBOL(vmalloc);
342 
343 void *vmalloc_node(unsigned long size, int node)
344 {
345 	return vmalloc(size);
346 }
347 EXPORT_SYMBOL(vmalloc_node);
348 
349 #ifndef PAGE_KERNEL_EXEC
350 # define PAGE_KERNEL_EXEC PAGE_KERNEL
351 #endif
352 
353 /**
354  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
355  *	@size:		allocation size
356  *
357  *	Kernel-internal function to allocate enough pages to cover @size
358  *	the page level allocator and map them into contiguous and
359  *	executable kernel virtual space.
360  *
361  *	For tight control over page level allocator and protection flags
362  *	use __vmalloc() instead.
363  */
364 
365 void *vmalloc_exec(unsigned long size)
366 {
367 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
368 }
369 
370 /**
371  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
372  *	@size:		allocation size
373  *
374  *	Allocate enough 32bit PA addressable pages to cover @size from the
375  *	page level allocator and map them into continguos kernel virtual space.
376  */
377 void *vmalloc_32(unsigned long size)
378 {
379 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
380 }
381 EXPORT_SYMBOL(vmalloc_32);
382 
383 /**
384  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
385  *	@size:		allocation size
386  *
387  * The resulting memory area is 32bit addressable and zeroed so it can be
388  * mapped to userspace without leaking data.
389  *
390  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
391  * remap_vmalloc_range() are permissible.
392  */
393 void *vmalloc_32_user(unsigned long size)
394 {
395 	/*
396 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
397 	 * but for now this can simply use vmalloc_user() directly.
398 	 */
399 	return vmalloc_user(size);
400 }
401 EXPORT_SYMBOL(vmalloc_32_user);
402 
403 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
404 {
405 	BUG();
406 	return NULL;
407 }
408 EXPORT_SYMBOL(vmap);
409 
410 void vunmap(const void *addr)
411 {
412 	BUG();
413 }
414 EXPORT_SYMBOL(vunmap);
415 
416 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
417 {
418 	BUG();
419 	return NULL;
420 }
421 EXPORT_SYMBOL(vm_map_ram);
422 
423 void vm_unmap_ram(const void *mem, unsigned int count)
424 {
425 	BUG();
426 }
427 EXPORT_SYMBOL(vm_unmap_ram);
428 
429 void vm_unmap_aliases(void)
430 {
431 }
432 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
433 
434 /*
435  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
436  * have one.
437  */
438 void  __attribute__((weak)) vmalloc_sync_all(void)
439 {
440 }
441 
442 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
443 		   struct page *page)
444 {
445 	return -EINVAL;
446 }
447 EXPORT_SYMBOL(vm_insert_page);
448 
449 /*
450  *  sys_brk() for the most part doesn't need the global kernel
451  *  lock, except when an application is doing something nasty
452  *  like trying to un-brk an area that has already been mapped
453  *  to a regular file.  in this case, the unmapping will need
454  *  to invoke file system routines that need the global lock.
455  */
456 SYSCALL_DEFINE1(brk, unsigned long, brk)
457 {
458 	struct mm_struct *mm = current->mm;
459 
460 	if (brk < mm->start_brk || brk > mm->context.end_brk)
461 		return mm->brk;
462 
463 	if (mm->brk == brk)
464 		return mm->brk;
465 
466 	/*
467 	 * Always allow shrinking brk
468 	 */
469 	if (brk <= mm->brk) {
470 		mm->brk = brk;
471 		return brk;
472 	}
473 
474 	/*
475 	 * Ok, looks good - let it rip.
476 	 */
477 	return mm->brk = brk;
478 }
479 
480 /*
481  * initialise the VMA and region record slabs
482  */
483 void __init mmap_init(void)
484 {
485 	int ret;
486 
487 	ret = percpu_counter_init(&vm_committed_as, 0);
488 	VM_BUG_ON(ret);
489 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
490 }
491 
492 /*
493  * validate the region tree
494  * - the caller must hold the region lock
495  */
496 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
497 static noinline void validate_nommu_regions(void)
498 {
499 	struct vm_region *region, *last;
500 	struct rb_node *p, *lastp;
501 
502 	lastp = rb_first(&nommu_region_tree);
503 	if (!lastp)
504 		return;
505 
506 	last = rb_entry(lastp, struct vm_region, vm_rb);
507 	BUG_ON(unlikely(last->vm_end <= last->vm_start));
508 	BUG_ON(unlikely(last->vm_top < last->vm_end));
509 
510 	while ((p = rb_next(lastp))) {
511 		region = rb_entry(p, struct vm_region, vm_rb);
512 		last = rb_entry(lastp, struct vm_region, vm_rb);
513 
514 		BUG_ON(unlikely(region->vm_end <= region->vm_start));
515 		BUG_ON(unlikely(region->vm_top < region->vm_end));
516 		BUG_ON(unlikely(region->vm_start < last->vm_top));
517 
518 		lastp = p;
519 	}
520 }
521 #else
522 static void validate_nommu_regions(void)
523 {
524 }
525 #endif
526 
527 /*
528  * add a region into the global tree
529  */
530 static void add_nommu_region(struct vm_region *region)
531 {
532 	struct vm_region *pregion;
533 	struct rb_node **p, *parent;
534 
535 	validate_nommu_regions();
536 
537 	parent = NULL;
538 	p = &nommu_region_tree.rb_node;
539 	while (*p) {
540 		parent = *p;
541 		pregion = rb_entry(parent, struct vm_region, vm_rb);
542 		if (region->vm_start < pregion->vm_start)
543 			p = &(*p)->rb_left;
544 		else if (region->vm_start > pregion->vm_start)
545 			p = &(*p)->rb_right;
546 		else if (pregion == region)
547 			return;
548 		else
549 			BUG();
550 	}
551 
552 	rb_link_node(&region->vm_rb, parent, p);
553 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
554 
555 	validate_nommu_regions();
556 }
557 
558 /*
559  * delete a region from the global tree
560  */
561 static void delete_nommu_region(struct vm_region *region)
562 {
563 	BUG_ON(!nommu_region_tree.rb_node);
564 
565 	validate_nommu_regions();
566 	rb_erase(&region->vm_rb, &nommu_region_tree);
567 	validate_nommu_regions();
568 }
569 
570 /*
571  * free a contiguous series of pages
572  */
573 static void free_page_series(unsigned long from, unsigned long to)
574 {
575 	for (; from < to; from += PAGE_SIZE) {
576 		struct page *page = virt_to_page(from);
577 
578 		kdebug("- free %lx", from);
579 		atomic_long_dec(&mmap_pages_allocated);
580 		if (page_count(page) != 1)
581 			kdebug("free page %p: refcount not one: %d",
582 			       page, page_count(page));
583 		put_page(page);
584 	}
585 }
586 
587 /*
588  * release a reference to a region
589  * - the caller must hold the region semaphore for writing, which this releases
590  * - the region may not have been added to the tree yet, in which case vm_top
591  *   will equal vm_start
592  */
593 static void __put_nommu_region(struct vm_region *region)
594 	__releases(nommu_region_sem)
595 {
596 	kenter("%p{%d}", region, atomic_read(&region->vm_usage));
597 
598 	BUG_ON(!nommu_region_tree.rb_node);
599 
600 	if (atomic_dec_and_test(&region->vm_usage)) {
601 		if (region->vm_top > region->vm_start)
602 			delete_nommu_region(region);
603 		up_write(&nommu_region_sem);
604 
605 		if (region->vm_file)
606 			fput(region->vm_file);
607 
608 		/* IO memory and memory shared directly out of the pagecache
609 		 * from ramfs/tmpfs mustn't be released here */
610 		if (region->vm_flags & VM_MAPPED_COPY) {
611 			kdebug("free series");
612 			free_page_series(region->vm_start, region->vm_top);
613 		}
614 		kmem_cache_free(vm_region_jar, region);
615 	} else {
616 		up_write(&nommu_region_sem);
617 	}
618 }
619 
620 /*
621  * release a reference to a region
622  */
623 static void put_nommu_region(struct vm_region *region)
624 {
625 	down_write(&nommu_region_sem);
626 	__put_nommu_region(region);
627 }
628 
629 /*
630  * add a VMA into a process's mm_struct in the appropriate place in the list
631  * and tree and add to the address space's page tree also if not an anonymous
632  * page
633  * - should be called with mm->mmap_sem held writelocked
634  */
635 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
636 {
637 	struct vm_area_struct *pvma, **pp;
638 	struct address_space *mapping;
639 	struct rb_node **p, *parent;
640 
641 	kenter(",%p", vma);
642 
643 	BUG_ON(!vma->vm_region);
644 
645 	mm->map_count++;
646 	vma->vm_mm = mm;
647 
648 	/* add the VMA to the mapping */
649 	if (vma->vm_file) {
650 		mapping = vma->vm_file->f_mapping;
651 
652 		flush_dcache_mmap_lock(mapping);
653 		vma_prio_tree_insert(vma, &mapping->i_mmap);
654 		flush_dcache_mmap_unlock(mapping);
655 	}
656 
657 	/* add the VMA to the tree */
658 	parent = NULL;
659 	p = &mm->mm_rb.rb_node;
660 	while (*p) {
661 		parent = *p;
662 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
663 
664 		/* sort by: start addr, end addr, VMA struct addr in that order
665 		 * (the latter is necessary as we may get identical VMAs) */
666 		if (vma->vm_start < pvma->vm_start)
667 			p = &(*p)->rb_left;
668 		else if (vma->vm_start > pvma->vm_start)
669 			p = &(*p)->rb_right;
670 		else if (vma->vm_end < pvma->vm_end)
671 			p = &(*p)->rb_left;
672 		else if (vma->vm_end > pvma->vm_end)
673 			p = &(*p)->rb_right;
674 		else if (vma < pvma)
675 			p = &(*p)->rb_left;
676 		else if (vma > pvma)
677 			p = &(*p)->rb_right;
678 		else
679 			BUG();
680 	}
681 
682 	rb_link_node(&vma->vm_rb, parent, p);
683 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
684 
685 	/* add VMA to the VMA list also */
686 	for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) {
687 		if (pvma->vm_start > vma->vm_start)
688 			break;
689 		if (pvma->vm_start < vma->vm_start)
690 			continue;
691 		if (pvma->vm_end < vma->vm_end)
692 			break;
693 	}
694 
695 	vma->vm_next = *pp;
696 	*pp = vma;
697 }
698 
699 /*
700  * delete a VMA from its owning mm_struct and address space
701  */
702 static void delete_vma_from_mm(struct vm_area_struct *vma)
703 {
704 	struct vm_area_struct **pp;
705 	struct address_space *mapping;
706 	struct mm_struct *mm = vma->vm_mm;
707 
708 	kenter("%p", vma);
709 
710 	mm->map_count--;
711 	if (mm->mmap_cache == vma)
712 		mm->mmap_cache = NULL;
713 
714 	/* remove the VMA from the mapping */
715 	if (vma->vm_file) {
716 		mapping = vma->vm_file->f_mapping;
717 
718 		flush_dcache_mmap_lock(mapping);
719 		vma_prio_tree_remove(vma, &mapping->i_mmap);
720 		flush_dcache_mmap_unlock(mapping);
721 	}
722 
723 	/* remove from the MM's tree and list */
724 	rb_erase(&vma->vm_rb, &mm->mm_rb);
725 	for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) {
726 		if (*pp == vma) {
727 			*pp = vma->vm_next;
728 			break;
729 		}
730 	}
731 
732 	vma->vm_mm = NULL;
733 }
734 
735 /*
736  * destroy a VMA record
737  */
738 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
739 {
740 	kenter("%p", vma);
741 	if (vma->vm_ops && vma->vm_ops->close)
742 		vma->vm_ops->close(vma);
743 	if (vma->vm_file) {
744 		fput(vma->vm_file);
745 		if (vma->vm_flags & VM_EXECUTABLE)
746 			removed_exe_file_vma(mm);
747 	}
748 	put_nommu_region(vma->vm_region);
749 	kmem_cache_free(vm_area_cachep, vma);
750 }
751 
752 /*
753  * look up the first VMA in which addr resides, NULL if none
754  * - should be called with mm->mmap_sem at least held readlocked
755  */
756 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
757 {
758 	struct vm_area_struct *vma;
759 	struct rb_node *n = mm->mm_rb.rb_node;
760 
761 	/* check the cache first */
762 	vma = mm->mmap_cache;
763 	if (vma && vma->vm_start <= addr && vma->vm_end > addr)
764 		return vma;
765 
766 	/* trawl the tree (there may be multiple mappings in which addr
767 	 * resides) */
768 	for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
769 		vma = rb_entry(n, struct vm_area_struct, vm_rb);
770 		if (vma->vm_start > addr)
771 			return NULL;
772 		if (vma->vm_end > addr) {
773 			mm->mmap_cache = vma;
774 			return vma;
775 		}
776 	}
777 
778 	return NULL;
779 }
780 EXPORT_SYMBOL(find_vma);
781 
782 /*
783  * find a VMA
784  * - we don't extend stack VMAs under NOMMU conditions
785  */
786 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
787 {
788 	return find_vma(mm, addr);
789 }
790 
791 /*
792  * expand a stack to a given address
793  * - not supported under NOMMU conditions
794  */
795 int expand_stack(struct vm_area_struct *vma, unsigned long address)
796 {
797 	return -ENOMEM;
798 }
799 
800 /*
801  * look up the first VMA exactly that exactly matches addr
802  * - should be called with mm->mmap_sem at least held readlocked
803  */
804 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
805 					     unsigned long addr,
806 					     unsigned long len)
807 {
808 	struct vm_area_struct *vma;
809 	struct rb_node *n = mm->mm_rb.rb_node;
810 	unsigned long end = addr + len;
811 
812 	/* check the cache first */
813 	vma = mm->mmap_cache;
814 	if (vma && vma->vm_start == addr && vma->vm_end == end)
815 		return vma;
816 
817 	/* trawl the tree (there may be multiple mappings in which addr
818 	 * resides) */
819 	for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
820 		vma = rb_entry(n, struct vm_area_struct, vm_rb);
821 		if (vma->vm_start < addr)
822 			continue;
823 		if (vma->vm_start > addr)
824 			return NULL;
825 		if (vma->vm_end == end) {
826 			mm->mmap_cache = vma;
827 			return vma;
828 		}
829 	}
830 
831 	return NULL;
832 }
833 
834 /*
835  * determine whether a mapping should be permitted and, if so, what sort of
836  * mapping we're capable of supporting
837  */
838 static int validate_mmap_request(struct file *file,
839 				 unsigned long addr,
840 				 unsigned long len,
841 				 unsigned long prot,
842 				 unsigned long flags,
843 				 unsigned long pgoff,
844 				 unsigned long *_capabilities)
845 {
846 	unsigned long capabilities, rlen;
847 	unsigned long reqprot = prot;
848 	int ret;
849 
850 	/* do the simple checks first */
851 	if (flags & MAP_FIXED || addr) {
852 		printk(KERN_DEBUG
853 		       "%d: Can't do fixed-address/overlay mmap of RAM\n",
854 		       current->pid);
855 		return -EINVAL;
856 	}
857 
858 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
859 	    (flags & MAP_TYPE) != MAP_SHARED)
860 		return -EINVAL;
861 
862 	if (!len)
863 		return -EINVAL;
864 
865 	/* Careful about overflows.. */
866 	rlen = PAGE_ALIGN(len);
867 	if (!rlen || rlen > TASK_SIZE)
868 		return -ENOMEM;
869 
870 	/* offset overflow? */
871 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
872 		return -EOVERFLOW;
873 
874 	if (file) {
875 		/* validate file mapping requests */
876 		struct address_space *mapping;
877 
878 		/* files must support mmap */
879 		if (!file->f_op || !file->f_op->mmap)
880 			return -ENODEV;
881 
882 		/* work out if what we've got could possibly be shared
883 		 * - we support chardevs that provide their own "memory"
884 		 * - we support files/blockdevs that are memory backed
885 		 */
886 		mapping = file->f_mapping;
887 		if (!mapping)
888 			mapping = file->f_path.dentry->d_inode->i_mapping;
889 
890 		capabilities = 0;
891 		if (mapping && mapping->backing_dev_info)
892 			capabilities = mapping->backing_dev_info->capabilities;
893 
894 		if (!capabilities) {
895 			/* no explicit capabilities set, so assume some
896 			 * defaults */
897 			switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
898 			case S_IFREG:
899 			case S_IFBLK:
900 				capabilities = BDI_CAP_MAP_COPY;
901 				break;
902 
903 			case S_IFCHR:
904 				capabilities =
905 					BDI_CAP_MAP_DIRECT |
906 					BDI_CAP_READ_MAP |
907 					BDI_CAP_WRITE_MAP;
908 				break;
909 
910 			default:
911 				return -EINVAL;
912 			}
913 		}
914 
915 		/* eliminate any capabilities that we can't support on this
916 		 * device */
917 		if (!file->f_op->get_unmapped_area)
918 			capabilities &= ~BDI_CAP_MAP_DIRECT;
919 		if (!file->f_op->read)
920 			capabilities &= ~BDI_CAP_MAP_COPY;
921 
922 		/* The file shall have been opened with read permission. */
923 		if (!(file->f_mode & FMODE_READ))
924 			return -EACCES;
925 
926 		if (flags & MAP_SHARED) {
927 			/* do checks for writing, appending and locking */
928 			if ((prot & PROT_WRITE) &&
929 			    !(file->f_mode & FMODE_WRITE))
930 				return -EACCES;
931 
932 			if (IS_APPEND(file->f_path.dentry->d_inode) &&
933 			    (file->f_mode & FMODE_WRITE))
934 				return -EACCES;
935 
936 			if (locks_verify_locked(file->f_path.dentry->d_inode))
937 				return -EAGAIN;
938 
939 			if (!(capabilities & BDI_CAP_MAP_DIRECT))
940 				return -ENODEV;
941 
942 			if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
943 			    ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
944 			    ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
945 			    ) {
946 				printk("MAP_SHARED not completely supported on !MMU\n");
947 				return -EINVAL;
948 			}
949 
950 			/* we mustn't privatise shared mappings */
951 			capabilities &= ~BDI_CAP_MAP_COPY;
952 		}
953 		else {
954 			/* we're going to read the file into private memory we
955 			 * allocate */
956 			if (!(capabilities & BDI_CAP_MAP_COPY))
957 				return -ENODEV;
958 
959 			/* we don't permit a private writable mapping to be
960 			 * shared with the backing device */
961 			if (prot & PROT_WRITE)
962 				capabilities &= ~BDI_CAP_MAP_DIRECT;
963 		}
964 
965 		/* handle executable mappings and implied executable
966 		 * mappings */
967 		if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
968 			if (prot & PROT_EXEC)
969 				return -EPERM;
970 		}
971 		else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
972 			/* handle implication of PROT_EXEC by PROT_READ */
973 			if (current->personality & READ_IMPLIES_EXEC) {
974 				if (capabilities & BDI_CAP_EXEC_MAP)
975 					prot |= PROT_EXEC;
976 			}
977 		}
978 		else if ((prot & PROT_READ) &&
979 			 (prot & PROT_EXEC) &&
980 			 !(capabilities & BDI_CAP_EXEC_MAP)
981 			 ) {
982 			/* backing file is not executable, try to copy */
983 			capabilities &= ~BDI_CAP_MAP_DIRECT;
984 		}
985 	}
986 	else {
987 		/* anonymous mappings are always memory backed and can be
988 		 * privately mapped
989 		 */
990 		capabilities = BDI_CAP_MAP_COPY;
991 
992 		/* handle PROT_EXEC implication by PROT_READ */
993 		if ((prot & PROT_READ) &&
994 		    (current->personality & READ_IMPLIES_EXEC))
995 			prot |= PROT_EXEC;
996 	}
997 
998 	/* allow the security API to have its say */
999 	ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1000 	if (ret < 0)
1001 		return ret;
1002 
1003 	/* looks okay */
1004 	*_capabilities = capabilities;
1005 	return 0;
1006 }
1007 
1008 /*
1009  * we've determined that we can make the mapping, now translate what we
1010  * now know into VMA flags
1011  */
1012 static unsigned long determine_vm_flags(struct file *file,
1013 					unsigned long prot,
1014 					unsigned long flags,
1015 					unsigned long capabilities)
1016 {
1017 	unsigned long vm_flags;
1018 
1019 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1020 	vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1021 	/* vm_flags |= mm->def_flags; */
1022 
1023 	if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1024 		/* attempt to share read-only copies of mapped file chunks */
1025 		if (file && !(prot & PROT_WRITE))
1026 			vm_flags |= VM_MAYSHARE;
1027 	}
1028 	else {
1029 		/* overlay a shareable mapping on the backing device or inode
1030 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1031 		 * romfs/cramfs */
1032 		if (flags & MAP_SHARED)
1033 			vm_flags |= VM_MAYSHARE | VM_SHARED;
1034 		else if ((((vm_flags & capabilities) ^ vm_flags) & BDI_CAP_VMFLAGS) == 0)
1035 			vm_flags |= VM_MAYSHARE;
1036 	}
1037 
1038 	/* refuse to let anyone share private mappings with this process if
1039 	 * it's being traced - otherwise breakpoints set in it may interfere
1040 	 * with another untraced process
1041 	 */
1042 	if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1043 		vm_flags &= ~VM_MAYSHARE;
1044 
1045 	return vm_flags;
1046 }
1047 
1048 /*
1049  * set up a shared mapping on a file (the driver or filesystem provides and
1050  * pins the storage)
1051  */
1052 static int do_mmap_shared_file(struct vm_area_struct *vma)
1053 {
1054 	int ret;
1055 
1056 	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1057 	if (ret == 0) {
1058 		vma->vm_region->vm_top = vma->vm_region->vm_end;
1059 		return ret;
1060 	}
1061 	if (ret != -ENOSYS)
1062 		return ret;
1063 
1064 	/* getting an ENOSYS error indicates that direct mmap isn't
1065 	 * possible (as opposed to tried but failed) so we'll fall
1066 	 * through to making a private copy of the data and mapping
1067 	 * that if we can */
1068 	return -ENODEV;
1069 }
1070 
1071 /*
1072  * set up a private mapping or an anonymous shared mapping
1073  */
1074 static int do_mmap_private(struct vm_area_struct *vma,
1075 			   struct vm_region *region,
1076 			   unsigned long len)
1077 {
1078 	struct page *pages;
1079 	unsigned long total, point, n, rlen;
1080 	void *base;
1081 	int ret, order;
1082 
1083 	/* invoke the file's mapping function so that it can keep track of
1084 	 * shared mappings on devices or memory
1085 	 * - VM_MAYSHARE will be set if it may attempt to share
1086 	 */
1087 	if (vma->vm_file) {
1088 		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1089 		if (ret == 0) {
1090 			/* shouldn't return success if we're not sharing */
1091 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1092 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1093 			return ret;
1094 		}
1095 		if (ret != -ENOSYS)
1096 			return ret;
1097 
1098 		/* getting an ENOSYS error indicates that direct mmap isn't
1099 		 * possible (as opposed to tried but failed) so we'll try to
1100 		 * make a private copy of the data and map that instead */
1101 	}
1102 
1103 	rlen = PAGE_ALIGN(len);
1104 
1105 	/* allocate some memory to hold the mapping
1106 	 * - note that this may not return a page-aligned address if the object
1107 	 *   we're allocating is smaller than a page
1108 	 */
1109 	order = get_order(rlen);
1110 	kdebug("alloc order %d for %lx", order, len);
1111 
1112 	pages = alloc_pages(GFP_KERNEL, order);
1113 	if (!pages)
1114 		goto enomem;
1115 
1116 	total = 1 << order;
1117 	atomic_long_add(total, &mmap_pages_allocated);
1118 
1119 	point = rlen >> PAGE_SHIFT;
1120 
1121 	/* we allocated a power-of-2 sized page set, so we may want to trim off
1122 	 * the excess */
1123 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1124 		while (total > point) {
1125 			order = ilog2(total - point);
1126 			n = 1 << order;
1127 			kdebug("shave %lu/%lu @%lu", n, total - point, total);
1128 			atomic_long_sub(n, &mmap_pages_allocated);
1129 			total -= n;
1130 			set_page_refcounted(pages + total);
1131 			__free_pages(pages + total, order);
1132 		}
1133 	}
1134 
1135 	for (point = 1; point < total; point++)
1136 		set_page_refcounted(&pages[point]);
1137 
1138 	base = page_address(pages);
1139 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1140 	region->vm_start = (unsigned long) base;
1141 	region->vm_end   = region->vm_start + rlen;
1142 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1143 
1144 	vma->vm_start = region->vm_start;
1145 	vma->vm_end   = region->vm_start + len;
1146 
1147 	if (vma->vm_file) {
1148 		/* read the contents of a file into the copy */
1149 		mm_segment_t old_fs;
1150 		loff_t fpos;
1151 
1152 		fpos = vma->vm_pgoff;
1153 		fpos <<= PAGE_SHIFT;
1154 
1155 		old_fs = get_fs();
1156 		set_fs(KERNEL_DS);
1157 		ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1158 		set_fs(old_fs);
1159 
1160 		if (ret < 0)
1161 			goto error_free;
1162 
1163 		/* clear the last little bit */
1164 		if (ret < rlen)
1165 			memset(base + ret, 0, rlen - ret);
1166 
1167 	} else {
1168 		/* if it's an anonymous mapping, then just clear it */
1169 		memset(base, 0, rlen);
1170 	}
1171 
1172 	return 0;
1173 
1174 error_free:
1175 	free_page_series(region->vm_start, region->vm_end);
1176 	region->vm_start = vma->vm_start = 0;
1177 	region->vm_end   = vma->vm_end = 0;
1178 	region->vm_top   = 0;
1179 	return ret;
1180 
1181 enomem:
1182 	printk("Allocation of length %lu from process %d (%s) failed\n",
1183 	       len, current->pid, current->comm);
1184 	show_free_areas();
1185 	return -ENOMEM;
1186 }
1187 
1188 /*
1189  * handle mapping creation for uClinux
1190  */
1191 unsigned long do_mmap_pgoff(struct file *file,
1192 			    unsigned long addr,
1193 			    unsigned long len,
1194 			    unsigned long prot,
1195 			    unsigned long flags,
1196 			    unsigned long pgoff)
1197 {
1198 	struct vm_area_struct *vma;
1199 	struct vm_region *region;
1200 	struct rb_node *rb;
1201 	unsigned long capabilities, vm_flags, result;
1202 	int ret;
1203 
1204 	kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1205 
1206 	if (!(flags & MAP_FIXED))
1207 		addr = round_hint_to_min(addr);
1208 
1209 	/* decide whether we should attempt the mapping, and if so what sort of
1210 	 * mapping */
1211 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1212 				    &capabilities);
1213 	if (ret < 0) {
1214 		kleave(" = %d [val]", ret);
1215 		return ret;
1216 	}
1217 
1218 	/* we've determined that we can make the mapping, now translate what we
1219 	 * now know into VMA flags */
1220 	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1221 
1222 	/* we're going to need to record the mapping */
1223 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1224 	if (!region)
1225 		goto error_getting_region;
1226 
1227 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1228 	if (!vma)
1229 		goto error_getting_vma;
1230 
1231 	atomic_set(&region->vm_usage, 1);
1232 	region->vm_flags = vm_flags;
1233 	region->vm_pgoff = pgoff;
1234 
1235 	INIT_LIST_HEAD(&vma->anon_vma_node);
1236 	vma->vm_flags = vm_flags;
1237 	vma->vm_pgoff = pgoff;
1238 
1239 	if (file) {
1240 		region->vm_file = file;
1241 		get_file(file);
1242 		vma->vm_file = file;
1243 		get_file(file);
1244 		if (vm_flags & VM_EXECUTABLE) {
1245 			added_exe_file_vma(current->mm);
1246 			vma->vm_mm = current->mm;
1247 		}
1248 	}
1249 
1250 	down_write(&nommu_region_sem);
1251 
1252 	/* if we want to share, we need to check for regions created by other
1253 	 * mmap() calls that overlap with our proposed mapping
1254 	 * - we can only share with a superset match on most regular files
1255 	 * - shared mappings on character devices and memory backed files are
1256 	 *   permitted to overlap inexactly as far as we are concerned for in
1257 	 *   these cases, sharing is handled in the driver or filesystem rather
1258 	 *   than here
1259 	 */
1260 	if (vm_flags & VM_MAYSHARE) {
1261 		struct vm_region *pregion;
1262 		unsigned long pglen, rpglen, pgend, rpgend, start;
1263 
1264 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1265 		pgend = pgoff + pglen;
1266 
1267 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1268 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1269 
1270 			if (!(pregion->vm_flags & VM_MAYSHARE))
1271 				continue;
1272 
1273 			/* search for overlapping mappings on the same file */
1274 			if (pregion->vm_file->f_path.dentry->d_inode !=
1275 			    file->f_path.dentry->d_inode)
1276 				continue;
1277 
1278 			if (pregion->vm_pgoff >= pgend)
1279 				continue;
1280 
1281 			rpglen = pregion->vm_end - pregion->vm_start;
1282 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1283 			rpgend = pregion->vm_pgoff + rpglen;
1284 			if (pgoff >= rpgend)
1285 				continue;
1286 
1287 			/* handle inexactly overlapping matches between
1288 			 * mappings */
1289 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1290 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1291 				/* new mapping is not a subset of the region */
1292 				if (!(capabilities & BDI_CAP_MAP_DIRECT))
1293 					goto sharing_violation;
1294 				continue;
1295 			}
1296 
1297 			/* we've found a region we can share */
1298 			atomic_inc(&pregion->vm_usage);
1299 			vma->vm_region = pregion;
1300 			start = pregion->vm_start;
1301 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1302 			vma->vm_start = start;
1303 			vma->vm_end = start + len;
1304 
1305 			if (pregion->vm_flags & VM_MAPPED_COPY) {
1306 				kdebug("share copy");
1307 				vma->vm_flags |= VM_MAPPED_COPY;
1308 			} else {
1309 				kdebug("share mmap");
1310 				ret = do_mmap_shared_file(vma);
1311 				if (ret < 0) {
1312 					vma->vm_region = NULL;
1313 					vma->vm_start = 0;
1314 					vma->vm_end = 0;
1315 					atomic_dec(&pregion->vm_usage);
1316 					pregion = NULL;
1317 					goto error_just_free;
1318 				}
1319 			}
1320 			fput(region->vm_file);
1321 			kmem_cache_free(vm_region_jar, region);
1322 			region = pregion;
1323 			result = start;
1324 			goto share;
1325 		}
1326 
1327 		/* obtain the address at which to make a shared mapping
1328 		 * - this is the hook for quasi-memory character devices to
1329 		 *   tell us the location of a shared mapping
1330 		 */
1331 		if (file && file->f_op->get_unmapped_area) {
1332 			addr = file->f_op->get_unmapped_area(file, addr, len,
1333 							     pgoff, flags);
1334 			if (IS_ERR((void *) addr)) {
1335 				ret = addr;
1336 				if (ret != (unsigned long) -ENOSYS)
1337 					goto error_just_free;
1338 
1339 				/* the driver refused to tell us where to site
1340 				 * the mapping so we'll have to attempt to copy
1341 				 * it */
1342 				ret = (unsigned long) -ENODEV;
1343 				if (!(capabilities & BDI_CAP_MAP_COPY))
1344 					goto error_just_free;
1345 
1346 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1347 			} else {
1348 				vma->vm_start = region->vm_start = addr;
1349 				vma->vm_end = region->vm_end = addr + len;
1350 			}
1351 		}
1352 	}
1353 
1354 	vma->vm_region = region;
1355 	add_nommu_region(region);
1356 
1357 	/* set up the mapping */
1358 	if (file && vma->vm_flags & VM_SHARED)
1359 		ret = do_mmap_shared_file(vma);
1360 	else
1361 		ret = do_mmap_private(vma, region, len);
1362 	if (ret < 0)
1363 		goto error_put_region;
1364 
1365 	/* okay... we have a mapping; now we have to register it */
1366 	result = vma->vm_start;
1367 
1368 	current->mm->total_vm += len >> PAGE_SHIFT;
1369 
1370 share:
1371 	add_vma_to_mm(current->mm, vma);
1372 
1373 	up_write(&nommu_region_sem);
1374 
1375 	if (prot & PROT_EXEC)
1376 		flush_icache_range(result, result + len);
1377 
1378 	kleave(" = %lx", result);
1379 	return result;
1380 
1381 error_put_region:
1382 	__put_nommu_region(region);
1383 	if (vma) {
1384 		if (vma->vm_file) {
1385 			fput(vma->vm_file);
1386 			if (vma->vm_flags & VM_EXECUTABLE)
1387 				removed_exe_file_vma(vma->vm_mm);
1388 		}
1389 		kmem_cache_free(vm_area_cachep, vma);
1390 	}
1391 	kleave(" = %d [pr]", ret);
1392 	return ret;
1393 
1394 error_just_free:
1395 	up_write(&nommu_region_sem);
1396 error:
1397 	fput(region->vm_file);
1398 	kmem_cache_free(vm_region_jar, region);
1399 	fput(vma->vm_file);
1400 	if (vma->vm_flags & VM_EXECUTABLE)
1401 		removed_exe_file_vma(vma->vm_mm);
1402 	kmem_cache_free(vm_area_cachep, vma);
1403 	kleave(" = %d", ret);
1404 	return ret;
1405 
1406 sharing_violation:
1407 	up_write(&nommu_region_sem);
1408 	printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1409 	ret = -EINVAL;
1410 	goto error;
1411 
1412 error_getting_vma:
1413 	kmem_cache_free(vm_region_jar, region);
1414 	printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1415 	       " from process %d failed\n",
1416 	       len, current->pid);
1417 	show_free_areas();
1418 	return -ENOMEM;
1419 
1420 error_getting_region:
1421 	printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1422 	       " from process %d failed\n",
1423 	       len, current->pid);
1424 	show_free_areas();
1425 	return -ENOMEM;
1426 }
1427 EXPORT_SYMBOL(do_mmap_pgoff);
1428 
1429 /*
1430  * split a vma into two pieces at address 'addr', a new vma is allocated either
1431  * for the first part or the tail.
1432  */
1433 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1434 	      unsigned long addr, int new_below)
1435 {
1436 	struct vm_area_struct *new;
1437 	struct vm_region *region;
1438 	unsigned long npages;
1439 
1440 	kenter("");
1441 
1442 	/* we're only permitted to split anonymous regions that have a single
1443 	 * owner */
1444 	if (vma->vm_file ||
1445 	    atomic_read(&vma->vm_region->vm_usage) != 1)
1446 		return -ENOMEM;
1447 
1448 	if (mm->map_count >= sysctl_max_map_count)
1449 		return -ENOMEM;
1450 
1451 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1452 	if (!region)
1453 		return -ENOMEM;
1454 
1455 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1456 	if (!new) {
1457 		kmem_cache_free(vm_region_jar, region);
1458 		return -ENOMEM;
1459 	}
1460 
1461 	/* most fields are the same, copy all, and then fixup */
1462 	*new = *vma;
1463 	*region = *vma->vm_region;
1464 	new->vm_region = region;
1465 
1466 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1467 
1468 	if (new_below) {
1469 		region->vm_top = region->vm_end = new->vm_end = addr;
1470 	} else {
1471 		region->vm_start = new->vm_start = addr;
1472 		region->vm_pgoff = new->vm_pgoff += npages;
1473 	}
1474 
1475 	if (new->vm_ops && new->vm_ops->open)
1476 		new->vm_ops->open(new);
1477 
1478 	delete_vma_from_mm(vma);
1479 	down_write(&nommu_region_sem);
1480 	delete_nommu_region(vma->vm_region);
1481 	if (new_below) {
1482 		vma->vm_region->vm_start = vma->vm_start = addr;
1483 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1484 	} else {
1485 		vma->vm_region->vm_end = vma->vm_end = addr;
1486 		vma->vm_region->vm_top = addr;
1487 	}
1488 	add_nommu_region(vma->vm_region);
1489 	add_nommu_region(new->vm_region);
1490 	up_write(&nommu_region_sem);
1491 	add_vma_to_mm(mm, vma);
1492 	add_vma_to_mm(mm, new);
1493 	return 0;
1494 }
1495 
1496 /*
1497  * shrink a VMA by removing the specified chunk from either the beginning or
1498  * the end
1499  */
1500 static int shrink_vma(struct mm_struct *mm,
1501 		      struct vm_area_struct *vma,
1502 		      unsigned long from, unsigned long to)
1503 {
1504 	struct vm_region *region;
1505 
1506 	kenter("");
1507 
1508 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1509 	 * and list */
1510 	delete_vma_from_mm(vma);
1511 	if (from > vma->vm_start)
1512 		vma->vm_end = from;
1513 	else
1514 		vma->vm_start = to;
1515 	add_vma_to_mm(mm, vma);
1516 
1517 	/* cut the backing region down to size */
1518 	region = vma->vm_region;
1519 	BUG_ON(atomic_read(&region->vm_usage) != 1);
1520 
1521 	down_write(&nommu_region_sem);
1522 	delete_nommu_region(region);
1523 	if (from > region->vm_start) {
1524 		to = region->vm_top;
1525 		region->vm_top = region->vm_end = from;
1526 	} else {
1527 		region->vm_start = to;
1528 	}
1529 	add_nommu_region(region);
1530 	up_write(&nommu_region_sem);
1531 
1532 	free_page_series(from, to);
1533 	return 0;
1534 }
1535 
1536 /*
1537  * release a mapping
1538  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1539  *   VMA, though it need not cover the whole VMA
1540  */
1541 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1542 {
1543 	struct vm_area_struct *vma;
1544 	struct rb_node *rb;
1545 	unsigned long end = start + len;
1546 	int ret;
1547 
1548 	kenter(",%lx,%zx", start, len);
1549 
1550 	if (len == 0)
1551 		return -EINVAL;
1552 
1553 	/* find the first potentially overlapping VMA */
1554 	vma = find_vma(mm, start);
1555 	if (!vma) {
1556 		static int limit = 0;
1557 		if (limit < 5) {
1558 			printk(KERN_WARNING
1559 			       "munmap of memory not mmapped by process %d"
1560 			       " (%s): 0x%lx-0x%lx\n",
1561 			       current->pid, current->comm,
1562 			       start, start + len - 1);
1563 			limit++;
1564 		}
1565 		return -EINVAL;
1566 	}
1567 
1568 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1569 	if (vma->vm_file) {
1570 		do {
1571 			if (start > vma->vm_start) {
1572 				kleave(" = -EINVAL [miss]");
1573 				return -EINVAL;
1574 			}
1575 			if (end == vma->vm_end)
1576 				goto erase_whole_vma;
1577 			rb = rb_next(&vma->vm_rb);
1578 			vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1579 		} while (rb);
1580 		kleave(" = -EINVAL [split file]");
1581 		return -EINVAL;
1582 	} else {
1583 		/* the chunk must be a subset of the VMA found */
1584 		if (start == vma->vm_start && end == vma->vm_end)
1585 			goto erase_whole_vma;
1586 		if (start < vma->vm_start || end > vma->vm_end) {
1587 			kleave(" = -EINVAL [superset]");
1588 			return -EINVAL;
1589 		}
1590 		if (start & ~PAGE_MASK) {
1591 			kleave(" = -EINVAL [unaligned start]");
1592 			return -EINVAL;
1593 		}
1594 		if (end != vma->vm_end && end & ~PAGE_MASK) {
1595 			kleave(" = -EINVAL [unaligned split]");
1596 			return -EINVAL;
1597 		}
1598 		if (start != vma->vm_start && end != vma->vm_end) {
1599 			ret = split_vma(mm, vma, start, 1);
1600 			if (ret < 0) {
1601 				kleave(" = %d [split]", ret);
1602 				return ret;
1603 			}
1604 		}
1605 		return shrink_vma(mm, vma, start, end);
1606 	}
1607 
1608 erase_whole_vma:
1609 	delete_vma_from_mm(vma);
1610 	delete_vma(mm, vma);
1611 	kleave(" = 0");
1612 	return 0;
1613 }
1614 EXPORT_SYMBOL(do_munmap);
1615 
1616 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1617 {
1618 	int ret;
1619 	struct mm_struct *mm = current->mm;
1620 
1621 	down_write(&mm->mmap_sem);
1622 	ret = do_munmap(mm, addr, len);
1623 	up_write(&mm->mmap_sem);
1624 	return ret;
1625 }
1626 
1627 /*
1628  * release all the mappings made in a process's VM space
1629  */
1630 void exit_mmap(struct mm_struct *mm)
1631 {
1632 	struct vm_area_struct *vma;
1633 
1634 	if (!mm)
1635 		return;
1636 
1637 	kenter("");
1638 
1639 	mm->total_vm = 0;
1640 
1641 	while ((vma = mm->mmap)) {
1642 		mm->mmap = vma->vm_next;
1643 		delete_vma_from_mm(vma);
1644 		delete_vma(mm, vma);
1645 	}
1646 
1647 	kleave("");
1648 }
1649 
1650 unsigned long do_brk(unsigned long addr, unsigned long len)
1651 {
1652 	return -ENOMEM;
1653 }
1654 
1655 /*
1656  * expand (or shrink) an existing mapping, potentially moving it at the same
1657  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1658  *
1659  * under NOMMU conditions, we only permit changing a mapping's size, and only
1660  * as long as it stays within the region allocated by do_mmap_private() and the
1661  * block is not shareable
1662  *
1663  * MREMAP_FIXED is not supported under NOMMU conditions
1664  */
1665 unsigned long do_mremap(unsigned long addr,
1666 			unsigned long old_len, unsigned long new_len,
1667 			unsigned long flags, unsigned long new_addr)
1668 {
1669 	struct vm_area_struct *vma;
1670 
1671 	/* insanity checks first */
1672 	if (old_len == 0 || new_len == 0)
1673 		return (unsigned long) -EINVAL;
1674 
1675 	if (addr & ~PAGE_MASK)
1676 		return -EINVAL;
1677 
1678 	if (flags & MREMAP_FIXED && new_addr != addr)
1679 		return (unsigned long) -EINVAL;
1680 
1681 	vma = find_vma_exact(current->mm, addr, old_len);
1682 	if (!vma)
1683 		return (unsigned long) -EINVAL;
1684 
1685 	if (vma->vm_end != vma->vm_start + old_len)
1686 		return (unsigned long) -EFAULT;
1687 
1688 	if (vma->vm_flags & VM_MAYSHARE)
1689 		return (unsigned long) -EPERM;
1690 
1691 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1692 		return (unsigned long) -ENOMEM;
1693 
1694 	/* all checks complete - do it */
1695 	vma->vm_end = vma->vm_start + new_len;
1696 	return vma->vm_start;
1697 }
1698 EXPORT_SYMBOL(do_mremap);
1699 
1700 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1701 		unsigned long, new_len, unsigned long, flags,
1702 		unsigned long, new_addr)
1703 {
1704 	unsigned long ret;
1705 
1706 	down_write(&current->mm->mmap_sem);
1707 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1708 	up_write(&current->mm->mmap_sem);
1709 	return ret;
1710 }
1711 
1712 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1713 			unsigned int foll_flags)
1714 {
1715 	return NULL;
1716 }
1717 
1718 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1719 		unsigned long to, unsigned long size, pgprot_t prot)
1720 {
1721 	vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1722 	return 0;
1723 }
1724 EXPORT_SYMBOL(remap_pfn_range);
1725 
1726 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1727 			unsigned long pgoff)
1728 {
1729 	unsigned int size = vma->vm_end - vma->vm_start;
1730 
1731 	if (!(vma->vm_flags & VM_USERMAP))
1732 		return -EINVAL;
1733 
1734 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1735 	vma->vm_end = vma->vm_start + size;
1736 
1737 	return 0;
1738 }
1739 EXPORT_SYMBOL(remap_vmalloc_range);
1740 
1741 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1742 {
1743 }
1744 
1745 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1746 	unsigned long len, unsigned long pgoff, unsigned long flags)
1747 {
1748 	return -ENOMEM;
1749 }
1750 
1751 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1752 {
1753 }
1754 
1755 void unmap_mapping_range(struct address_space *mapping,
1756 			 loff_t const holebegin, loff_t const holelen,
1757 			 int even_cows)
1758 {
1759 }
1760 EXPORT_SYMBOL(unmap_mapping_range);
1761 
1762 /*
1763  * ask for an unmapped area at which to create a mapping on a file
1764  */
1765 unsigned long get_unmapped_area(struct file *file, unsigned long addr,
1766 				unsigned long len, unsigned long pgoff,
1767 				unsigned long flags)
1768 {
1769 	unsigned long (*get_area)(struct file *, unsigned long, unsigned long,
1770 				  unsigned long, unsigned long);
1771 
1772 	get_area = current->mm->get_unmapped_area;
1773 	if (file && file->f_op && file->f_op->get_unmapped_area)
1774 		get_area = file->f_op->get_unmapped_area;
1775 
1776 	if (!get_area)
1777 		return -ENOSYS;
1778 
1779 	return get_area(file, addr, len, pgoff, flags);
1780 }
1781 EXPORT_SYMBOL(get_unmapped_area);
1782 
1783 /*
1784  * Check that a process has enough memory to allocate a new virtual
1785  * mapping. 0 means there is enough memory for the allocation to
1786  * succeed and -ENOMEM implies there is not.
1787  *
1788  * We currently support three overcommit policies, which are set via the
1789  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1790  *
1791  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1792  * Additional code 2002 Jul 20 by Robert Love.
1793  *
1794  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1795  *
1796  * Note this is a helper function intended to be used by LSMs which
1797  * wish to use this logic.
1798  */
1799 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1800 {
1801 	unsigned long free, allowed;
1802 
1803 	vm_acct_memory(pages);
1804 
1805 	/*
1806 	 * Sometimes we want to use more memory than we have
1807 	 */
1808 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1809 		return 0;
1810 
1811 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1812 		unsigned long n;
1813 
1814 		free = global_page_state(NR_FILE_PAGES);
1815 		free += nr_swap_pages;
1816 
1817 		/*
1818 		 * Any slabs which are created with the
1819 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1820 		 * which are reclaimable, under pressure.  The dentry
1821 		 * cache and most inode caches should fall into this
1822 		 */
1823 		free += global_page_state(NR_SLAB_RECLAIMABLE);
1824 
1825 		/*
1826 		 * Leave the last 3% for root
1827 		 */
1828 		if (!cap_sys_admin)
1829 			free -= free / 32;
1830 
1831 		if (free > pages)
1832 			return 0;
1833 
1834 		/*
1835 		 * nr_free_pages() is very expensive on large systems,
1836 		 * only call if we're about to fail.
1837 		 */
1838 		n = nr_free_pages();
1839 
1840 		/*
1841 		 * Leave reserved pages. The pages are not for anonymous pages.
1842 		 */
1843 		if (n <= totalreserve_pages)
1844 			goto error;
1845 		else
1846 			n -= totalreserve_pages;
1847 
1848 		/*
1849 		 * Leave the last 3% for root
1850 		 */
1851 		if (!cap_sys_admin)
1852 			n -= n / 32;
1853 		free += n;
1854 
1855 		if (free > pages)
1856 			return 0;
1857 
1858 		goto error;
1859 	}
1860 
1861 	allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1862 	/*
1863 	 * Leave the last 3% for root
1864 	 */
1865 	if (!cap_sys_admin)
1866 		allowed -= allowed / 32;
1867 	allowed += total_swap_pages;
1868 
1869 	/* Don't let a single process grow too big:
1870 	   leave 3% of the size of this process for other processes */
1871 	if (mm)
1872 		allowed -= mm->total_vm / 32;
1873 
1874 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1875 		return 0;
1876 
1877 error:
1878 	vm_unacct_memory(pages);
1879 
1880 	return -ENOMEM;
1881 }
1882 
1883 int in_gate_area_no_task(unsigned long addr)
1884 {
1885 	return 0;
1886 }
1887 
1888 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1889 {
1890 	BUG();
1891 	return 0;
1892 }
1893 EXPORT_SYMBOL(filemap_fault);
1894 
1895 /*
1896  * Access another process' address space.
1897  * - source/target buffer must be kernel space
1898  */
1899 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1900 {
1901 	struct vm_area_struct *vma;
1902 	struct mm_struct *mm;
1903 
1904 	if (addr + len < addr)
1905 		return 0;
1906 
1907 	mm = get_task_mm(tsk);
1908 	if (!mm)
1909 		return 0;
1910 
1911 	down_read(&mm->mmap_sem);
1912 
1913 	/* the access must start within one of the target process's mappings */
1914 	vma = find_vma(mm, addr);
1915 	if (vma) {
1916 		/* don't overrun this mapping */
1917 		if (addr + len >= vma->vm_end)
1918 			len = vma->vm_end - addr;
1919 
1920 		/* only read or write mappings where it is permitted */
1921 		if (write && vma->vm_flags & VM_MAYWRITE)
1922 			len -= copy_to_user((void *) addr, buf, len);
1923 		else if (!write && vma->vm_flags & VM_MAYREAD)
1924 			len -= copy_from_user(buf, (void *) addr, len);
1925 		else
1926 			len = 0;
1927 	} else {
1928 		len = 0;
1929 	}
1930 
1931 	up_read(&mm->mmap_sem);
1932 	mmput(mm);
1933 	return len;
1934 }
1935