xref: /openbmc/linux/mm/nommu.c (revision f677b30b487ca3763c3de3f1b4d8c976c2961cd1)
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mount.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/audit.h>
32 #include <linux/sched/sysctl.h>
33 
34 #include <asm/uaccess.h>
35 #include <asm/tlb.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mmu_context.h>
38 #include "internal.h"
39 
40 #if 0
41 #define kenter(FMT, ...) \
42 	printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
43 #define kleave(FMT, ...) \
44 	printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
45 #define kdebug(FMT, ...) \
46 	printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
47 #else
48 #define kenter(FMT, ...) \
49 	no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
50 #define kleave(FMT, ...) \
51 	no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
52 #define kdebug(FMT, ...) \
53 	no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
54 #endif
55 
56 void *high_memory;
57 struct page *mem_map;
58 unsigned long max_mapnr;
59 unsigned long highest_memmap_pfn;
60 struct percpu_counter vm_committed_as;
61 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
62 int sysctl_overcommit_ratio = 50; /* default is 50% */
63 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
64 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
65 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
66 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
67 int heap_stack_gap = 0;
68 
69 atomic_long_t mmap_pages_allocated;
70 
71 /*
72  * The global memory commitment made in the system can be a metric
73  * that can be used to drive ballooning decisions when Linux is hosted
74  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
75  * balancing memory across competing virtual machines that are hosted.
76  * Several metrics drive this policy engine including the guest reported
77  * memory commitment.
78  */
79 unsigned long vm_memory_committed(void)
80 {
81 	return percpu_counter_read_positive(&vm_committed_as);
82 }
83 
84 EXPORT_SYMBOL_GPL(vm_memory_committed);
85 
86 EXPORT_SYMBOL(mem_map);
87 
88 /* list of mapped, potentially shareable regions */
89 static struct kmem_cache *vm_region_jar;
90 struct rb_root nommu_region_tree = RB_ROOT;
91 DECLARE_RWSEM(nommu_region_sem);
92 
93 const struct vm_operations_struct generic_file_vm_ops = {
94 };
95 
96 /*
97  * Return the total memory allocated for this pointer, not
98  * just what the caller asked for.
99  *
100  * Doesn't have to be accurate, i.e. may have races.
101  */
102 unsigned int kobjsize(const void *objp)
103 {
104 	struct page *page;
105 
106 	/*
107 	 * If the object we have should not have ksize performed on it,
108 	 * return size of 0
109 	 */
110 	if (!objp || !virt_addr_valid(objp))
111 		return 0;
112 
113 	page = virt_to_head_page(objp);
114 
115 	/*
116 	 * If the allocator sets PageSlab, we know the pointer came from
117 	 * kmalloc().
118 	 */
119 	if (PageSlab(page))
120 		return ksize(objp);
121 
122 	/*
123 	 * If it's not a compound page, see if we have a matching VMA
124 	 * region. This test is intentionally done in reverse order,
125 	 * so if there's no VMA, we still fall through and hand back
126 	 * PAGE_SIZE for 0-order pages.
127 	 */
128 	if (!PageCompound(page)) {
129 		struct vm_area_struct *vma;
130 
131 		vma = find_vma(current->mm, (unsigned long)objp);
132 		if (vma)
133 			return vma->vm_end - vma->vm_start;
134 	}
135 
136 	/*
137 	 * The ksize() function is only guaranteed to work for pointers
138 	 * returned by kmalloc(). So handle arbitrary pointers here.
139 	 */
140 	return PAGE_SIZE << compound_order(page);
141 }
142 
143 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
144 		      unsigned long start, unsigned long nr_pages,
145 		      unsigned int foll_flags, struct page **pages,
146 		      struct vm_area_struct **vmas, int *nonblocking)
147 {
148 	struct vm_area_struct *vma;
149 	unsigned long vm_flags;
150 	int i;
151 
152 	/* calculate required read or write permissions.
153 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
154 	 */
155 	vm_flags  = (foll_flags & FOLL_WRITE) ?
156 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
157 	vm_flags &= (foll_flags & FOLL_FORCE) ?
158 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
159 
160 	for (i = 0; i < nr_pages; i++) {
161 		vma = find_vma(mm, start);
162 		if (!vma)
163 			goto finish_or_fault;
164 
165 		/* protect what we can, including chardevs */
166 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
167 		    !(vm_flags & vma->vm_flags))
168 			goto finish_or_fault;
169 
170 		if (pages) {
171 			pages[i] = virt_to_page(start);
172 			if (pages[i])
173 				page_cache_get(pages[i]);
174 		}
175 		if (vmas)
176 			vmas[i] = vma;
177 		start = (start + PAGE_SIZE) & PAGE_MASK;
178 	}
179 
180 	return i;
181 
182 finish_or_fault:
183 	return i ? : -EFAULT;
184 }
185 
186 /*
187  * get a list of pages in an address range belonging to the specified process
188  * and indicate the VMA that covers each page
189  * - this is potentially dodgy as we may end incrementing the page count of a
190  *   slab page or a secondary page from a compound page
191  * - don't permit access to VMAs that don't support it, such as I/O mappings
192  */
193 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
194 		    unsigned long start, unsigned long nr_pages,
195 		    int write, int force, struct page **pages,
196 		    struct vm_area_struct **vmas)
197 {
198 	int flags = 0;
199 
200 	if (write)
201 		flags |= FOLL_WRITE;
202 	if (force)
203 		flags |= FOLL_FORCE;
204 
205 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
206 				NULL);
207 }
208 EXPORT_SYMBOL(get_user_pages);
209 
210 /**
211  * follow_pfn - look up PFN at a user virtual address
212  * @vma: memory mapping
213  * @address: user virtual address
214  * @pfn: location to store found PFN
215  *
216  * Only IO mappings and raw PFN mappings are allowed.
217  *
218  * Returns zero and the pfn at @pfn on success, -ve otherwise.
219  */
220 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
221 	unsigned long *pfn)
222 {
223 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
224 		return -EINVAL;
225 
226 	*pfn = address >> PAGE_SHIFT;
227 	return 0;
228 }
229 EXPORT_SYMBOL(follow_pfn);
230 
231 LIST_HEAD(vmap_area_list);
232 
233 void vfree(const void *addr)
234 {
235 	kfree(addr);
236 }
237 EXPORT_SYMBOL(vfree);
238 
239 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
240 {
241 	/*
242 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
243 	 * returns only a logical address.
244 	 */
245 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
246 }
247 EXPORT_SYMBOL(__vmalloc);
248 
249 void *vmalloc_user(unsigned long size)
250 {
251 	void *ret;
252 
253 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
254 			PAGE_KERNEL);
255 	if (ret) {
256 		struct vm_area_struct *vma;
257 
258 		down_write(&current->mm->mmap_sem);
259 		vma = find_vma(current->mm, (unsigned long)ret);
260 		if (vma)
261 			vma->vm_flags |= VM_USERMAP;
262 		up_write(&current->mm->mmap_sem);
263 	}
264 
265 	return ret;
266 }
267 EXPORT_SYMBOL(vmalloc_user);
268 
269 struct page *vmalloc_to_page(const void *addr)
270 {
271 	return virt_to_page(addr);
272 }
273 EXPORT_SYMBOL(vmalloc_to_page);
274 
275 unsigned long vmalloc_to_pfn(const void *addr)
276 {
277 	return page_to_pfn(virt_to_page(addr));
278 }
279 EXPORT_SYMBOL(vmalloc_to_pfn);
280 
281 long vread(char *buf, char *addr, unsigned long count)
282 {
283 	/* Don't allow overflow */
284 	if ((unsigned long) buf + count < count)
285 		count = -(unsigned long) buf;
286 
287 	memcpy(buf, addr, count);
288 	return count;
289 }
290 
291 long vwrite(char *buf, char *addr, unsigned long count)
292 {
293 	/* Don't allow overflow */
294 	if ((unsigned long) addr + count < count)
295 		count = -(unsigned long) addr;
296 
297 	memcpy(addr, buf, count);
298 	return(count);
299 }
300 
301 /*
302  *	vmalloc  -  allocate virtually continguos memory
303  *
304  *	@size:		allocation size
305  *
306  *	Allocate enough pages to cover @size from the page level
307  *	allocator and map them into continguos kernel virtual space.
308  *
309  *	For tight control over page level allocator and protection flags
310  *	use __vmalloc() instead.
311  */
312 void *vmalloc(unsigned long size)
313 {
314        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
315 }
316 EXPORT_SYMBOL(vmalloc);
317 
318 /*
319  *	vzalloc - allocate virtually continguos memory with zero fill
320  *
321  *	@size:		allocation size
322  *
323  *	Allocate enough pages to cover @size from the page level
324  *	allocator and map them into continguos kernel virtual space.
325  *	The memory allocated is set to zero.
326  *
327  *	For tight control over page level allocator and protection flags
328  *	use __vmalloc() instead.
329  */
330 void *vzalloc(unsigned long size)
331 {
332 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
333 			PAGE_KERNEL);
334 }
335 EXPORT_SYMBOL(vzalloc);
336 
337 /**
338  * vmalloc_node - allocate memory on a specific node
339  * @size:	allocation size
340  * @node:	numa node
341  *
342  * Allocate enough pages to cover @size from the page level
343  * allocator and map them into contiguous kernel virtual space.
344  *
345  * For tight control over page level allocator and protection flags
346  * use __vmalloc() instead.
347  */
348 void *vmalloc_node(unsigned long size, int node)
349 {
350 	return vmalloc(size);
351 }
352 EXPORT_SYMBOL(vmalloc_node);
353 
354 /**
355  * vzalloc_node - allocate memory on a specific node with zero fill
356  * @size:	allocation size
357  * @node:	numa node
358  *
359  * Allocate enough pages to cover @size from the page level
360  * allocator and map them into contiguous kernel virtual space.
361  * The memory allocated is set to zero.
362  *
363  * For tight control over page level allocator and protection flags
364  * use __vmalloc() instead.
365  */
366 void *vzalloc_node(unsigned long size, int node)
367 {
368 	return vzalloc(size);
369 }
370 EXPORT_SYMBOL(vzalloc_node);
371 
372 #ifndef PAGE_KERNEL_EXEC
373 # define PAGE_KERNEL_EXEC PAGE_KERNEL
374 #endif
375 
376 /**
377  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
378  *	@size:		allocation size
379  *
380  *	Kernel-internal function to allocate enough pages to cover @size
381  *	the page level allocator and map them into contiguous and
382  *	executable kernel virtual space.
383  *
384  *	For tight control over page level allocator and protection flags
385  *	use __vmalloc() instead.
386  */
387 
388 void *vmalloc_exec(unsigned long size)
389 {
390 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
391 }
392 
393 /**
394  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
395  *	@size:		allocation size
396  *
397  *	Allocate enough 32bit PA addressable pages to cover @size from the
398  *	page level allocator and map them into continguos kernel virtual space.
399  */
400 void *vmalloc_32(unsigned long size)
401 {
402 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
403 }
404 EXPORT_SYMBOL(vmalloc_32);
405 
406 /**
407  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
408  *	@size:		allocation size
409  *
410  * The resulting memory area is 32bit addressable and zeroed so it can be
411  * mapped to userspace without leaking data.
412  *
413  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
414  * remap_vmalloc_range() are permissible.
415  */
416 void *vmalloc_32_user(unsigned long size)
417 {
418 	/*
419 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
420 	 * but for now this can simply use vmalloc_user() directly.
421 	 */
422 	return vmalloc_user(size);
423 }
424 EXPORT_SYMBOL(vmalloc_32_user);
425 
426 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
427 {
428 	BUG();
429 	return NULL;
430 }
431 EXPORT_SYMBOL(vmap);
432 
433 void vunmap(const void *addr)
434 {
435 	BUG();
436 }
437 EXPORT_SYMBOL(vunmap);
438 
439 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
440 {
441 	BUG();
442 	return NULL;
443 }
444 EXPORT_SYMBOL(vm_map_ram);
445 
446 void vm_unmap_ram(const void *mem, unsigned int count)
447 {
448 	BUG();
449 }
450 EXPORT_SYMBOL(vm_unmap_ram);
451 
452 void vm_unmap_aliases(void)
453 {
454 }
455 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
456 
457 /*
458  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
459  * have one.
460  */
461 void  __attribute__((weak)) vmalloc_sync_all(void)
462 {
463 }
464 
465 /**
466  *	alloc_vm_area - allocate a range of kernel address space
467  *	@size:		size of the area
468  *
469  *	Returns:	NULL on failure, vm_struct on success
470  *
471  *	This function reserves a range of kernel address space, and
472  *	allocates pagetables to map that range.  No actual mappings
473  *	are created.  If the kernel address space is not shared
474  *	between processes, it syncs the pagetable across all
475  *	processes.
476  */
477 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
478 {
479 	BUG();
480 	return NULL;
481 }
482 EXPORT_SYMBOL_GPL(alloc_vm_area);
483 
484 void free_vm_area(struct vm_struct *area)
485 {
486 	BUG();
487 }
488 EXPORT_SYMBOL_GPL(free_vm_area);
489 
490 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
491 		   struct page *page)
492 {
493 	return -EINVAL;
494 }
495 EXPORT_SYMBOL(vm_insert_page);
496 
497 /*
498  *  sys_brk() for the most part doesn't need the global kernel
499  *  lock, except when an application is doing something nasty
500  *  like trying to un-brk an area that has already been mapped
501  *  to a regular file.  in this case, the unmapping will need
502  *  to invoke file system routines that need the global lock.
503  */
504 SYSCALL_DEFINE1(brk, unsigned long, brk)
505 {
506 	struct mm_struct *mm = current->mm;
507 
508 	if (brk < mm->start_brk || brk > mm->context.end_brk)
509 		return mm->brk;
510 
511 	if (mm->brk == brk)
512 		return mm->brk;
513 
514 	/*
515 	 * Always allow shrinking brk
516 	 */
517 	if (brk <= mm->brk) {
518 		mm->brk = brk;
519 		return brk;
520 	}
521 
522 	/*
523 	 * Ok, looks good - let it rip.
524 	 */
525 	flush_icache_range(mm->brk, brk);
526 	return mm->brk = brk;
527 }
528 
529 /*
530  * initialise the VMA and region record slabs
531  */
532 void __init mmap_init(void)
533 {
534 	int ret;
535 
536 	ret = percpu_counter_init(&vm_committed_as, 0);
537 	VM_BUG_ON(ret);
538 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
539 }
540 
541 /*
542  * validate the region tree
543  * - the caller must hold the region lock
544  */
545 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
546 static noinline void validate_nommu_regions(void)
547 {
548 	struct vm_region *region, *last;
549 	struct rb_node *p, *lastp;
550 
551 	lastp = rb_first(&nommu_region_tree);
552 	if (!lastp)
553 		return;
554 
555 	last = rb_entry(lastp, struct vm_region, vm_rb);
556 	BUG_ON(unlikely(last->vm_end <= last->vm_start));
557 	BUG_ON(unlikely(last->vm_top < last->vm_end));
558 
559 	while ((p = rb_next(lastp))) {
560 		region = rb_entry(p, struct vm_region, vm_rb);
561 		last = rb_entry(lastp, struct vm_region, vm_rb);
562 
563 		BUG_ON(unlikely(region->vm_end <= region->vm_start));
564 		BUG_ON(unlikely(region->vm_top < region->vm_end));
565 		BUG_ON(unlikely(region->vm_start < last->vm_top));
566 
567 		lastp = p;
568 	}
569 }
570 #else
571 static void validate_nommu_regions(void)
572 {
573 }
574 #endif
575 
576 /*
577  * add a region into the global tree
578  */
579 static void add_nommu_region(struct vm_region *region)
580 {
581 	struct vm_region *pregion;
582 	struct rb_node **p, *parent;
583 
584 	validate_nommu_regions();
585 
586 	parent = NULL;
587 	p = &nommu_region_tree.rb_node;
588 	while (*p) {
589 		parent = *p;
590 		pregion = rb_entry(parent, struct vm_region, vm_rb);
591 		if (region->vm_start < pregion->vm_start)
592 			p = &(*p)->rb_left;
593 		else if (region->vm_start > pregion->vm_start)
594 			p = &(*p)->rb_right;
595 		else if (pregion == region)
596 			return;
597 		else
598 			BUG();
599 	}
600 
601 	rb_link_node(&region->vm_rb, parent, p);
602 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
603 
604 	validate_nommu_regions();
605 }
606 
607 /*
608  * delete a region from the global tree
609  */
610 static void delete_nommu_region(struct vm_region *region)
611 {
612 	BUG_ON(!nommu_region_tree.rb_node);
613 
614 	validate_nommu_regions();
615 	rb_erase(&region->vm_rb, &nommu_region_tree);
616 	validate_nommu_regions();
617 }
618 
619 /*
620  * free a contiguous series of pages
621  */
622 static void free_page_series(unsigned long from, unsigned long to)
623 {
624 	for (; from < to; from += PAGE_SIZE) {
625 		struct page *page = virt_to_page(from);
626 
627 		kdebug("- free %lx", from);
628 		atomic_long_dec(&mmap_pages_allocated);
629 		if (page_count(page) != 1)
630 			kdebug("free page %p: refcount not one: %d",
631 			       page, page_count(page));
632 		put_page(page);
633 	}
634 }
635 
636 /*
637  * release a reference to a region
638  * - the caller must hold the region semaphore for writing, which this releases
639  * - the region may not have been added to the tree yet, in which case vm_top
640  *   will equal vm_start
641  */
642 static void __put_nommu_region(struct vm_region *region)
643 	__releases(nommu_region_sem)
644 {
645 	kenter("%p{%d}", region, region->vm_usage);
646 
647 	BUG_ON(!nommu_region_tree.rb_node);
648 
649 	if (--region->vm_usage == 0) {
650 		if (region->vm_top > region->vm_start)
651 			delete_nommu_region(region);
652 		up_write(&nommu_region_sem);
653 
654 		if (region->vm_file)
655 			fput(region->vm_file);
656 
657 		/* IO memory and memory shared directly out of the pagecache
658 		 * from ramfs/tmpfs mustn't be released here */
659 		if (region->vm_flags & VM_MAPPED_COPY) {
660 			kdebug("free series");
661 			free_page_series(region->vm_start, region->vm_top);
662 		}
663 		kmem_cache_free(vm_region_jar, region);
664 	} else {
665 		up_write(&nommu_region_sem);
666 	}
667 }
668 
669 /*
670  * release a reference to a region
671  */
672 static void put_nommu_region(struct vm_region *region)
673 {
674 	down_write(&nommu_region_sem);
675 	__put_nommu_region(region);
676 }
677 
678 /*
679  * update protection on a vma
680  */
681 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
682 {
683 #ifdef CONFIG_MPU
684 	struct mm_struct *mm = vma->vm_mm;
685 	long start = vma->vm_start & PAGE_MASK;
686 	while (start < vma->vm_end) {
687 		protect_page(mm, start, flags);
688 		start += PAGE_SIZE;
689 	}
690 	update_protections(mm);
691 #endif
692 }
693 
694 /*
695  * add a VMA into a process's mm_struct in the appropriate place in the list
696  * and tree and add to the address space's page tree also if not an anonymous
697  * page
698  * - should be called with mm->mmap_sem held writelocked
699  */
700 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
701 {
702 	struct vm_area_struct *pvma, *prev;
703 	struct address_space *mapping;
704 	struct rb_node **p, *parent, *rb_prev;
705 
706 	kenter(",%p", vma);
707 
708 	BUG_ON(!vma->vm_region);
709 
710 	mm->map_count++;
711 	vma->vm_mm = mm;
712 
713 	protect_vma(vma, vma->vm_flags);
714 
715 	/* add the VMA to the mapping */
716 	if (vma->vm_file) {
717 		mapping = vma->vm_file->f_mapping;
718 
719 		mutex_lock(&mapping->i_mmap_mutex);
720 		flush_dcache_mmap_lock(mapping);
721 		vma_interval_tree_insert(vma, &mapping->i_mmap);
722 		flush_dcache_mmap_unlock(mapping);
723 		mutex_unlock(&mapping->i_mmap_mutex);
724 	}
725 
726 	/* add the VMA to the tree */
727 	parent = rb_prev = NULL;
728 	p = &mm->mm_rb.rb_node;
729 	while (*p) {
730 		parent = *p;
731 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
732 
733 		/* sort by: start addr, end addr, VMA struct addr in that order
734 		 * (the latter is necessary as we may get identical VMAs) */
735 		if (vma->vm_start < pvma->vm_start)
736 			p = &(*p)->rb_left;
737 		else if (vma->vm_start > pvma->vm_start) {
738 			rb_prev = parent;
739 			p = &(*p)->rb_right;
740 		} else if (vma->vm_end < pvma->vm_end)
741 			p = &(*p)->rb_left;
742 		else if (vma->vm_end > pvma->vm_end) {
743 			rb_prev = parent;
744 			p = &(*p)->rb_right;
745 		} else if (vma < pvma)
746 			p = &(*p)->rb_left;
747 		else if (vma > pvma) {
748 			rb_prev = parent;
749 			p = &(*p)->rb_right;
750 		} else
751 			BUG();
752 	}
753 
754 	rb_link_node(&vma->vm_rb, parent, p);
755 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
756 
757 	/* add VMA to the VMA list also */
758 	prev = NULL;
759 	if (rb_prev)
760 		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
761 
762 	__vma_link_list(mm, vma, prev, parent);
763 }
764 
765 /*
766  * delete a VMA from its owning mm_struct and address space
767  */
768 static void delete_vma_from_mm(struct vm_area_struct *vma)
769 {
770 	struct address_space *mapping;
771 	struct mm_struct *mm = vma->vm_mm;
772 
773 	kenter("%p", vma);
774 
775 	protect_vma(vma, 0);
776 
777 	mm->map_count--;
778 	if (mm->mmap_cache == vma)
779 		mm->mmap_cache = NULL;
780 
781 	/* remove the VMA from the mapping */
782 	if (vma->vm_file) {
783 		mapping = vma->vm_file->f_mapping;
784 
785 		mutex_lock(&mapping->i_mmap_mutex);
786 		flush_dcache_mmap_lock(mapping);
787 		vma_interval_tree_remove(vma, &mapping->i_mmap);
788 		flush_dcache_mmap_unlock(mapping);
789 		mutex_unlock(&mapping->i_mmap_mutex);
790 	}
791 
792 	/* remove from the MM's tree and list */
793 	rb_erase(&vma->vm_rb, &mm->mm_rb);
794 
795 	if (vma->vm_prev)
796 		vma->vm_prev->vm_next = vma->vm_next;
797 	else
798 		mm->mmap = vma->vm_next;
799 
800 	if (vma->vm_next)
801 		vma->vm_next->vm_prev = vma->vm_prev;
802 }
803 
804 /*
805  * destroy a VMA record
806  */
807 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
808 {
809 	kenter("%p", vma);
810 	if (vma->vm_ops && vma->vm_ops->close)
811 		vma->vm_ops->close(vma);
812 	if (vma->vm_file)
813 		fput(vma->vm_file);
814 	put_nommu_region(vma->vm_region);
815 	kmem_cache_free(vm_area_cachep, vma);
816 }
817 
818 /*
819  * look up the first VMA in which addr resides, NULL if none
820  * - should be called with mm->mmap_sem at least held readlocked
821  */
822 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
823 {
824 	struct vm_area_struct *vma;
825 
826 	/* check the cache first */
827 	vma = ACCESS_ONCE(mm->mmap_cache);
828 	if (vma && vma->vm_start <= addr && vma->vm_end > addr)
829 		return vma;
830 
831 	/* trawl the list (there may be multiple mappings in which addr
832 	 * resides) */
833 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
834 		if (vma->vm_start > addr)
835 			return NULL;
836 		if (vma->vm_end > addr) {
837 			mm->mmap_cache = vma;
838 			return vma;
839 		}
840 	}
841 
842 	return NULL;
843 }
844 EXPORT_SYMBOL(find_vma);
845 
846 /*
847  * find a VMA
848  * - we don't extend stack VMAs under NOMMU conditions
849  */
850 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
851 {
852 	return find_vma(mm, addr);
853 }
854 
855 /*
856  * expand a stack to a given address
857  * - not supported under NOMMU conditions
858  */
859 int expand_stack(struct vm_area_struct *vma, unsigned long address)
860 {
861 	return -ENOMEM;
862 }
863 
864 /*
865  * look up the first VMA exactly that exactly matches addr
866  * - should be called with mm->mmap_sem at least held readlocked
867  */
868 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
869 					     unsigned long addr,
870 					     unsigned long len)
871 {
872 	struct vm_area_struct *vma;
873 	unsigned long end = addr + len;
874 
875 	/* check the cache first */
876 	vma = mm->mmap_cache;
877 	if (vma && vma->vm_start == addr && vma->vm_end == end)
878 		return vma;
879 
880 	/* trawl the list (there may be multiple mappings in which addr
881 	 * resides) */
882 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
883 		if (vma->vm_start < addr)
884 			continue;
885 		if (vma->vm_start > addr)
886 			return NULL;
887 		if (vma->vm_end == end) {
888 			mm->mmap_cache = vma;
889 			return vma;
890 		}
891 	}
892 
893 	return NULL;
894 }
895 
896 /*
897  * determine whether a mapping should be permitted and, if so, what sort of
898  * mapping we're capable of supporting
899  */
900 static int validate_mmap_request(struct file *file,
901 				 unsigned long addr,
902 				 unsigned long len,
903 				 unsigned long prot,
904 				 unsigned long flags,
905 				 unsigned long pgoff,
906 				 unsigned long *_capabilities)
907 {
908 	unsigned long capabilities, rlen;
909 	int ret;
910 
911 	/* do the simple checks first */
912 	if (flags & MAP_FIXED) {
913 		printk(KERN_DEBUG
914 		       "%d: Can't do fixed-address/overlay mmap of RAM\n",
915 		       current->pid);
916 		return -EINVAL;
917 	}
918 
919 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
920 	    (flags & MAP_TYPE) != MAP_SHARED)
921 		return -EINVAL;
922 
923 	if (!len)
924 		return -EINVAL;
925 
926 	/* Careful about overflows.. */
927 	rlen = PAGE_ALIGN(len);
928 	if (!rlen || rlen > TASK_SIZE)
929 		return -ENOMEM;
930 
931 	/* offset overflow? */
932 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
933 		return -EOVERFLOW;
934 
935 	if (file) {
936 		/* validate file mapping requests */
937 		struct address_space *mapping;
938 
939 		/* files must support mmap */
940 		if (!file->f_op->mmap)
941 			return -ENODEV;
942 
943 		/* work out if what we've got could possibly be shared
944 		 * - we support chardevs that provide their own "memory"
945 		 * - we support files/blockdevs that are memory backed
946 		 */
947 		mapping = file->f_mapping;
948 		if (!mapping)
949 			mapping = file_inode(file)->i_mapping;
950 
951 		capabilities = 0;
952 		if (mapping && mapping->backing_dev_info)
953 			capabilities = mapping->backing_dev_info->capabilities;
954 
955 		if (!capabilities) {
956 			/* no explicit capabilities set, so assume some
957 			 * defaults */
958 			switch (file_inode(file)->i_mode & S_IFMT) {
959 			case S_IFREG:
960 			case S_IFBLK:
961 				capabilities = BDI_CAP_MAP_COPY;
962 				break;
963 
964 			case S_IFCHR:
965 				capabilities =
966 					BDI_CAP_MAP_DIRECT |
967 					BDI_CAP_READ_MAP |
968 					BDI_CAP_WRITE_MAP;
969 				break;
970 
971 			default:
972 				return -EINVAL;
973 			}
974 		}
975 
976 		/* eliminate any capabilities that we can't support on this
977 		 * device */
978 		if (!file->f_op->get_unmapped_area)
979 			capabilities &= ~BDI_CAP_MAP_DIRECT;
980 		if (!file->f_op->read)
981 			capabilities &= ~BDI_CAP_MAP_COPY;
982 
983 		/* The file shall have been opened with read permission. */
984 		if (!(file->f_mode & FMODE_READ))
985 			return -EACCES;
986 
987 		if (flags & MAP_SHARED) {
988 			/* do checks for writing, appending and locking */
989 			if ((prot & PROT_WRITE) &&
990 			    !(file->f_mode & FMODE_WRITE))
991 				return -EACCES;
992 
993 			if (IS_APPEND(file_inode(file)) &&
994 			    (file->f_mode & FMODE_WRITE))
995 				return -EACCES;
996 
997 			if (locks_verify_locked(file_inode(file)))
998 				return -EAGAIN;
999 
1000 			if (!(capabilities & BDI_CAP_MAP_DIRECT))
1001 				return -ENODEV;
1002 
1003 			/* we mustn't privatise shared mappings */
1004 			capabilities &= ~BDI_CAP_MAP_COPY;
1005 		}
1006 		else {
1007 			/* we're going to read the file into private memory we
1008 			 * allocate */
1009 			if (!(capabilities & BDI_CAP_MAP_COPY))
1010 				return -ENODEV;
1011 
1012 			/* we don't permit a private writable mapping to be
1013 			 * shared with the backing device */
1014 			if (prot & PROT_WRITE)
1015 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1016 		}
1017 
1018 		if (capabilities & BDI_CAP_MAP_DIRECT) {
1019 			if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
1020 			    ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1021 			    ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
1022 			    ) {
1023 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1024 				if (flags & MAP_SHARED) {
1025 					printk(KERN_WARNING
1026 					       "MAP_SHARED not completely supported on !MMU\n");
1027 					return -EINVAL;
1028 				}
1029 			}
1030 		}
1031 
1032 		/* handle executable mappings and implied executable
1033 		 * mappings */
1034 		if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1035 			if (prot & PROT_EXEC)
1036 				return -EPERM;
1037 		}
1038 		else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1039 			/* handle implication of PROT_EXEC by PROT_READ */
1040 			if (current->personality & READ_IMPLIES_EXEC) {
1041 				if (capabilities & BDI_CAP_EXEC_MAP)
1042 					prot |= PROT_EXEC;
1043 			}
1044 		}
1045 		else if ((prot & PROT_READ) &&
1046 			 (prot & PROT_EXEC) &&
1047 			 !(capabilities & BDI_CAP_EXEC_MAP)
1048 			 ) {
1049 			/* backing file is not executable, try to copy */
1050 			capabilities &= ~BDI_CAP_MAP_DIRECT;
1051 		}
1052 	}
1053 	else {
1054 		/* anonymous mappings are always memory backed and can be
1055 		 * privately mapped
1056 		 */
1057 		capabilities = BDI_CAP_MAP_COPY;
1058 
1059 		/* handle PROT_EXEC implication by PROT_READ */
1060 		if ((prot & PROT_READ) &&
1061 		    (current->personality & READ_IMPLIES_EXEC))
1062 			prot |= PROT_EXEC;
1063 	}
1064 
1065 	/* allow the security API to have its say */
1066 	ret = security_mmap_addr(addr);
1067 	if (ret < 0)
1068 		return ret;
1069 
1070 	/* looks okay */
1071 	*_capabilities = capabilities;
1072 	return 0;
1073 }
1074 
1075 /*
1076  * we've determined that we can make the mapping, now translate what we
1077  * now know into VMA flags
1078  */
1079 static unsigned long determine_vm_flags(struct file *file,
1080 					unsigned long prot,
1081 					unsigned long flags,
1082 					unsigned long capabilities)
1083 {
1084 	unsigned long vm_flags;
1085 
1086 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1087 	/* vm_flags |= mm->def_flags; */
1088 
1089 	if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1090 		/* attempt to share read-only copies of mapped file chunks */
1091 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1092 		if (file && !(prot & PROT_WRITE))
1093 			vm_flags |= VM_MAYSHARE;
1094 	} else {
1095 		/* overlay a shareable mapping on the backing device or inode
1096 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1097 		 * romfs/cramfs */
1098 		vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1099 		if (flags & MAP_SHARED)
1100 			vm_flags |= VM_SHARED;
1101 	}
1102 
1103 	/* refuse to let anyone share private mappings with this process if
1104 	 * it's being traced - otherwise breakpoints set in it may interfere
1105 	 * with another untraced process
1106 	 */
1107 	if ((flags & MAP_PRIVATE) && current->ptrace)
1108 		vm_flags &= ~VM_MAYSHARE;
1109 
1110 	return vm_flags;
1111 }
1112 
1113 /*
1114  * set up a shared mapping on a file (the driver or filesystem provides and
1115  * pins the storage)
1116  */
1117 static int do_mmap_shared_file(struct vm_area_struct *vma)
1118 {
1119 	int ret;
1120 
1121 	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1122 	if (ret == 0) {
1123 		vma->vm_region->vm_top = vma->vm_region->vm_end;
1124 		return 0;
1125 	}
1126 	if (ret != -ENOSYS)
1127 		return ret;
1128 
1129 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1130 	 * opposed to tried but failed) so we can only give a suitable error as
1131 	 * it's not possible to make a private copy if MAP_SHARED was given */
1132 	return -ENODEV;
1133 }
1134 
1135 /*
1136  * set up a private mapping or an anonymous shared mapping
1137  */
1138 static int do_mmap_private(struct vm_area_struct *vma,
1139 			   struct vm_region *region,
1140 			   unsigned long len,
1141 			   unsigned long capabilities)
1142 {
1143 	struct page *pages;
1144 	unsigned long total, point, n;
1145 	void *base;
1146 	int ret, order;
1147 
1148 	/* invoke the file's mapping function so that it can keep track of
1149 	 * shared mappings on devices or memory
1150 	 * - VM_MAYSHARE will be set if it may attempt to share
1151 	 */
1152 	if (capabilities & BDI_CAP_MAP_DIRECT) {
1153 		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1154 		if (ret == 0) {
1155 			/* shouldn't return success if we're not sharing */
1156 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1157 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1158 			return 0;
1159 		}
1160 		if (ret != -ENOSYS)
1161 			return ret;
1162 
1163 		/* getting an ENOSYS error indicates that direct mmap isn't
1164 		 * possible (as opposed to tried but failed) so we'll try to
1165 		 * make a private copy of the data and map that instead */
1166 	}
1167 
1168 
1169 	/* allocate some memory to hold the mapping
1170 	 * - note that this may not return a page-aligned address if the object
1171 	 *   we're allocating is smaller than a page
1172 	 */
1173 	order = get_order(len);
1174 	kdebug("alloc order %d for %lx", order, len);
1175 
1176 	pages = alloc_pages(GFP_KERNEL, order);
1177 	if (!pages)
1178 		goto enomem;
1179 
1180 	total = 1 << order;
1181 	atomic_long_add(total, &mmap_pages_allocated);
1182 
1183 	point = len >> PAGE_SHIFT;
1184 
1185 	/* we allocated a power-of-2 sized page set, so we may want to trim off
1186 	 * the excess */
1187 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1188 		while (total > point) {
1189 			order = ilog2(total - point);
1190 			n = 1 << order;
1191 			kdebug("shave %lu/%lu @%lu", n, total - point, total);
1192 			atomic_long_sub(n, &mmap_pages_allocated);
1193 			total -= n;
1194 			set_page_refcounted(pages + total);
1195 			__free_pages(pages + total, order);
1196 		}
1197 	}
1198 
1199 	for (point = 1; point < total; point++)
1200 		set_page_refcounted(&pages[point]);
1201 
1202 	base = page_address(pages);
1203 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1204 	region->vm_start = (unsigned long) base;
1205 	region->vm_end   = region->vm_start + len;
1206 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1207 
1208 	vma->vm_start = region->vm_start;
1209 	vma->vm_end   = region->vm_start + len;
1210 
1211 	if (vma->vm_file) {
1212 		/* read the contents of a file into the copy */
1213 		mm_segment_t old_fs;
1214 		loff_t fpos;
1215 
1216 		fpos = vma->vm_pgoff;
1217 		fpos <<= PAGE_SHIFT;
1218 
1219 		old_fs = get_fs();
1220 		set_fs(KERNEL_DS);
1221 		ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1222 		set_fs(old_fs);
1223 
1224 		if (ret < 0)
1225 			goto error_free;
1226 
1227 		/* clear the last little bit */
1228 		if (ret < len)
1229 			memset(base + ret, 0, len - ret);
1230 
1231 	}
1232 
1233 	return 0;
1234 
1235 error_free:
1236 	free_page_series(region->vm_start, region->vm_top);
1237 	region->vm_start = vma->vm_start = 0;
1238 	region->vm_end   = vma->vm_end = 0;
1239 	region->vm_top   = 0;
1240 	return ret;
1241 
1242 enomem:
1243 	printk("Allocation of length %lu from process %d (%s) failed\n",
1244 	       len, current->pid, current->comm);
1245 	show_free_areas(0);
1246 	return -ENOMEM;
1247 }
1248 
1249 /*
1250  * handle mapping creation for uClinux
1251  */
1252 unsigned long do_mmap_pgoff(struct file *file,
1253 			    unsigned long addr,
1254 			    unsigned long len,
1255 			    unsigned long prot,
1256 			    unsigned long flags,
1257 			    unsigned long pgoff,
1258 			    unsigned long *populate)
1259 {
1260 	struct vm_area_struct *vma;
1261 	struct vm_region *region;
1262 	struct rb_node *rb;
1263 	unsigned long capabilities, vm_flags, result;
1264 	int ret;
1265 
1266 	kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1267 
1268 	*populate = 0;
1269 
1270 	/* decide whether we should attempt the mapping, and if so what sort of
1271 	 * mapping */
1272 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1273 				    &capabilities);
1274 	if (ret < 0) {
1275 		kleave(" = %d [val]", ret);
1276 		return ret;
1277 	}
1278 
1279 	/* we ignore the address hint */
1280 	addr = 0;
1281 	len = PAGE_ALIGN(len);
1282 
1283 	/* we've determined that we can make the mapping, now translate what we
1284 	 * now know into VMA flags */
1285 	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1286 
1287 	/* we're going to need to record the mapping */
1288 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1289 	if (!region)
1290 		goto error_getting_region;
1291 
1292 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1293 	if (!vma)
1294 		goto error_getting_vma;
1295 
1296 	region->vm_usage = 1;
1297 	region->vm_flags = vm_flags;
1298 	region->vm_pgoff = pgoff;
1299 
1300 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1301 	vma->vm_flags = vm_flags;
1302 	vma->vm_pgoff = pgoff;
1303 
1304 	if (file) {
1305 		region->vm_file = get_file(file);
1306 		vma->vm_file = get_file(file);
1307 	}
1308 
1309 	down_write(&nommu_region_sem);
1310 
1311 	/* if we want to share, we need to check for regions created by other
1312 	 * mmap() calls that overlap with our proposed mapping
1313 	 * - we can only share with a superset match on most regular files
1314 	 * - shared mappings on character devices and memory backed files are
1315 	 *   permitted to overlap inexactly as far as we are concerned for in
1316 	 *   these cases, sharing is handled in the driver or filesystem rather
1317 	 *   than here
1318 	 */
1319 	if (vm_flags & VM_MAYSHARE) {
1320 		struct vm_region *pregion;
1321 		unsigned long pglen, rpglen, pgend, rpgend, start;
1322 
1323 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1324 		pgend = pgoff + pglen;
1325 
1326 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1327 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1328 
1329 			if (!(pregion->vm_flags & VM_MAYSHARE))
1330 				continue;
1331 
1332 			/* search for overlapping mappings on the same file */
1333 			if (file_inode(pregion->vm_file) !=
1334 			    file_inode(file))
1335 				continue;
1336 
1337 			if (pregion->vm_pgoff >= pgend)
1338 				continue;
1339 
1340 			rpglen = pregion->vm_end - pregion->vm_start;
1341 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1342 			rpgend = pregion->vm_pgoff + rpglen;
1343 			if (pgoff >= rpgend)
1344 				continue;
1345 
1346 			/* handle inexactly overlapping matches between
1347 			 * mappings */
1348 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1349 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1350 				/* new mapping is not a subset of the region */
1351 				if (!(capabilities & BDI_CAP_MAP_DIRECT))
1352 					goto sharing_violation;
1353 				continue;
1354 			}
1355 
1356 			/* we've found a region we can share */
1357 			pregion->vm_usage++;
1358 			vma->vm_region = pregion;
1359 			start = pregion->vm_start;
1360 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1361 			vma->vm_start = start;
1362 			vma->vm_end = start + len;
1363 
1364 			if (pregion->vm_flags & VM_MAPPED_COPY) {
1365 				kdebug("share copy");
1366 				vma->vm_flags |= VM_MAPPED_COPY;
1367 			} else {
1368 				kdebug("share mmap");
1369 				ret = do_mmap_shared_file(vma);
1370 				if (ret < 0) {
1371 					vma->vm_region = NULL;
1372 					vma->vm_start = 0;
1373 					vma->vm_end = 0;
1374 					pregion->vm_usage--;
1375 					pregion = NULL;
1376 					goto error_just_free;
1377 				}
1378 			}
1379 			fput(region->vm_file);
1380 			kmem_cache_free(vm_region_jar, region);
1381 			region = pregion;
1382 			result = start;
1383 			goto share;
1384 		}
1385 
1386 		/* obtain the address at which to make a shared mapping
1387 		 * - this is the hook for quasi-memory character devices to
1388 		 *   tell us the location of a shared mapping
1389 		 */
1390 		if (capabilities & BDI_CAP_MAP_DIRECT) {
1391 			addr = file->f_op->get_unmapped_area(file, addr, len,
1392 							     pgoff, flags);
1393 			if (IS_ERR_VALUE(addr)) {
1394 				ret = addr;
1395 				if (ret != -ENOSYS)
1396 					goto error_just_free;
1397 
1398 				/* the driver refused to tell us where to site
1399 				 * the mapping so we'll have to attempt to copy
1400 				 * it */
1401 				ret = -ENODEV;
1402 				if (!(capabilities & BDI_CAP_MAP_COPY))
1403 					goto error_just_free;
1404 
1405 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1406 			} else {
1407 				vma->vm_start = region->vm_start = addr;
1408 				vma->vm_end = region->vm_end = addr + len;
1409 			}
1410 		}
1411 	}
1412 
1413 	vma->vm_region = region;
1414 
1415 	/* set up the mapping
1416 	 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1417 	 */
1418 	if (file && vma->vm_flags & VM_SHARED)
1419 		ret = do_mmap_shared_file(vma);
1420 	else
1421 		ret = do_mmap_private(vma, region, len, capabilities);
1422 	if (ret < 0)
1423 		goto error_just_free;
1424 	add_nommu_region(region);
1425 
1426 	/* clear anonymous mappings that don't ask for uninitialized data */
1427 	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1428 		memset((void *)region->vm_start, 0,
1429 		       region->vm_end - region->vm_start);
1430 
1431 	/* okay... we have a mapping; now we have to register it */
1432 	result = vma->vm_start;
1433 
1434 	current->mm->total_vm += len >> PAGE_SHIFT;
1435 
1436 share:
1437 	add_vma_to_mm(current->mm, vma);
1438 
1439 	/* we flush the region from the icache only when the first executable
1440 	 * mapping of it is made  */
1441 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1442 		flush_icache_range(region->vm_start, region->vm_end);
1443 		region->vm_icache_flushed = true;
1444 	}
1445 
1446 	up_write(&nommu_region_sem);
1447 
1448 	kleave(" = %lx", result);
1449 	return result;
1450 
1451 error_just_free:
1452 	up_write(&nommu_region_sem);
1453 error:
1454 	if (region->vm_file)
1455 		fput(region->vm_file);
1456 	kmem_cache_free(vm_region_jar, region);
1457 	if (vma->vm_file)
1458 		fput(vma->vm_file);
1459 	kmem_cache_free(vm_area_cachep, vma);
1460 	kleave(" = %d", ret);
1461 	return ret;
1462 
1463 sharing_violation:
1464 	up_write(&nommu_region_sem);
1465 	printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1466 	ret = -EINVAL;
1467 	goto error;
1468 
1469 error_getting_vma:
1470 	kmem_cache_free(vm_region_jar, region);
1471 	printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1472 	       " from process %d failed\n",
1473 	       len, current->pid);
1474 	show_free_areas(0);
1475 	return -ENOMEM;
1476 
1477 error_getting_region:
1478 	printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1479 	       " from process %d failed\n",
1480 	       len, current->pid);
1481 	show_free_areas(0);
1482 	return -ENOMEM;
1483 }
1484 
1485 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1486 		unsigned long, prot, unsigned long, flags,
1487 		unsigned long, fd, unsigned long, pgoff)
1488 {
1489 	struct file *file = NULL;
1490 	unsigned long retval = -EBADF;
1491 
1492 	audit_mmap_fd(fd, flags);
1493 	if (!(flags & MAP_ANONYMOUS)) {
1494 		file = fget(fd);
1495 		if (!file)
1496 			goto out;
1497 	}
1498 
1499 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1500 
1501 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1502 
1503 	if (file)
1504 		fput(file);
1505 out:
1506 	return retval;
1507 }
1508 
1509 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1510 struct mmap_arg_struct {
1511 	unsigned long addr;
1512 	unsigned long len;
1513 	unsigned long prot;
1514 	unsigned long flags;
1515 	unsigned long fd;
1516 	unsigned long offset;
1517 };
1518 
1519 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1520 {
1521 	struct mmap_arg_struct a;
1522 
1523 	if (copy_from_user(&a, arg, sizeof(a)))
1524 		return -EFAULT;
1525 	if (a.offset & ~PAGE_MASK)
1526 		return -EINVAL;
1527 
1528 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1529 			      a.offset >> PAGE_SHIFT);
1530 }
1531 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1532 
1533 /*
1534  * split a vma into two pieces at address 'addr', a new vma is allocated either
1535  * for the first part or the tail.
1536  */
1537 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1538 	      unsigned long addr, int new_below)
1539 {
1540 	struct vm_area_struct *new;
1541 	struct vm_region *region;
1542 	unsigned long npages;
1543 
1544 	kenter("");
1545 
1546 	/* we're only permitted to split anonymous regions (these should have
1547 	 * only a single usage on the region) */
1548 	if (vma->vm_file)
1549 		return -ENOMEM;
1550 
1551 	if (mm->map_count >= sysctl_max_map_count)
1552 		return -ENOMEM;
1553 
1554 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1555 	if (!region)
1556 		return -ENOMEM;
1557 
1558 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1559 	if (!new) {
1560 		kmem_cache_free(vm_region_jar, region);
1561 		return -ENOMEM;
1562 	}
1563 
1564 	/* most fields are the same, copy all, and then fixup */
1565 	*new = *vma;
1566 	*region = *vma->vm_region;
1567 	new->vm_region = region;
1568 
1569 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1570 
1571 	if (new_below) {
1572 		region->vm_top = region->vm_end = new->vm_end = addr;
1573 	} else {
1574 		region->vm_start = new->vm_start = addr;
1575 		region->vm_pgoff = new->vm_pgoff += npages;
1576 	}
1577 
1578 	if (new->vm_ops && new->vm_ops->open)
1579 		new->vm_ops->open(new);
1580 
1581 	delete_vma_from_mm(vma);
1582 	down_write(&nommu_region_sem);
1583 	delete_nommu_region(vma->vm_region);
1584 	if (new_below) {
1585 		vma->vm_region->vm_start = vma->vm_start = addr;
1586 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1587 	} else {
1588 		vma->vm_region->vm_end = vma->vm_end = addr;
1589 		vma->vm_region->vm_top = addr;
1590 	}
1591 	add_nommu_region(vma->vm_region);
1592 	add_nommu_region(new->vm_region);
1593 	up_write(&nommu_region_sem);
1594 	add_vma_to_mm(mm, vma);
1595 	add_vma_to_mm(mm, new);
1596 	return 0;
1597 }
1598 
1599 /*
1600  * shrink a VMA by removing the specified chunk from either the beginning or
1601  * the end
1602  */
1603 static int shrink_vma(struct mm_struct *mm,
1604 		      struct vm_area_struct *vma,
1605 		      unsigned long from, unsigned long to)
1606 {
1607 	struct vm_region *region;
1608 
1609 	kenter("");
1610 
1611 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1612 	 * and list */
1613 	delete_vma_from_mm(vma);
1614 	if (from > vma->vm_start)
1615 		vma->vm_end = from;
1616 	else
1617 		vma->vm_start = to;
1618 	add_vma_to_mm(mm, vma);
1619 
1620 	/* cut the backing region down to size */
1621 	region = vma->vm_region;
1622 	BUG_ON(region->vm_usage != 1);
1623 
1624 	down_write(&nommu_region_sem);
1625 	delete_nommu_region(region);
1626 	if (from > region->vm_start) {
1627 		to = region->vm_top;
1628 		region->vm_top = region->vm_end = from;
1629 	} else {
1630 		region->vm_start = to;
1631 	}
1632 	add_nommu_region(region);
1633 	up_write(&nommu_region_sem);
1634 
1635 	free_page_series(from, to);
1636 	return 0;
1637 }
1638 
1639 /*
1640  * release a mapping
1641  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1642  *   VMA, though it need not cover the whole VMA
1643  */
1644 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1645 {
1646 	struct vm_area_struct *vma;
1647 	unsigned long end;
1648 	int ret;
1649 
1650 	kenter(",%lx,%zx", start, len);
1651 
1652 	len = PAGE_ALIGN(len);
1653 	if (len == 0)
1654 		return -EINVAL;
1655 
1656 	end = start + len;
1657 
1658 	/* find the first potentially overlapping VMA */
1659 	vma = find_vma(mm, start);
1660 	if (!vma) {
1661 		static int limit = 0;
1662 		if (limit < 5) {
1663 			printk(KERN_WARNING
1664 			       "munmap of memory not mmapped by process %d"
1665 			       " (%s): 0x%lx-0x%lx\n",
1666 			       current->pid, current->comm,
1667 			       start, start + len - 1);
1668 			limit++;
1669 		}
1670 		return -EINVAL;
1671 	}
1672 
1673 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1674 	if (vma->vm_file) {
1675 		do {
1676 			if (start > vma->vm_start) {
1677 				kleave(" = -EINVAL [miss]");
1678 				return -EINVAL;
1679 			}
1680 			if (end == vma->vm_end)
1681 				goto erase_whole_vma;
1682 			vma = vma->vm_next;
1683 		} while (vma);
1684 		kleave(" = -EINVAL [split file]");
1685 		return -EINVAL;
1686 	} else {
1687 		/* the chunk must be a subset of the VMA found */
1688 		if (start == vma->vm_start && end == vma->vm_end)
1689 			goto erase_whole_vma;
1690 		if (start < vma->vm_start || end > vma->vm_end) {
1691 			kleave(" = -EINVAL [superset]");
1692 			return -EINVAL;
1693 		}
1694 		if (start & ~PAGE_MASK) {
1695 			kleave(" = -EINVAL [unaligned start]");
1696 			return -EINVAL;
1697 		}
1698 		if (end != vma->vm_end && end & ~PAGE_MASK) {
1699 			kleave(" = -EINVAL [unaligned split]");
1700 			return -EINVAL;
1701 		}
1702 		if (start != vma->vm_start && end != vma->vm_end) {
1703 			ret = split_vma(mm, vma, start, 1);
1704 			if (ret < 0) {
1705 				kleave(" = %d [split]", ret);
1706 				return ret;
1707 			}
1708 		}
1709 		return shrink_vma(mm, vma, start, end);
1710 	}
1711 
1712 erase_whole_vma:
1713 	delete_vma_from_mm(vma);
1714 	delete_vma(mm, vma);
1715 	kleave(" = 0");
1716 	return 0;
1717 }
1718 EXPORT_SYMBOL(do_munmap);
1719 
1720 int vm_munmap(unsigned long addr, size_t len)
1721 {
1722 	struct mm_struct *mm = current->mm;
1723 	int ret;
1724 
1725 	down_write(&mm->mmap_sem);
1726 	ret = do_munmap(mm, addr, len);
1727 	up_write(&mm->mmap_sem);
1728 	return ret;
1729 }
1730 EXPORT_SYMBOL(vm_munmap);
1731 
1732 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1733 {
1734 	return vm_munmap(addr, len);
1735 }
1736 
1737 /*
1738  * release all the mappings made in a process's VM space
1739  */
1740 void exit_mmap(struct mm_struct *mm)
1741 {
1742 	struct vm_area_struct *vma;
1743 
1744 	if (!mm)
1745 		return;
1746 
1747 	kenter("");
1748 
1749 	mm->total_vm = 0;
1750 
1751 	while ((vma = mm->mmap)) {
1752 		mm->mmap = vma->vm_next;
1753 		delete_vma_from_mm(vma);
1754 		delete_vma(mm, vma);
1755 		cond_resched();
1756 	}
1757 
1758 	kleave("");
1759 }
1760 
1761 unsigned long vm_brk(unsigned long addr, unsigned long len)
1762 {
1763 	return -ENOMEM;
1764 }
1765 
1766 /*
1767  * expand (or shrink) an existing mapping, potentially moving it at the same
1768  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1769  *
1770  * under NOMMU conditions, we only permit changing a mapping's size, and only
1771  * as long as it stays within the region allocated by do_mmap_private() and the
1772  * block is not shareable
1773  *
1774  * MREMAP_FIXED is not supported under NOMMU conditions
1775  */
1776 static unsigned long do_mremap(unsigned long addr,
1777 			unsigned long old_len, unsigned long new_len,
1778 			unsigned long flags, unsigned long new_addr)
1779 {
1780 	struct vm_area_struct *vma;
1781 
1782 	/* insanity checks first */
1783 	old_len = PAGE_ALIGN(old_len);
1784 	new_len = PAGE_ALIGN(new_len);
1785 	if (old_len == 0 || new_len == 0)
1786 		return (unsigned long) -EINVAL;
1787 
1788 	if (addr & ~PAGE_MASK)
1789 		return -EINVAL;
1790 
1791 	if (flags & MREMAP_FIXED && new_addr != addr)
1792 		return (unsigned long) -EINVAL;
1793 
1794 	vma = find_vma_exact(current->mm, addr, old_len);
1795 	if (!vma)
1796 		return (unsigned long) -EINVAL;
1797 
1798 	if (vma->vm_end != vma->vm_start + old_len)
1799 		return (unsigned long) -EFAULT;
1800 
1801 	if (vma->vm_flags & VM_MAYSHARE)
1802 		return (unsigned long) -EPERM;
1803 
1804 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1805 		return (unsigned long) -ENOMEM;
1806 
1807 	/* all checks complete - do it */
1808 	vma->vm_end = vma->vm_start + new_len;
1809 	return vma->vm_start;
1810 }
1811 
1812 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1813 		unsigned long, new_len, unsigned long, flags,
1814 		unsigned long, new_addr)
1815 {
1816 	unsigned long ret;
1817 
1818 	down_write(&current->mm->mmap_sem);
1819 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1820 	up_write(&current->mm->mmap_sem);
1821 	return ret;
1822 }
1823 
1824 struct page *follow_page_mask(struct vm_area_struct *vma,
1825 			      unsigned long address, unsigned int flags,
1826 			      unsigned int *page_mask)
1827 {
1828 	*page_mask = 0;
1829 	return NULL;
1830 }
1831 
1832 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1833 		unsigned long pfn, unsigned long size, pgprot_t prot)
1834 {
1835 	if (addr != (pfn << PAGE_SHIFT))
1836 		return -EINVAL;
1837 
1838 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1839 	return 0;
1840 }
1841 EXPORT_SYMBOL(remap_pfn_range);
1842 
1843 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1844 {
1845 	unsigned long pfn = start >> PAGE_SHIFT;
1846 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1847 
1848 	pfn += vma->vm_pgoff;
1849 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1850 }
1851 EXPORT_SYMBOL(vm_iomap_memory);
1852 
1853 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1854 			unsigned long pgoff)
1855 {
1856 	unsigned int size = vma->vm_end - vma->vm_start;
1857 
1858 	if (!(vma->vm_flags & VM_USERMAP))
1859 		return -EINVAL;
1860 
1861 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1862 	vma->vm_end = vma->vm_start + size;
1863 
1864 	return 0;
1865 }
1866 EXPORT_SYMBOL(remap_vmalloc_range);
1867 
1868 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1869 	unsigned long len, unsigned long pgoff, unsigned long flags)
1870 {
1871 	return -ENOMEM;
1872 }
1873 
1874 void unmap_mapping_range(struct address_space *mapping,
1875 			 loff_t const holebegin, loff_t const holelen,
1876 			 int even_cows)
1877 {
1878 }
1879 EXPORT_SYMBOL(unmap_mapping_range);
1880 
1881 /*
1882  * Check that a process has enough memory to allocate a new virtual
1883  * mapping. 0 means there is enough memory for the allocation to
1884  * succeed and -ENOMEM implies there is not.
1885  *
1886  * We currently support three overcommit policies, which are set via the
1887  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1888  *
1889  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1890  * Additional code 2002 Jul 20 by Robert Love.
1891  *
1892  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1893  *
1894  * Note this is a helper function intended to be used by LSMs which
1895  * wish to use this logic.
1896  */
1897 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1898 {
1899 	unsigned long free, allowed, reserve;
1900 
1901 	vm_acct_memory(pages);
1902 
1903 	/*
1904 	 * Sometimes we want to use more memory than we have
1905 	 */
1906 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1907 		return 0;
1908 
1909 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1910 		free = global_page_state(NR_FREE_PAGES);
1911 		free += global_page_state(NR_FILE_PAGES);
1912 
1913 		/*
1914 		 * shmem pages shouldn't be counted as free in this
1915 		 * case, they can't be purged, only swapped out, and
1916 		 * that won't affect the overall amount of available
1917 		 * memory in the system.
1918 		 */
1919 		free -= global_page_state(NR_SHMEM);
1920 
1921 		free += get_nr_swap_pages();
1922 
1923 		/*
1924 		 * Any slabs which are created with the
1925 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1926 		 * which are reclaimable, under pressure.  The dentry
1927 		 * cache and most inode caches should fall into this
1928 		 */
1929 		free += global_page_state(NR_SLAB_RECLAIMABLE);
1930 
1931 		/*
1932 		 * Leave reserved pages. The pages are not for anonymous pages.
1933 		 */
1934 		if (free <= totalreserve_pages)
1935 			goto error;
1936 		else
1937 			free -= totalreserve_pages;
1938 
1939 		/*
1940 		 * Reserve some for root
1941 		 */
1942 		if (!cap_sys_admin)
1943 			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1944 
1945 		if (free > pages)
1946 			return 0;
1947 
1948 		goto error;
1949 	}
1950 
1951 	allowed = vm_commit_limit();
1952 	/*
1953 	 * Reserve some 3% for root
1954 	 */
1955 	if (!cap_sys_admin)
1956 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1957 
1958 	/*
1959 	 * Don't let a single process grow so big a user can't recover
1960 	 */
1961 	if (mm) {
1962 		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1963 		allowed -= min(mm->total_vm / 32, reserve);
1964 	}
1965 
1966 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1967 		return 0;
1968 
1969 error:
1970 	vm_unacct_memory(pages);
1971 
1972 	return -ENOMEM;
1973 }
1974 
1975 int in_gate_area_no_mm(unsigned long addr)
1976 {
1977 	return 0;
1978 }
1979 
1980 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1981 {
1982 	BUG();
1983 	return 0;
1984 }
1985 EXPORT_SYMBOL(filemap_fault);
1986 
1987 int generic_file_remap_pages(struct vm_area_struct *vma, unsigned long addr,
1988 			     unsigned long size, pgoff_t pgoff)
1989 {
1990 	BUG();
1991 	return 0;
1992 }
1993 EXPORT_SYMBOL(generic_file_remap_pages);
1994 
1995 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1996 		unsigned long addr, void *buf, int len, int write)
1997 {
1998 	struct vm_area_struct *vma;
1999 
2000 	down_read(&mm->mmap_sem);
2001 
2002 	/* the access must start within one of the target process's mappings */
2003 	vma = find_vma(mm, addr);
2004 	if (vma) {
2005 		/* don't overrun this mapping */
2006 		if (addr + len >= vma->vm_end)
2007 			len = vma->vm_end - addr;
2008 
2009 		/* only read or write mappings where it is permitted */
2010 		if (write && vma->vm_flags & VM_MAYWRITE)
2011 			copy_to_user_page(vma, NULL, addr,
2012 					 (void *) addr, buf, len);
2013 		else if (!write && vma->vm_flags & VM_MAYREAD)
2014 			copy_from_user_page(vma, NULL, addr,
2015 					    buf, (void *) addr, len);
2016 		else
2017 			len = 0;
2018 	} else {
2019 		len = 0;
2020 	}
2021 
2022 	up_read(&mm->mmap_sem);
2023 
2024 	return len;
2025 }
2026 
2027 /**
2028  * @access_remote_vm - access another process' address space
2029  * @mm:		the mm_struct of the target address space
2030  * @addr:	start address to access
2031  * @buf:	source or destination buffer
2032  * @len:	number of bytes to transfer
2033  * @write:	whether the access is a write
2034  *
2035  * The caller must hold a reference on @mm.
2036  */
2037 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2038 		void *buf, int len, int write)
2039 {
2040 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
2041 }
2042 
2043 /*
2044  * Access another process' address space.
2045  * - source/target buffer must be kernel space
2046  */
2047 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2048 {
2049 	struct mm_struct *mm;
2050 
2051 	if (addr + len < addr)
2052 		return 0;
2053 
2054 	mm = get_task_mm(tsk);
2055 	if (!mm)
2056 		return 0;
2057 
2058 	len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2059 
2060 	mmput(mm);
2061 	return len;
2062 }
2063 
2064 /**
2065  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2066  * @inode: The inode to check
2067  * @size: The current filesize of the inode
2068  * @newsize: The proposed filesize of the inode
2069  *
2070  * Check the shared mappings on an inode on behalf of a shrinking truncate to
2071  * make sure that that any outstanding VMAs aren't broken and then shrink the
2072  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2073  * automatically grant mappings that are too large.
2074  */
2075 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2076 				size_t newsize)
2077 {
2078 	struct vm_area_struct *vma;
2079 	struct vm_region *region;
2080 	pgoff_t low, high;
2081 	size_t r_size, r_top;
2082 
2083 	low = newsize >> PAGE_SHIFT;
2084 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2085 
2086 	down_write(&nommu_region_sem);
2087 	mutex_lock(&inode->i_mapping->i_mmap_mutex);
2088 
2089 	/* search for VMAs that fall within the dead zone */
2090 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2091 		/* found one - only interested if it's shared out of the page
2092 		 * cache */
2093 		if (vma->vm_flags & VM_SHARED) {
2094 			mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2095 			up_write(&nommu_region_sem);
2096 			return -ETXTBSY; /* not quite true, but near enough */
2097 		}
2098 	}
2099 
2100 	/* reduce any regions that overlap the dead zone - if in existence,
2101 	 * these will be pointed to by VMAs that don't overlap the dead zone
2102 	 *
2103 	 * we don't check for any regions that start beyond the EOF as there
2104 	 * shouldn't be any
2105 	 */
2106 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap,
2107 				  0, ULONG_MAX) {
2108 		if (!(vma->vm_flags & VM_SHARED))
2109 			continue;
2110 
2111 		region = vma->vm_region;
2112 		r_size = region->vm_top - region->vm_start;
2113 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2114 
2115 		if (r_top > newsize) {
2116 			region->vm_top -= r_top - newsize;
2117 			if (region->vm_end > region->vm_top)
2118 				region->vm_end = region->vm_top;
2119 		}
2120 	}
2121 
2122 	mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2123 	up_write(&nommu_region_sem);
2124 	return 0;
2125 }
2126 
2127 /*
2128  * Initialise sysctl_user_reserve_kbytes.
2129  *
2130  * This is intended to prevent a user from starting a single memory hogging
2131  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2132  * mode.
2133  *
2134  * The default value is min(3% of free memory, 128MB)
2135  * 128MB is enough to recover with sshd/login, bash, and top/kill.
2136  */
2137 static int __meminit init_user_reserve(void)
2138 {
2139 	unsigned long free_kbytes;
2140 
2141 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2142 
2143 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2144 	return 0;
2145 }
2146 module_init(init_user_reserve)
2147 
2148 /*
2149  * Initialise sysctl_admin_reserve_kbytes.
2150  *
2151  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2152  * to log in and kill a memory hogging process.
2153  *
2154  * Systems with more than 256MB will reserve 8MB, enough to recover
2155  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2156  * only reserve 3% of free pages by default.
2157  */
2158 static int __meminit init_admin_reserve(void)
2159 {
2160 	unsigned long free_kbytes;
2161 
2162 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2163 
2164 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2165 	return 0;
2166 }
2167 module_init(init_admin_reserve)
2168