xref: /openbmc/linux/mm/nommu.c (revision f20c7d91)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/nommu.c
4  *
5  *  Replacement code for mm functions to support CPU's that don't
6  *  have any form of memory management unit (thus no virtual memory).
7  *
8  *  See Documentation/nommu-mmap.txt
9  *
10  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
39 
40 #include <linux/uaccess.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
45 
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
54 
55 atomic_long_t mmap_pages_allocated;
56 
57 EXPORT_SYMBOL(mem_map);
58 
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
63 
64 const struct vm_operations_struct generic_file_vm_ops = {
65 };
66 
67 /*
68  * Return the total memory allocated for this pointer, not
69  * just what the caller asked for.
70  *
71  * Doesn't have to be accurate, i.e. may have races.
72  */
73 unsigned int kobjsize(const void *objp)
74 {
75 	struct page *page;
76 
77 	/*
78 	 * If the object we have should not have ksize performed on it,
79 	 * return size of 0
80 	 */
81 	if (!objp || !virt_addr_valid(objp))
82 		return 0;
83 
84 	page = virt_to_head_page(objp);
85 
86 	/*
87 	 * If the allocator sets PageSlab, we know the pointer came from
88 	 * kmalloc().
89 	 */
90 	if (PageSlab(page))
91 		return ksize(objp);
92 
93 	/*
94 	 * If it's not a compound page, see if we have a matching VMA
95 	 * region. This test is intentionally done in reverse order,
96 	 * so if there's no VMA, we still fall through and hand back
97 	 * PAGE_SIZE for 0-order pages.
98 	 */
99 	if (!PageCompound(page)) {
100 		struct vm_area_struct *vma;
101 
102 		vma = find_vma(current->mm, (unsigned long)objp);
103 		if (vma)
104 			return vma->vm_end - vma->vm_start;
105 	}
106 
107 	/*
108 	 * The ksize() function is only guaranteed to work for pointers
109 	 * returned by kmalloc(). So handle arbitrary pointers here.
110 	 */
111 	return page_size(page);
112 }
113 
114 /**
115  * follow_pfn - look up PFN at a user virtual address
116  * @vma: memory mapping
117  * @address: user virtual address
118  * @pfn: location to store found PFN
119  *
120  * Only IO mappings and raw PFN mappings are allowed.
121  *
122  * Returns zero and the pfn at @pfn on success, -ve otherwise.
123  */
124 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
125 	unsigned long *pfn)
126 {
127 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
128 		return -EINVAL;
129 
130 	*pfn = address >> PAGE_SHIFT;
131 	return 0;
132 }
133 EXPORT_SYMBOL(follow_pfn);
134 
135 LIST_HEAD(vmap_area_list);
136 
137 void vfree(const void *addr)
138 {
139 	kfree(addr);
140 }
141 EXPORT_SYMBOL(vfree);
142 
143 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
144 {
145 	/*
146 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
147 	 * returns only a logical address.
148 	 */
149 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
150 }
151 EXPORT_SYMBOL(__vmalloc);
152 
153 void *__vmalloc_node_range(unsigned long size, unsigned long align,
154 		unsigned long start, unsigned long end, gfp_t gfp_mask,
155 		pgprot_t prot, unsigned long vm_flags, int node,
156 		const void *caller)
157 {
158 	return __vmalloc(size, gfp_mask);
159 }
160 
161 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
162 		int node, const void *caller)
163 {
164 	return __vmalloc(size, gfp_mask);
165 }
166 
167 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
168 {
169 	void *ret;
170 
171 	ret = __vmalloc(size, flags);
172 	if (ret) {
173 		struct vm_area_struct *vma;
174 
175 		mmap_write_lock(current->mm);
176 		vma = find_vma(current->mm, (unsigned long)ret);
177 		if (vma)
178 			vma->vm_flags |= VM_USERMAP;
179 		mmap_write_unlock(current->mm);
180 	}
181 
182 	return ret;
183 }
184 
185 void *vmalloc_user(unsigned long size)
186 {
187 	return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
188 }
189 EXPORT_SYMBOL(vmalloc_user);
190 
191 struct page *vmalloc_to_page(const void *addr)
192 {
193 	return virt_to_page(addr);
194 }
195 EXPORT_SYMBOL(vmalloc_to_page);
196 
197 unsigned long vmalloc_to_pfn(const void *addr)
198 {
199 	return page_to_pfn(virt_to_page(addr));
200 }
201 EXPORT_SYMBOL(vmalloc_to_pfn);
202 
203 long vread(char *buf, char *addr, unsigned long count)
204 {
205 	/* Don't allow overflow */
206 	if ((unsigned long) buf + count < count)
207 		count = -(unsigned long) buf;
208 
209 	memcpy(buf, addr, count);
210 	return count;
211 }
212 
213 long vwrite(char *buf, char *addr, unsigned long count)
214 {
215 	/* Don't allow overflow */
216 	if ((unsigned long) addr + count < count)
217 		count = -(unsigned long) addr;
218 
219 	memcpy(addr, buf, count);
220 	return count;
221 }
222 
223 /*
224  *	vmalloc  -  allocate virtually contiguous memory
225  *
226  *	@size:		allocation size
227  *
228  *	Allocate enough pages to cover @size from the page level
229  *	allocator and map them into contiguous kernel virtual space.
230  *
231  *	For tight control over page level allocator and protection flags
232  *	use __vmalloc() instead.
233  */
234 void *vmalloc(unsigned long size)
235 {
236        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM);
237 }
238 EXPORT_SYMBOL(vmalloc);
239 
240 /*
241  *	vzalloc - allocate virtually contiguous memory with zero fill
242  *
243  *	@size:		allocation size
244  *
245  *	Allocate enough pages to cover @size from the page level
246  *	allocator and map them into contiguous kernel virtual space.
247  *	The memory allocated is set to zero.
248  *
249  *	For tight control over page level allocator and protection flags
250  *	use __vmalloc() instead.
251  */
252 void *vzalloc(unsigned long size)
253 {
254 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
255 }
256 EXPORT_SYMBOL(vzalloc);
257 
258 /**
259  * vmalloc_node - allocate memory on a specific node
260  * @size:	allocation size
261  * @node:	numa node
262  *
263  * Allocate enough pages to cover @size from the page level
264  * allocator and map them into contiguous kernel virtual space.
265  *
266  * For tight control over page level allocator and protection flags
267  * use __vmalloc() instead.
268  */
269 void *vmalloc_node(unsigned long size, int node)
270 {
271 	return vmalloc(size);
272 }
273 EXPORT_SYMBOL(vmalloc_node);
274 
275 /**
276  * vzalloc_node - allocate memory on a specific node with zero fill
277  * @size:	allocation size
278  * @node:	numa node
279  *
280  * Allocate enough pages to cover @size from the page level
281  * allocator and map them into contiguous kernel virtual space.
282  * The memory allocated is set to zero.
283  *
284  * For tight control over page level allocator and protection flags
285  * use __vmalloc() instead.
286  */
287 void *vzalloc_node(unsigned long size, int node)
288 {
289 	return vzalloc(size);
290 }
291 EXPORT_SYMBOL(vzalloc_node);
292 
293 /**
294  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
295  *	@size:		allocation size
296  *
297  *	Kernel-internal function to allocate enough pages to cover @size
298  *	the page level allocator and map them into contiguous and
299  *	executable kernel virtual space.
300  *
301  *	For tight control over page level allocator and protection flags
302  *	use __vmalloc() instead.
303  */
304 
305 void *vmalloc_exec(unsigned long size)
306 {
307 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM);
308 }
309 
310 /**
311  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
312  *	@size:		allocation size
313  *
314  *	Allocate enough 32bit PA addressable pages to cover @size from the
315  *	page level allocator and map them into contiguous kernel virtual space.
316  */
317 void *vmalloc_32(unsigned long size)
318 {
319 	return __vmalloc(size, GFP_KERNEL);
320 }
321 EXPORT_SYMBOL(vmalloc_32);
322 
323 /**
324  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
325  *	@size:		allocation size
326  *
327  * The resulting memory area is 32bit addressable and zeroed so it can be
328  * mapped to userspace without leaking data.
329  *
330  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
331  * remap_vmalloc_range() are permissible.
332  */
333 void *vmalloc_32_user(unsigned long size)
334 {
335 	/*
336 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
337 	 * but for now this can simply use vmalloc_user() directly.
338 	 */
339 	return vmalloc_user(size);
340 }
341 EXPORT_SYMBOL(vmalloc_32_user);
342 
343 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
344 {
345 	BUG();
346 	return NULL;
347 }
348 EXPORT_SYMBOL(vmap);
349 
350 void vunmap(const void *addr)
351 {
352 	BUG();
353 }
354 EXPORT_SYMBOL(vunmap);
355 
356 void *vm_map_ram(struct page **pages, unsigned int count, int node)
357 {
358 	BUG();
359 	return NULL;
360 }
361 EXPORT_SYMBOL(vm_map_ram);
362 
363 void vm_unmap_ram(const void *mem, unsigned int count)
364 {
365 	BUG();
366 }
367 EXPORT_SYMBOL(vm_unmap_ram);
368 
369 void vm_unmap_aliases(void)
370 {
371 }
372 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
373 
374 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
375 {
376 	BUG();
377 	return NULL;
378 }
379 EXPORT_SYMBOL_GPL(alloc_vm_area);
380 
381 void free_vm_area(struct vm_struct *area)
382 {
383 	BUG();
384 }
385 EXPORT_SYMBOL_GPL(free_vm_area);
386 
387 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
388 		   struct page *page)
389 {
390 	return -EINVAL;
391 }
392 EXPORT_SYMBOL(vm_insert_page);
393 
394 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
395 			unsigned long num)
396 {
397 	return -EINVAL;
398 }
399 EXPORT_SYMBOL(vm_map_pages);
400 
401 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
402 				unsigned long num)
403 {
404 	return -EINVAL;
405 }
406 EXPORT_SYMBOL(vm_map_pages_zero);
407 
408 /*
409  *  sys_brk() for the most part doesn't need the global kernel
410  *  lock, except when an application is doing something nasty
411  *  like trying to un-brk an area that has already been mapped
412  *  to a regular file.  in this case, the unmapping will need
413  *  to invoke file system routines that need the global lock.
414  */
415 SYSCALL_DEFINE1(brk, unsigned long, brk)
416 {
417 	struct mm_struct *mm = current->mm;
418 
419 	if (brk < mm->start_brk || brk > mm->context.end_brk)
420 		return mm->brk;
421 
422 	if (mm->brk == brk)
423 		return mm->brk;
424 
425 	/*
426 	 * Always allow shrinking brk
427 	 */
428 	if (brk <= mm->brk) {
429 		mm->brk = brk;
430 		return brk;
431 	}
432 
433 	/*
434 	 * Ok, looks good - let it rip.
435 	 */
436 	flush_icache_user_range(mm->brk, brk);
437 	return mm->brk = brk;
438 }
439 
440 /*
441  * initialise the percpu counter for VM and region record slabs
442  */
443 void __init mmap_init(void)
444 {
445 	int ret;
446 
447 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
448 	VM_BUG_ON(ret);
449 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
450 }
451 
452 /*
453  * validate the region tree
454  * - the caller must hold the region lock
455  */
456 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
457 static noinline void validate_nommu_regions(void)
458 {
459 	struct vm_region *region, *last;
460 	struct rb_node *p, *lastp;
461 
462 	lastp = rb_first(&nommu_region_tree);
463 	if (!lastp)
464 		return;
465 
466 	last = rb_entry(lastp, struct vm_region, vm_rb);
467 	BUG_ON(last->vm_end <= last->vm_start);
468 	BUG_ON(last->vm_top < last->vm_end);
469 
470 	while ((p = rb_next(lastp))) {
471 		region = rb_entry(p, struct vm_region, vm_rb);
472 		last = rb_entry(lastp, struct vm_region, vm_rb);
473 
474 		BUG_ON(region->vm_end <= region->vm_start);
475 		BUG_ON(region->vm_top < region->vm_end);
476 		BUG_ON(region->vm_start < last->vm_top);
477 
478 		lastp = p;
479 	}
480 }
481 #else
482 static void validate_nommu_regions(void)
483 {
484 }
485 #endif
486 
487 /*
488  * add a region into the global tree
489  */
490 static void add_nommu_region(struct vm_region *region)
491 {
492 	struct vm_region *pregion;
493 	struct rb_node **p, *parent;
494 
495 	validate_nommu_regions();
496 
497 	parent = NULL;
498 	p = &nommu_region_tree.rb_node;
499 	while (*p) {
500 		parent = *p;
501 		pregion = rb_entry(parent, struct vm_region, vm_rb);
502 		if (region->vm_start < pregion->vm_start)
503 			p = &(*p)->rb_left;
504 		else if (region->vm_start > pregion->vm_start)
505 			p = &(*p)->rb_right;
506 		else if (pregion == region)
507 			return;
508 		else
509 			BUG();
510 	}
511 
512 	rb_link_node(&region->vm_rb, parent, p);
513 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
514 
515 	validate_nommu_regions();
516 }
517 
518 /*
519  * delete a region from the global tree
520  */
521 static void delete_nommu_region(struct vm_region *region)
522 {
523 	BUG_ON(!nommu_region_tree.rb_node);
524 
525 	validate_nommu_regions();
526 	rb_erase(&region->vm_rb, &nommu_region_tree);
527 	validate_nommu_regions();
528 }
529 
530 /*
531  * free a contiguous series of pages
532  */
533 static void free_page_series(unsigned long from, unsigned long to)
534 {
535 	for (; from < to; from += PAGE_SIZE) {
536 		struct page *page = virt_to_page(from);
537 
538 		atomic_long_dec(&mmap_pages_allocated);
539 		put_page(page);
540 	}
541 }
542 
543 /*
544  * release a reference to a region
545  * - the caller must hold the region semaphore for writing, which this releases
546  * - the region may not have been added to the tree yet, in which case vm_top
547  *   will equal vm_start
548  */
549 static void __put_nommu_region(struct vm_region *region)
550 	__releases(nommu_region_sem)
551 {
552 	BUG_ON(!nommu_region_tree.rb_node);
553 
554 	if (--region->vm_usage == 0) {
555 		if (region->vm_top > region->vm_start)
556 			delete_nommu_region(region);
557 		up_write(&nommu_region_sem);
558 
559 		if (region->vm_file)
560 			fput(region->vm_file);
561 
562 		/* IO memory and memory shared directly out of the pagecache
563 		 * from ramfs/tmpfs mustn't be released here */
564 		if (region->vm_flags & VM_MAPPED_COPY)
565 			free_page_series(region->vm_start, region->vm_top);
566 		kmem_cache_free(vm_region_jar, region);
567 	} else {
568 		up_write(&nommu_region_sem);
569 	}
570 }
571 
572 /*
573  * release a reference to a region
574  */
575 static void put_nommu_region(struct vm_region *region)
576 {
577 	down_write(&nommu_region_sem);
578 	__put_nommu_region(region);
579 }
580 
581 /*
582  * add a VMA into a process's mm_struct in the appropriate place in the list
583  * and tree and add to the address space's page tree also if not an anonymous
584  * page
585  * - should be called with mm->mmap_lock held writelocked
586  */
587 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
588 {
589 	struct vm_area_struct *pvma, *prev;
590 	struct address_space *mapping;
591 	struct rb_node **p, *parent, *rb_prev;
592 
593 	BUG_ON(!vma->vm_region);
594 
595 	mm->map_count++;
596 	vma->vm_mm = mm;
597 
598 	/* add the VMA to the mapping */
599 	if (vma->vm_file) {
600 		mapping = vma->vm_file->f_mapping;
601 
602 		i_mmap_lock_write(mapping);
603 		flush_dcache_mmap_lock(mapping);
604 		vma_interval_tree_insert(vma, &mapping->i_mmap);
605 		flush_dcache_mmap_unlock(mapping);
606 		i_mmap_unlock_write(mapping);
607 	}
608 
609 	/* add the VMA to the tree */
610 	parent = rb_prev = NULL;
611 	p = &mm->mm_rb.rb_node;
612 	while (*p) {
613 		parent = *p;
614 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
615 
616 		/* sort by: start addr, end addr, VMA struct addr in that order
617 		 * (the latter is necessary as we may get identical VMAs) */
618 		if (vma->vm_start < pvma->vm_start)
619 			p = &(*p)->rb_left;
620 		else if (vma->vm_start > pvma->vm_start) {
621 			rb_prev = parent;
622 			p = &(*p)->rb_right;
623 		} else if (vma->vm_end < pvma->vm_end)
624 			p = &(*p)->rb_left;
625 		else if (vma->vm_end > pvma->vm_end) {
626 			rb_prev = parent;
627 			p = &(*p)->rb_right;
628 		} else if (vma < pvma)
629 			p = &(*p)->rb_left;
630 		else if (vma > pvma) {
631 			rb_prev = parent;
632 			p = &(*p)->rb_right;
633 		} else
634 			BUG();
635 	}
636 
637 	rb_link_node(&vma->vm_rb, parent, p);
638 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
639 
640 	/* add VMA to the VMA list also */
641 	prev = NULL;
642 	if (rb_prev)
643 		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
644 
645 	__vma_link_list(mm, vma, prev);
646 }
647 
648 /*
649  * delete a VMA from its owning mm_struct and address space
650  */
651 static void delete_vma_from_mm(struct vm_area_struct *vma)
652 {
653 	int i;
654 	struct address_space *mapping;
655 	struct mm_struct *mm = vma->vm_mm;
656 	struct task_struct *curr = current;
657 
658 	mm->map_count--;
659 	for (i = 0; i < VMACACHE_SIZE; i++) {
660 		/* if the vma is cached, invalidate the entire cache */
661 		if (curr->vmacache.vmas[i] == vma) {
662 			vmacache_invalidate(mm);
663 			break;
664 		}
665 	}
666 
667 	/* remove the VMA from the mapping */
668 	if (vma->vm_file) {
669 		mapping = vma->vm_file->f_mapping;
670 
671 		i_mmap_lock_write(mapping);
672 		flush_dcache_mmap_lock(mapping);
673 		vma_interval_tree_remove(vma, &mapping->i_mmap);
674 		flush_dcache_mmap_unlock(mapping);
675 		i_mmap_unlock_write(mapping);
676 	}
677 
678 	/* remove from the MM's tree and list */
679 	rb_erase(&vma->vm_rb, &mm->mm_rb);
680 
681 	__vma_unlink_list(mm, vma);
682 }
683 
684 /*
685  * destroy a VMA record
686  */
687 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
688 {
689 	if (vma->vm_ops && vma->vm_ops->close)
690 		vma->vm_ops->close(vma);
691 	if (vma->vm_file)
692 		fput(vma->vm_file);
693 	put_nommu_region(vma->vm_region);
694 	vm_area_free(vma);
695 }
696 
697 /*
698  * look up the first VMA in which addr resides, NULL if none
699  * - should be called with mm->mmap_lock at least held readlocked
700  */
701 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
702 {
703 	struct vm_area_struct *vma;
704 
705 	/* check the cache first */
706 	vma = vmacache_find(mm, addr);
707 	if (likely(vma))
708 		return vma;
709 
710 	/* trawl the list (there may be multiple mappings in which addr
711 	 * resides) */
712 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
713 		if (vma->vm_start > addr)
714 			return NULL;
715 		if (vma->vm_end > addr) {
716 			vmacache_update(addr, vma);
717 			return vma;
718 		}
719 	}
720 
721 	return NULL;
722 }
723 EXPORT_SYMBOL(find_vma);
724 
725 /*
726  * find a VMA
727  * - we don't extend stack VMAs under NOMMU conditions
728  */
729 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
730 {
731 	return find_vma(mm, addr);
732 }
733 
734 /*
735  * expand a stack to a given address
736  * - not supported under NOMMU conditions
737  */
738 int expand_stack(struct vm_area_struct *vma, unsigned long address)
739 {
740 	return -ENOMEM;
741 }
742 
743 /*
744  * look up the first VMA exactly that exactly matches addr
745  * - should be called with mm->mmap_lock at least held readlocked
746  */
747 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
748 					     unsigned long addr,
749 					     unsigned long len)
750 {
751 	struct vm_area_struct *vma;
752 	unsigned long end = addr + len;
753 
754 	/* check the cache first */
755 	vma = vmacache_find_exact(mm, addr, end);
756 	if (vma)
757 		return vma;
758 
759 	/* trawl the list (there may be multiple mappings in which addr
760 	 * resides) */
761 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
762 		if (vma->vm_start < addr)
763 			continue;
764 		if (vma->vm_start > addr)
765 			return NULL;
766 		if (vma->vm_end == end) {
767 			vmacache_update(addr, vma);
768 			return vma;
769 		}
770 	}
771 
772 	return NULL;
773 }
774 
775 /*
776  * determine whether a mapping should be permitted and, if so, what sort of
777  * mapping we're capable of supporting
778  */
779 static int validate_mmap_request(struct file *file,
780 				 unsigned long addr,
781 				 unsigned long len,
782 				 unsigned long prot,
783 				 unsigned long flags,
784 				 unsigned long pgoff,
785 				 unsigned long *_capabilities)
786 {
787 	unsigned long capabilities, rlen;
788 	int ret;
789 
790 	/* do the simple checks first */
791 	if (flags & MAP_FIXED)
792 		return -EINVAL;
793 
794 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
795 	    (flags & MAP_TYPE) != MAP_SHARED)
796 		return -EINVAL;
797 
798 	if (!len)
799 		return -EINVAL;
800 
801 	/* Careful about overflows.. */
802 	rlen = PAGE_ALIGN(len);
803 	if (!rlen || rlen > TASK_SIZE)
804 		return -ENOMEM;
805 
806 	/* offset overflow? */
807 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
808 		return -EOVERFLOW;
809 
810 	if (file) {
811 		/* files must support mmap */
812 		if (!file->f_op->mmap)
813 			return -ENODEV;
814 
815 		/* work out if what we've got could possibly be shared
816 		 * - we support chardevs that provide their own "memory"
817 		 * - we support files/blockdevs that are memory backed
818 		 */
819 		if (file->f_op->mmap_capabilities) {
820 			capabilities = file->f_op->mmap_capabilities(file);
821 		} else {
822 			/* no explicit capabilities set, so assume some
823 			 * defaults */
824 			switch (file_inode(file)->i_mode & S_IFMT) {
825 			case S_IFREG:
826 			case S_IFBLK:
827 				capabilities = NOMMU_MAP_COPY;
828 				break;
829 
830 			case S_IFCHR:
831 				capabilities =
832 					NOMMU_MAP_DIRECT |
833 					NOMMU_MAP_READ |
834 					NOMMU_MAP_WRITE;
835 				break;
836 
837 			default:
838 				return -EINVAL;
839 			}
840 		}
841 
842 		/* eliminate any capabilities that we can't support on this
843 		 * device */
844 		if (!file->f_op->get_unmapped_area)
845 			capabilities &= ~NOMMU_MAP_DIRECT;
846 		if (!(file->f_mode & FMODE_CAN_READ))
847 			capabilities &= ~NOMMU_MAP_COPY;
848 
849 		/* The file shall have been opened with read permission. */
850 		if (!(file->f_mode & FMODE_READ))
851 			return -EACCES;
852 
853 		if (flags & MAP_SHARED) {
854 			/* do checks for writing, appending and locking */
855 			if ((prot & PROT_WRITE) &&
856 			    !(file->f_mode & FMODE_WRITE))
857 				return -EACCES;
858 
859 			if (IS_APPEND(file_inode(file)) &&
860 			    (file->f_mode & FMODE_WRITE))
861 				return -EACCES;
862 
863 			if (locks_verify_locked(file))
864 				return -EAGAIN;
865 
866 			if (!(capabilities & NOMMU_MAP_DIRECT))
867 				return -ENODEV;
868 
869 			/* we mustn't privatise shared mappings */
870 			capabilities &= ~NOMMU_MAP_COPY;
871 		} else {
872 			/* we're going to read the file into private memory we
873 			 * allocate */
874 			if (!(capabilities & NOMMU_MAP_COPY))
875 				return -ENODEV;
876 
877 			/* we don't permit a private writable mapping to be
878 			 * shared with the backing device */
879 			if (prot & PROT_WRITE)
880 				capabilities &= ~NOMMU_MAP_DIRECT;
881 		}
882 
883 		if (capabilities & NOMMU_MAP_DIRECT) {
884 			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
885 			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
886 			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
887 			    ) {
888 				capabilities &= ~NOMMU_MAP_DIRECT;
889 				if (flags & MAP_SHARED) {
890 					pr_warn("MAP_SHARED not completely supported on !MMU\n");
891 					return -EINVAL;
892 				}
893 			}
894 		}
895 
896 		/* handle executable mappings and implied executable
897 		 * mappings */
898 		if (path_noexec(&file->f_path)) {
899 			if (prot & PROT_EXEC)
900 				return -EPERM;
901 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
902 			/* handle implication of PROT_EXEC by PROT_READ */
903 			if (current->personality & READ_IMPLIES_EXEC) {
904 				if (capabilities & NOMMU_MAP_EXEC)
905 					prot |= PROT_EXEC;
906 			}
907 		} else if ((prot & PROT_READ) &&
908 			 (prot & PROT_EXEC) &&
909 			 !(capabilities & NOMMU_MAP_EXEC)
910 			 ) {
911 			/* backing file is not executable, try to copy */
912 			capabilities &= ~NOMMU_MAP_DIRECT;
913 		}
914 	} else {
915 		/* anonymous mappings are always memory backed and can be
916 		 * privately mapped
917 		 */
918 		capabilities = NOMMU_MAP_COPY;
919 
920 		/* handle PROT_EXEC implication by PROT_READ */
921 		if ((prot & PROT_READ) &&
922 		    (current->personality & READ_IMPLIES_EXEC))
923 			prot |= PROT_EXEC;
924 	}
925 
926 	/* allow the security API to have its say */
927 	ret = security_mmap_addr(addr);
928 	if (ret < 0)
929 		return ret;
930 
931 	/* looks okay */
932 	*_capabilities = capabilities;
933 	return 0;
934 }
935 
936 /*
937  * we've determined that we can make the mapping, now translate what we
938  * now know into VMA flags
939  */
940 static unsigned long determine_vm_flags(struct file *file,
941 					unsigned long prot,
942 					unsigned long flags,
943 					unsigned long capabilities)
944 {
945 	unsigned long vm_flags;
946 
947 	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
948 	/* vm_flags |= mm->def_flags; */
949 
950 	if (!(capabilities & NOMMU_MAP_DIRECT)) {
951 		/* attempt to share read-only copies of mapped file chunks */
952 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
953 		if (file && !(prot & PROT_WRITE))
954 			vm_flags |= VM_MAYSHARE;
955 	} else {
956 		/* overlay a shareable mapping on the backing device or inode
957 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
958 		 * romfs/cramfs */
959 		vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
960 		if (flags & MAP_SHARED)
961 			vm_flags |= VM_SHARED;
962 	}
963 
964 	/* refuse to let anyone share private mappings with this process if
965 	 * it's being traced - otherwise breakpoints set in it may interfere
966 	 * with another untraced process
967 	 */
968 	if ((flags & MAP_PRIVATE) && current->ptrace)
969 		vm_flags &= ~VM_MAYSHARE;
970 
971 	return vm_flags;
972 }
973 
974 /*
975  * set up a shared mapping on a file (the driver or filesystem provides and
976  * pins the storage)
977  */
978 static int do_mmap_shared_file(struct vm_area_struct *vma)
979 {
980 	int ret;
981 
982 	ret = call_mmap(vma->vm_file, vma);
983 	if (ret == 0) {
984 		vma->vm_region->vm_top = vma->vm_region->vm_end;
985 		return 0;
986 	}
987 	if (ret != -ENOSYS)
988 		return ret;
989 
990 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
991 	 * opposed to tried but failed) so we can only give a suitable error as
992 	 * it's not possible to make a private copy if MAP_SHARED was given */
993 	return -ENODEV;
994 }
995 
996 /*
997  * set up a private mapping or an anonymous shared mapping
998  */
999 static int do_mmap_private(struct vm_area_struct *vma,
1000 			   struct vm_region *region,
1001 			   unsigned long len,
1002 			   unsigned long capabilities)
1003 {
1004 	unsigned long total, point;
1005 	void *base;
1006 	int ret, order;
1007 
1008 	/* invoke the file's mapping function so that it can keep track of
1009 	 * shared mappings on devices or memory
1010 	 * - VM_MAYSHARE will be set if it may attempt to share
1011 	 */
1012 	if (capabilities & NOMMU_MAP_DIRECT) {
1013 		ret = call_mmap(vma->vm_file, vma);
1014 		if (ret == 0) {
1015 			/* shouldn't return success if we're not sharing */
1016 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1017 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1018 			return 0;
1019 		}
1020 		if (ret != -ENOSYS)
1021 			return ret;
1022 
1023 		/* getting an ENOSYS error indicates that direct mmap isn't
1024 		 * possible (as opposed to tried but failed) so we'll try to
1025 		 * make a private copy of the data and map that instead */
1026 	}
1027 
1028 
1029 	/* allocate some memory to hold the mapping
1030 	 * - note that this may not return a page-aligned address if the object
1031 	 *   we're allocating is smaller than a page
1032 	 */
1033 	order = get_order(len);
1034 	total = 1 << order;
1035 	point = len >> PAGE_SHIFT;
1036 
1037 	/* we don't want to allocate a power-of-2 sized page set */
1038 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1039 		total = point;
1040 
1041 	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1042 	if (!base)
1043 		goto enomem;
1044 
1045 	atomic_long_add(total, &mmap_pages_allocated);
1046 
1047 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1048 	region->vm_start = (unsigned long) base;
1049 	region->vm_end   = region->vm_start + len;
1050 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1051 
1052 	vma->vm_start = region->vm_start;
1053 	vma->vm_end   = region->vm_start + len;
1054 
1055 	if (vma->vm_file) {
1056 		/* read the contents of a file into the copy */
1057 		loff_t fpos;
1058 
1059 		fpos = vma->vm_pgoff;
1060 		fpos <<= PAGE_SHIFT;
1061 
1062 		ret = kernel_read(vma->vm_file, base, len, &fpos);
1063 		if (ret < 0)
1064 			goto error_free;
1065 
1066 		/* clear the last little bit */
1067 		if (ret < len)
1068 			memset(base + ret, 0, len - ret);
1069 
1070 	} else {
1071 		vma_set_anonymous(vma);
1072 	}
1073 
1074 	return 0;
1075 
1076 error_free:
1077 	free_page_series(region->vm_start, region->vm_top);
1078 	region->vm_start = vma->vm_start = 0;
1079 	region->vm_end   = vma->vm_end = 0;
1080 	region->vm_top   = 0;
1081 	return ret;
1082 
1083 enomem:
1084 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1085 	       len, current->pid, current->comm);
1086 	show_free_areas(0, NULL);
1087 	return -ENOMEM;
1088 }
1089 
1090 /*
1091  * handle mapping creation for uClinux
1092  */
1093 unsigned long do_mmap(struct file *file,
1094 			unsigned long addr,
1095 			unsigned long len,
1096 			unsigned long prot,
1097 			unsigned long flags,
1098 			vm_flags_t vm_flags,
1099 			unsigned long pgoff,
1100 			unsigned long *populate,
1101 			struct list_head *uf)
1102 {
1103 	struct vm_area_struct *vma;
1104 	struct vm_region *region;
1105 	struct rb_node *rb;
1106 	unsigned long capabilities, result;
1107 	int ret;
1108 
1109 	*populate = 0;
1110 
1111 	/* decide whether we should attempt the mapping, and if so what sort of
1112 	 * mapping */
1113 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1114 				    &capabilities);
1115 	if (ret < 0)
1116 		return ret;
1117 
1118 	/* we ignore the address hint */
1119 	addr = 0;
1120 	len = PAGE_ALIGN(len);
1121 
1122 	/* we've determined that we can make the mapping, now translate what we
1123 	 * now know into VMA flags */
1124 	vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1125 
1126 	/* we're going to need to record the mapping */
1127 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1128 	if (!region)
1129 		goto error_getting_region;
1130 
1131 	vma = vm_area_alloc(current->mm);
1132 	if (!vma)
1133 		goto error_getting_vma;
1134 
1135 	region->vm_usage = 1;
1136 	region->vm_flags = vm_flags;
1137 	region->vm_pgoff = pgoff;
1138 
1139 	vma->vm_flags = vm_flags;
1140 	vma->vm_pgoff = pgoff;
1141 
1142 	if (file) {
1143 		region->vm_file = get_file(file);
1144 		vma->vm_file = get_file(file);
1145 	}
1146 
1147 	down_write(&nommu_region_sem);
1148 
1149 	/* if we want to share, we need to check for regions created by other
1150 	 * mmap() calls that overlap with our proposed mapping
1151 	 * - we can only share with a superset match on most regular files
1152 	 * - shared mappings on character devices and memory backed files are
1153 	 *   permitted to overlap inexactly as far as we are concerned for in
1154 	 *   these cases, sharing is handled in the driver or filesystem rather
1155 	 *   than here
1156 	 */
1157 	if (vm_flags & VM_MAYSHARE) {
1158 		struct vm_region *pregion;
1159 		unsigned long pglen, rpglen, pgend, rpgend, start;
1160 
1161 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1162 		pgend = pgoff + pglen;
1163 
1164 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1165 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1166 
1167 			if (!(pregion->vm_flags & VM_MAYSHARE))
1168 				continue;
1169 
1170 			/* search for overlapping mappings on the same file */
1171 			if (file_inode(pregion->vm_file) !=
1172 			    file_inode(file))
1173 				continue;
1174 
1175 			if (pregion->vm_pgoff >= pgend)
1176 				continue;
1177 
1178 			rpglen = pregion->vm_end - pregion->vm_start;
1179 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1180 			rpgend = pregion->vm_pgoff + rpglen;
1181 			if (pgoff >= rpgend)
1182 				continue;
1183 
1184 			/* handle inexactly overlapping matches between
1185 			 * mappings */
1186 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1187 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1188 				/* new mapping is not a subset of the region */
1189 				if (!(capabilities & NOMMU_MAP_DIRECT))
1190 					goto sharing_violation;
1191 				continue;
1192 			}
1193 
1194 			/* we've found a region we can share */
1195 			pregion->vm_usage++;
1196 			vma->vm_region = pregion;
1197 			start = pregion->vm_start;
1198 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1199 			vma->vm_start = start;
1200 			vma->vm_end = start + len;
1201 
1202 			if (pregion->vm_flags & VM_MAPPED_COPY)
1203 				vma->vm_flags |= VM_MAPPED_COPY;
1204 			else {
1205 				ret = do_mmap_shared_file(vma);
1206 				if (ret < 0) {
1207 					vma->vm_region = NULL;
1208 					vma->vm_start = 0;
1209 					vma->vm_end = 0;
1210 					pregion->vm_usage--;
1211 					pregion = NULL;
1212 					goto error_just_free;
1213 				}
1214 			}
1215 			fput(region->vm_file);
1216 			kmem_cache_free(vm_region_jar, region);
1217 			region = pregion;
1218 			result = start;
1219 			goto share;
1220 		}
1221 
1222 		/* obtain the address at which to make a shared mapping
1223 		 * - this is the hook for quasi-memory character devices to
1224 		 *   tell us the location of a shared mapping
1225 		 */
1226 		if (capabilities & NOMMU_MAP_DIRECT) {
1227 			addr = file->f_op->get_unmapped_area(file, addr, len,
1228 							     pgoff, flags);
1229 			if (IS_ERR_VALUE(addr)) {
1230 				ret = addr;
1231 				if (ret != -ENOSYS)
1232 					goto error_just_free;
1233 
1234 				/* the driver refused to tell us where to site
1235 				 * the mapping so we'll have to attempt to copy
1236 				 * it */
1237 				ret = -ENODEV;
1238 				if (!(capabilities & NOMMU_MAP_COPY))
1239 					goto error_just_free;
1240 
1241 				capabilities &= ~NOMMU_MAP_DIRECT;
1242 			} else {
1243 				vma->vm_start = region->vm_start = addr;
1244 				vma->vm_end = region->vm_end = addr + len;
1245 			}
1246 		}
1247 	}
1248 
1249 	vma->vm_region = region;
1250 
1251 	/* set up the mapping
1252 	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1253 	 */
1254 	if (file && vma->vm_flags & VM_SHARED)
1255 		ret = do_mmap_shared_file(vma);
1256 	else
1257 		ret = do_mmap_private(vma, region, len, capabilities);
1258 	if (ret < 0)
1259 		goto error_just_free;
1260 	add_nommu_region(region);
1261 
1262 	/* clear anonymous mappings that don't ask for uninitialized data */
1263 	if (!vma->vm_file &&
1264 	    (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1265 	     !(flags & MAP_UNINITIALIZED)))
1266 		memset((void *)region->vm_start, 0,
1267 		       region->vm_end - region->vm_start);
1268 
1269 	/* okay... we have a mapping; now we have to register it */
1270 	result = vma->vm_start;
1271 
1272 	current->mm->total_vm += len >> PAGE_SHIFT;
1273 
1274 share:
1275 	add_vma_to_mm(current->mm, vma);
1276 
1277 	/* we flush the region from the icache only when the first executable
1278 	 * mapping of it is made  */
1279 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1280 		flush_icache_user_range(region->vm_start, region->vm_end);
1281 		region->vm_icache_flushed = true;
1282 	}
1283 
1284 	up_write(&nommu_region_sem);
1285 
1286 	return result;
1287 
1288 error_just_free:
1289 	up_write(&nommu_region_sem);
1290 error:
1291 	if (region->vm_file)
1292 		fput(region->vm_file);
1293 	kmem_cache_free(vm_region_jar, region);
1294 	if (vma->vm_file)
1295 		fput(vma->vm_file);
1296 	vm_area_free(vma);
1297 	return ret;
1298 
1299 sharing_violation:
1300 	up_write(&nommu_region_sem);
1301 	pr_warn("Attempt to share mismatched mappings\n");
1302 	ret = -EINVAL;
1303 	goto error;
1304 
1305 error_getting_vma:
1306 	kmem_cache_free(vm_region_jar, region);
1307 	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1308 			len, current->pid);
1309 	show_free_areas(0, NULL);
1310 	return -ENOMEM;
1311 
1312 error_getting_region:
1313 	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1314 			len, current->pid);
1315 	show_free_areas(0, NULL);
1316 	return -ENOMEM;
1317 }
1318 
1319 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1320 			      unsigned long prot, unsigned long flags,
1321 			      unsigned long fd, unsigned long pgoff)
1322 {
1323 	struct file *file = NULL;
1324 	unsigned long retval = -EBADF;
1325 
1326 	audit_mmap_fd(fd, flags);
1327 	if (!(flags & MAP_ANONYMOUS)) {
1328 		file = fget(fd);
1329 		if (!file)
1330 			goto out;
1331 	}
1332 
1333 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1334 
1335 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1336 
1337 	if (file)
1338 		fput(file);
1339 out:
1340 	return retval;
1341 }
1342 
1343 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1344 		unsigned long, prot, unsigned long, flags,
1345 		unsigned long, fd, unsigned long, pgoff)
1346 {
1347 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1348 }
1349 
1350 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1351 struct mmap_arg_struct {
1352 	unsigned long addr;
1353 	unsigned long len;
1354 	unsigned long prot;
1355 	unsigned long flags;
1356 	unsigned long fd;
1357 	unsigned long offset;
1358 };
1359 
1360 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1361 {
1362 	struct mmap_arg_struct a;
1363 
1364 	if (copy_from_user(&a, arg, sizeof(a)))
1365 		return -EFAULT;
1366 	if (offset_in_page(a.offset))
1367 		return -EINVAL;
1368 
1369 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1370 			       a.offset >> PAGE_SHIFT);
1371 }
1372 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1373 
1374 /*
1375  * split a vma into two pieces at address 'addr', a new vma is allocated either
1376  * for the first part or the tail.
1377  */
1378 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1379 	      unsigned long addr, int new_below)
1380 {
1381 	struct vm_area_struct *new;
1382 	struct vm_region *region;
1383 	unsigned long npages;
1384 
1385 	/* we're only permitted to split anonymous regions (these should have
1386 	 * only a single usage on the region) */
1387 	if (vma->vm_file)
1388 		return -ENOMEM;
1389 
1390 	if (mm->map_count >= sysctl_max_map_count)
1391 		return -ENOMEM;
1392 
1393 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1394 	if (!region)
1395 		return -ENOMEM;
1396 
1397 	new = vm_area_dup(vma);
1398 	if (!new) {
1399 		kmem_cache_free(vm_region_jar, region);
1400 		return -ENOMEM;
1401 	}
1402 
1403 	/* most fields are the same, copy all, and then fixup */
1404 	*region = *vma->vm_region;
1405 	new->vm_region = region;
1406 
1407 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1408 
1409 	if (new_below) {
1410 		region->vm_top = region->vm_end = new->vm_end = addr;
1411 	} else {
1412 		region->vm_start = new->vm_start = addr;
1413 		region->vm_pgoff = new->vm_pgoff += npages;
1414 	}
1415 
1416 	if (new->vm_ops && new->vm_ops->open)
1417 		new->vm_ops->open(new);
1418 
1419 	delete_vma_from_mm(vma);
1420 	down_write(&nommu_region_sem);
1421 	delete_nommu_region(vma->vm_region);
1422 	if (new_below) {
1423 		vma->vm_region->vm_start = vma->vm_start = addr;
1424 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1425 	} else {
1426 		vma->vm_region->vm_end = vma->vm_end = addr;
1427 		vma->vm_region->vm_top = addr;
1428 	}
1429 	add_nommu_region(vma->vm_region);
1430 	add_nommu_region(new->vm_region);
1431 	up_write(&nommu_region_sem);
1432 	add_vma_to_mm(mm, vma);
1433 	add_vma_to_mm(mm, new);
1434 	return 0;
1435 }
1436 
1437 /*
1438  * shrink a VMA by removing the specified chunk from either the beginning or
1439  * the end
1440  */
1441 static int shrink_vma(struct mm_struct *mm,
1442 		      struct vm_area_struct *vma,
1443 		      unsigned long from, unsigned long to)
1444 {
1445 	struct vm_region *region;
1446 
1447 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1448 	 * and list */
1449 	delete_vma_from_mm(vma);
1450 	if (from > vma->vm_start)
1451 		vma->vm_end = from;
1452 	else
1453 		vma->vm_start = to;
1454 	add_vma_to_mm(mm, vma);
1455 
1456 	/* cut the backing region down to size */
1457 	region = vma->vm_region;
1458 	BUG_ON(region->vm_usage != 1);
1459 
1460 	down_write(&nommu_region_sem);
1461 	delete_nommu_region(region);
1462 	if (from > region->vm_start) {
1463 		to = region->vm_top;
1464 		region->vm_top = region->vm_end = from;
1465 	} else {
1466 		region->vm_start = to;
1467 	}
1468 	add_nommu_region(region);
1469 	up_write(&nommu_region_sem);
1470 
1471 	free_page_series(from, to);
1472 	return 0;
1473 }
1474 
1475 /*
1476  * release a mapping
1477  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1478  *   VMA, though it need not cover the whole VMA
1479  */
1480 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1481 {
1482 	struct vm_area_struct *vma;
1483 	unsigned long end;
1484 	int ret;
1485 
1486 	len = PAGE_ALIGN(len);
1487 	if (len == 0)
1488 		return -EINVAL;
1489 
1490 	end = start + len;
1491 
1492 	/* find the first potentially overlapping VMA */
1493 	vma = find_vma(mm, start);
1494 	if (!vma) {
1495 		static int limit;
1496 		if (limit < 5) {
1497 			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1498 					current->pid, current->comm,
1499 					start, start + len - 1);
1500 			limit++;
1501 		}
1502 		return -EINVAL;
1503 	}
1504 
1505 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1506 	if (vma->vm_file) {
1507 		do {
1508 			if (start > vma->vm_start)
1509 				return -EINVAL;
1510 			if (end == vma->vm_end)
1511 				goto erase_whole_vma;
1512 			vma = vma->vm_next;
1513 		} while (vma);
1514 		return -EINVAL;
1515 	} else {
1516 		/* the chunk must be a subset of the VMA found */
1517 		if (start == vma->vm_start && end == vma->vm_end)
1518 			goto erase_whole_vma;
1519 		if (start < vma->vm_start || end > vma->vm_end)
1520 			return -EINVAL;
1521 		if (offset_in_page(start))
1522 			return -EINVAL;
1523 		if (end != vma->vm_end && offset_in_page(end))
1524 			return -EINVAL;
1525 		if (start != vma->vm_start && end != vma->vm_end) {
1526 			ret = split_vma(mm, vma, start, 1);
1527 			if (ret < 0)
1528 				return ret;
1529 		}
1530 		return shrink_vma(mm, vma, start, end);
1531 	}
1532 
1533 erase_whole_vma:
1534 	delete_vma_from_mm(vma);
1535 	delete_vma(mm, vma);
1536 	return 0;
1537 }
1538 EXPORT_SYMBOL(do_munmap);
1539 
1540 int vm_munmap(unsigned long addr, size_t len)
1541 {
1542 	struct mm_struct *mm = current->mm;
1543 	int ret;
1544 
1545 	mmap_write_lock(mm);
1546 	ret = do_munmap(mm, addr, len, NULL);
1547 	mmap_write_unlock(mm);
1548 	return ret;
1549 }
1550 EXPORT_SYMBOL(vm_munmap);
1551 
1552 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1553 {
1554 	return vm_munmap(addr, len);
1555 }
1556 
1557 /*
1558  * release all the mappings made in a process's VM space
1559  */
1560 void exit_mmap(struct mm_struct *mm)
1561 {
1562 	struct vm_area_struct *vma;
1563 
1564 	if (!mm)
1565 		return;
1566 
1567 	mm->total_vm = 0;
1568 
1569 	while ((vma = mm->mmap)) {
1570 		mm->mmap = vma->vm_next;
1571 		delete_vma_from_mm(vma);
1572 		delete_vma(mm, vma);
1573 		cond_resched();
1574 	}
1575 }
1576 
1577 int vm_brk(unsigned long addr, unsigned long len)
1578 {
1579 	return -ENOMEM;
1580 }
1581 
1582 /*
1583  * expand (or shrink) an existing mapping, potentially moving it at the same
1584  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1585  *
1586  * under NOMMU conditions, we only permit changing a mapping's size, and only
1587  * as long as it stays within the region allocated by do_mmap_private() and the
1588  * block is not shareable
1589  *
1590  * MREMAP_FIXED is not supported under NOMMU conditions
1591  */
1592 static unsigned long do_mremap(unsigned long addr,
1593 			unsigned long old_len, unsigned long new_len,
1594 			unsigned long flags, unsigned long new_addr)
1595 {
1596 	struct vm_area_struct *vma;
1597 
1598 	/* insanity checks first */
1599 	old_len = PAGE_ALIGN(old_len);
1600 	new_len = PAGE_ALIGN(new_len);
1601 	if (old_len == 0 || new_len == 0)
1602 		return (unsigned long) -EINVAL;
1603 
1604 	if (offset_in_page(addr))
1605 		return -EINVAL;
1606 
1607 	if (flags & MREMAP_FIXED && new_addr != addr)
1608 		return (unsigned long) -EINVAL;
1609 
1610 	vma = find_vma_exact(current->mm, addr, old_len);
1611 	if (!vma)
1612 		return (unsigned long) -EINVAL;
1613 
1614 	if (vma->vm_end != vma->vm_start + old_len)
1615 		return (unsigned long) -EFAULT;
1616 
1617 	if (vma->vm_flags & VM_MAYSHARE)
1618 		return (unsigned long) -EPERM;
1619 
1620 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1621 		return (unsigned long) -ENOMEM;
1622 
1623 	/* all checks complete - do it */
1624 	vma->vm_end = vma->vm_start + new_len;
1625 	return vma->vm_start;
1626 }
1627 
1628 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1629 		unsigned long, new_len, unsigned long, flags,
1630 		unsigned long, new_addr)
1631 {
1632 	unsigned long ret;
1633 
1634 	mmap_write_lock(current->mm);
1635 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1636 	mmap_write_unlock(current->mm);
1637 	return ret;
1638 }
1639 
1640 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1641 			 unsigned int foll_flags)
1642 {
1643 	return NULL;
1644 }
1645 
1646 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1647 		unsigned long pfn, unsigned long size, pgprot_t prot)
1648 {
1649 	if (addr != (pfn << PAGE_SHIFT))
1650 		return -EINVAL;
1651 
1652 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1653 	return 0;
1654 }
1655 EXPORT_SYMBOL(remap_pfn_range);
1656 
1657 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1658 {
1659 	unsigned long pfn = start >> PAGE_SHIFT;
1660 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1661 
1662 	pfn += vma->vm_pgoff;
1663 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1664 }
1665 EXPORT_SYMBOL(vm_iomap_memory);
1666 
1667 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1668 			unsigned long pgoff)
1669 {
1670 	unsigned int size = vma->vm_end - vma->vm_start;
1671 
1672 	if (!(vma->vm_flags & VM_USERMAP))
1673 		return -EINVAL;
1674 
1675 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1676 	vma->vm_end = vma->vm_start + size;
1677 
1678 	return 0;
1679 }
1680 EXPORT_SYMBOL(remap_vmalloc_range);
1681 
1682 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1683 	unsigned long len, unsigned long pgoff, unsigned long flags)
1684 {
1685 	return -ENOMEM;
1686 }
1687 
1688 vm_fault_t filemap_fault(struct vm_fault *vmf)
1689 {
1690 	BUG();
1691 	return 0;
1692 }
1693 EXPORT_SYMBOL(filemap_fault);
1694 
1695 void filemap_map_pages(struct vm_fault *vmf,
1696 		pgoff_t start_pgoff, pgoff_t end_pgoff)
1697 {
1698 	BUG();
1699 }
1700 EXPORT_SYMBOL(filemap_map_pages);
1701 
1702 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1703 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
1704 {
1705 	struct vm_area_struct *vma;
1706 	int write = gup_flags & FOLL_WRITE;
1707 
1708 	if (mmap_read_lock_killable(mm))
1709 		return 0;
1710 
1711 	/* the access must start within one of the target process's mappings */
1712 	vma = find_vma(mm, addr);
1713 	if (vma) {
1714 		/* don't overrun this mapping */
1715 		if (addr + len >= vma->vm_end)
1716 			len = vma->vm_end - addr;
1717 
1718 		/* only read or write mappings where it is permitted */
1719 		if (write && vma->vm_flags & VM_MAYWRITE)
1720 			copy_to_user_page(vma, NULL, addr,
1721 					 (void *) addr, buf, len);
1722 		else if (!write && vma->vm_flags & VM_MAYREAD)
1723 			copy_from_user_page(vma, NULL, addr,
1724 					    buf, (void *) addr, len);
1725 		else
1726 			len = 0;
1727 	} else {
1728 		len = 0;
1729 	}
1730 
1731 	mmap_read_unlock(mm);
1732 
1733 	return len;
1734 }
1735 
1736 /**
1737  * access_remote_vm - access another process' address space
1738  * @mm:		the mm_struct of the target address space
1739  * @addr:	start address to access
1740  * @buf:	source or destination buffer
1741  * @len:	number of bytes to transfer
1742  * @gup_flags:	flags modifying lookup behaviour
1743  *
1744  * The caller must hold a reference on @mm.
1745  */
1746 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1747 		void *buf, int len, unsigned int gup_flags)
1748 {
1749 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1750 }
1751 
1752 /*
1753  * Access another process' address space.
1754  * - source/target buffer must be kernel space
1755  */
1756 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1757 		unsigned int gup_flags)
1758 {
1759 	struct mm_struct *mm;
1760 
1761 	if (addr + len < addr)
1762 		return 0;
1763 
1764 	mm = get_task_mm(tsk);
1765 	if (!mm)
1766 		return 0;
1767 
1768 	len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1769 
1770 	mmput(mm);
1771 	return len;
1772 }
1773 EXPORT_SYMBOL_GPL(access_process_vm);
1774 
1775 /**
1776  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1777  * @inode: The inode to check
1778  * @size: The current filesize of the inode
1779  * @newsize: The proposed filesize of the inode
1780  *
1781  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1782  * make sure that that any outstanding VMAs aren't broken and then shrink the
1783  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1784  * automatically grant mappings that are too large.
1785  */
1786 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1787 				size_t newsize)
1788 {
1789 	struct vm_area_struct *vma;
1790 	struct vm_region *region;
1791 	pgoff_t low, high;
1792 	size_t r_size, r_top;
1793 
1794 	low = newsize >> PAGE_SHIFT;
1795 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1796 
1797 	down_write(&nommu_region_sem);
1798 	i_mmap_lock_read(inode->i_mapping);
1799 
1800 	/* search for VMAs that fall within the dead zone */
1801 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1802 		/* found one - only interested if it's shared out of the page
1803 		 * cache */
1804 		if (vma->vm_flags & VM_SHARED) {
1805 			i_mmap_unlock_read(inode->i_mapping);
1806 			up_write(&nommu_region_sem);
1807 			return -ETXTBSY; /* not quite true, but near enough */
1808 		}
1809 	}
1810 
1811 	/* reduce any regions that overlap the dead zone - if in existence,
1812 	 * these will be pointed to by VMAs that don't overlap the dead zone
1813 	 *
1814 	 * we don't check for any regions that start beyond the EOF as there
1815 	 * shouldn't be any
1816 	 */
1817 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1818 		if (!(vma->vm_flags & VM_SHARED))
1819 			continue;
1820 
1821 		region = vma->vm_region;
1822 		r_size = region->vm_top - region->vm_start;
1823 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1824 
1825 		if (r_top > newsize) {
1826 			region->vm_top -= r_top - newsize;
1827 			if (region->vm_end > region->vm_top)
1828 				region->vm_end = region->vm_top;
1829 		}
1830 	}
1831 
1832 	i_mmap_unlock_read(inode->i_mapping);
1833 	up_write(&nommu_region_sem);
1834 	return 0;
1835 }
1836 
1837 /*
1838  * Initialise sysctl_user_reserve_kbytes.
1839  *
1840  * This is intended to prevent a user from starting a single memory hogging
1841  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1842  * mode.
1843  *
1844  * The default value is min(3% of free memory, 128MB)
1845  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1846  */
1847 static int __meminit init_user_reserve(void)
1848 {
1849 	unsigned long free_kbytes;
1850 
1851 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1852 
1853 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1854 	return 0;
1855 }
1856 subsys_initcall(init_user_reserve);
1857 
1858 /*
1859  * Initialise sysctl_admin_reserve_kbytes.
1860  *
1861  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1862  * to log in and kill a memory hogging process.
1863  *
1864  * Systems with more than 256MB will reserve 8MB, enough to recover
1865  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1866  * only reserve 3% of free pages by default.
1867  */
1868 static int __meminit init_admin_reserve(void)
1869 {
1870 	unsigned long free_kbytes;
1871 
1872 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1873 
1874 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1875 	return 0;
1876 }
1877 subsys_initcall(init_admin_reserve);
1878