xref: /openbmc/linux/mm/nommu.c (revision ef69d255)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/nommu.c
4  *
5  *  Replacement code for mm functions to support CPU's that don't
6  *  have any form of memory management unit (thus no virtual memory).
7  *
8  *  See Documentation/admin-guide/mm/nommu-mmap.rst
9  *
10  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/printk.h>
37 
38 #include <linux/uaccess.h>
39 #include <asm/tlb.h>
40 #include <asm/tlbflush.h>
41 #include <asm/mmu_context.h>
42 #include "internal.h"
43 
44 void *high_memory;
45 EXPORT_SYMBOL(high_memory);
46 struct page *mem_map;
47 unsigned long max_mapnr;
48 EXPORT_SYMBOL(max_mapnr);
49 unsigned long highest_memmap_pfn;
50 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
51 int heap_stack_gap = 0;
52 
53 atomic_long_t mmap_pages_allocated;
54 
55 EXPORT_SYMBOL(mem_map);
56 
57 /* list of mapped, potentially shareable regions */
58 static struct kmem_cache *vm_region_jar;
59 struct rb_root nommu_region_tree = RB_ROOT;
60 DECLARE_RWSEM(nommu_region_sem);
61 
62 const struct vm_operations_struct generic_file_vm_ops = {
63 };
64 
65 /*
66  * Return the total memory allocated for this pointer, not
67  * just what the caller asked for.
68  *
69  * Doesn't have to be accurate, i.e. may have races.
70  */
71 unsigned int kobjsize(const void *objp)
72 {
73 	struct page *page;
74 
75 	/*
76 	 * If the object we have should not have ksize performed on it,
77 	 * return size of 0
78 	 */
79 	if (!objp || !virt_addr_valid(objp))
80 		return 0;
81 
82 	page = virt_to_head_page(objp);
83 
84 	/*
85 	 * If the allocator sets PageSlab, we know the pointer came from
86 	 * kmalloc().
87 	 */
88 	if (PageSlab(page))
89 		return ksize(objp);
90 
91 	/*
92 	 * If it's not a compound page, see if we have a matching VMA
93 	 * region. This test is intentionally done in reverse order,
94 	 * so if there's no VMA, we still fall through and hand back
95 	 * PAGE_SIZE for 0-order pages.
96 	 */
97 	if (!PageCompound(page)) {
98 		struct vm_area_struct *vma;
99 
100 		vma = find_vma(current->mm, (unsigned long)objp);
101 		if (vma)
102 			return vma->vm_end - vma->vm_start;
103 	}
104 
105 	/*
106 	 * The ksize() function is only guaranteed to work for pointers
107 	 * returned by kmalloc(). So handle arbitrary pointers here.
108 	 */
109 	return page_size(page);
110 }
111 
112 /**
113  * follow_pfn - look up PFN at a user virtual address
114  * @vma: memory mapping
115  * @address: user virtual address
116  * @pfn: location to store found PFN
117  *
118  * Only IO mappings and raw PFN mappings are allowed.
119  *
120  * Returns zero and the pfn at @pfn on success, -ve otherwise.
121  */
122 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
123 	unsigned long *pfn)
124 {
125 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
126 		return -EINVAL;
127 
128 	*pfn = address >> PAGE_SHIFT;
129 	return 0;
130 }
131 EXPORT_SYMBOL(follow_pfn);
132 
133 LIST_HEAD(vmap_area_list);
134 
135 void vfree(const void *addr)
136 {
137 	kfree(addr);
138 }
139 EXPORT_SYMBOL(vfree);
140 
141 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
142 {
143 	/*
144 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
145 	 * returns only a logical address.
146 	 */
147 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
148 }
149 EXPORT_SYMBOL(__vmalloc);
150 
151 void *__vmalloc_node_range(unsigned long size, unsigned long align,
152 		unsigned long start, unsigned long end, gfp_t gfp_mask,
153 		pgprot_t prot, unsigned long vm_flags, int node,
154 		const void *caller)
155 {
156 	return __vmalloc(size, gfp_mask);
157 }
158 
159 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
160 		int node, const void *caller)
161 {
162 	return __vmalloc(size, gfp_mask);
163 }
164 
165 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
166 {
167 	void *ret;
168 
169 	ret = __vmalloc(size, flags);
170 	if (ret) {
171 		struct vm_area_struct *vma;
172 
173 		mmap_write_lock(current->mm);
174 		vma = find_vma(current->mm, (unsigned long)ret);
175 		if (vma)
176 			vm_flags_set(vma, VM_USERMAP);
177 		mmap_write_unlock(current->mm);
178 	}
179 
180 	return ret;
181 }
182 
183 void *vmalloc_user(unsigned long size)
184 {
185 	return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
186 }
187 EXPORT_SYMBOL(vmalloc_user);
188 
189 struct page *vmalloc_to_page(const void *addr)
190 {
191 	return virt_to_page(addr);
192 }
193 EXPORT_SYMBOL(vmalloc_to_page);
194 
195 unsigned long vmalloc_to_pfn(const void *addr)
196 {
197 	return page_to_pfn(virt_to_page(addr));
198 }
199 EXPORT_SYMBOL(vmalloc_to_pfn);
200 
201 long vread(char *buf, char *addr, unsigned long count)
202 {
203 	/* Don't allow overflow */
204 	if ((unsigned long) buf + count < count)
205 		count = -(unsigned long) buf;
206 
207 	memcpy(buf, addr, count);
208 	return count;
209 }
210 
211 /*
212  *	vmalloc  -  allocate virtually contiguous memory
213  *
214  *	@size:		allocation size
215  *
216  *	Allocate enough pages to cover @size from the page level
217  *	allocator and map them into contiguous kernel virtual space.
218  *
219  *	For tight control over page level allocator and protection flags
220  *	use __vmalloc() instead.
221  */
222 void *vmalloc(unsigned long size)
223 {
224 	return __vmalloc(size, GFP_KERNEL);
225 }
226 EXPORT_SYMBOL(vmalloc);
227 
228 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc);
229 
230 /*
231  *	vzalloc - allocate virtually contiguous memory with zero fill
232  *
233  *	@size:		allocation size
234  *
235  *	Allocate enough pages to cover @size from the page level
236  *	allocator and map them into contiguous kernel virtual space.
237  *	The memory allocated is set to zero.
238  *
239  *	For tight control over page level allocator and protection flags
240  *	use __vmalloc() instead.
241  */
242 void *vzalloc(unsigned long size)
243 {
244 	return __vmalloc(size, GFP_KERNEL | __GFP_ZERO);
245 }
246 EXPORT_SYMBOL(vzalloc);
247 
248 /**
249  * vmalloc_node - allocate memory on a specific node
250  * @size:	allocation size
251  * @node:	numa node
252  *
253  * Allocate enough pages to cover @size from the page level
254  * allocator and map them into contiguous kernel virtual space.
255  *
256  * For tight control over page level allocator and protection flags
257  * use __vmalloc() instead.
258  */
259 void *vmalloc_node(unsigned long size, int node)
260 {
261 	return vmalloc(size);
262 }
263 EXPORT_SYMBOL(vmalloc_node);
264 
265 /**
266  * vzalloc_node - allocate memory on a specific node with zero fill
267  * @size:	allocation size
268  * @node:	numa node
269  *
270  * Allocate enough pages to cover @size from the page level
271  * allocator and map them into contiguous kernel virtual space.
272  * The memory allocated is set to zero.
273  *
274  * For tight control over page level allocator and protection flags
275  * use __vmalloc() instead.
276  */
277 void *vzalloc_node(unsigned long size, int node)
278 {
279 	return vzalloc(size);
280 }
281 EXPORT_SYMBOL(vzalloc_node);
282 
283 /**
284  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
285  *	@size:		allocation size
286  *
287  *	Allocate enough 32bit PA addressable pages to cover @size from the
288  *	page level allocator and map them into contiguous kernel virtual space.
289  */
290 void *vmalloc_32(unsigned long size)
291 {
292 	return __vmalloc(size, GFP_KERNEL);
293 }
294 EXPORT_SYMBOL(vmalloc_32);
295 
296 /**
297  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
298  *	@size:		allocation size
299  *
300  * The resulting memory area is 32bit addressable and zeroed so it can be
301  * mapped to userspace without leaking data.
302  *
303  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
304  * remap_vmalloc_range() are permissible.
305  */
306 void *vmalloc_32_user(unsigned long size)
307 {
308 	/*
309 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
310 	 * but for now this can simply use vmalloc_user() directly.
311 	 */
312 	return vmalloc_user(size);
313 }
314 EXPORT_SYMBOL(vmalloc_32_user);
315 
316 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
317 {
318 	BUG();
319 	return NULL;
320 }
321 EXPORT_SYMBOL(vmap);
322 
323 void vunmap(const void *addr)
324 {
325 	BUG();
326 }
327 EXPORT_SYMBOL(vunmap);
328 
329 void *vm_map_ram(struct page **pages, unsigned int count, int node)
330 {
331 	BUG();
332 	return NULL;
333 }
334 EXPORT_SYMBOL(vm_map_ram);
335 
336 void vm_unmap_ram(const void *mem, unsigned int count)
337 {
338 	BUG();
339 }
340 EXPORT_SYMBOL(vm_unmap_ram);
341 
342 void vm_unmap_aliases(void)
343 {
344 }
345 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
346 
347 void free_vm_area(struct vm_struct *area)
348 {
349 	BUG();
350 }
351 EXPORT_SYMBOL_GPL(free_vm_area);
352 
353 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
354 		   struct page *page)
355 {
356 	return -EINVAL;
357 }
358 EXPORT_SYMBOL(vm_insert_page);
359 
360 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
361 			unsigned long num)
362 {
363 	return -EINVAL;
364 }
365 EXPORT_SYMBOL(vm_map_pages);
366 
367 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
368 				unsigned long num)
369 {
370 	return -EINVAL;
371 }
372 EXPORT_SYMBOL(vm_map_pages_zero);
373 
374 /*
375  *  sys_brk() for the most part doesn't need the global kernel
376  *  lock, except when an application is doing something nasty
377  *  like trying to un-brk an area that has already been mapped
378  *  to a regular file.  in this case, the unmapping will need
379  *  to invoke file system routines that need the global lock.
380  */
381 SYSCALL_DEFINE1(brk, unsigned long, brk)
382 {
383 	struct mm_struct *mm = current->mm;
384 
385 	if (brk < mm->start_brk || brk > mm->context.end_brk)
386 		return mm->brk;
387 
388 	if (mm->brk == brk)
389 		return mm->brk;
390 
391 	/*
392 	 * Always allow shrinking brk
393 	 */
394 	if (brk <= mm->brk) {
395 		mm->brk = brk;
396 		return brk;
397 	}
398 
399 	/*
400 	 * Ok, looks good - let it rip.
401 	 */
402 	flush_icache_user_range(mm->brk, brk);
403 	return mm->brk = brk;
404 }
405 
406 /*
407  * initialise the percpu counter for VM and region record slabs
408  */
409 void __init mmap_init(void)
410 {
411 	int ret;
412 
413 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
414 	VM_BUG_ON(ret);
415 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
416 }
417 
418 /*
419  * validate the region tree
420  * - the caller must hold the region lock
421  */
422 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
423 static noinline void validate_nommu_regions(void)
424 {
425 	struct vm_region *region, *last;
426 	struct rb_node *p, *lastp;
427 
428 	lastp = rb_first(&nommu_region_tree);
429 	if (!lastp)
430 		return;
431 
432 	last = rb_entry(lastp, struct vm_region, vm_rb);
433 	BUG_ON(last->vm_end <= last->vm_start);
434 	BUG_ON(last->vm_top < last->vm_end);
435 
436 	while ((p = rb_next(lastp))) {
437 		region = rb_entry(p, struct vm_region, vm_rb);
438 		last = rb_entry(lastp, struct vm_region, vm_rb);
439 
440 		BUG_ON(region->vm_end <= region->vm_start);
441 		BUG_ON(region->vm_top < region->vm_end);
442 		BUG_ON(region->vm_start < last->vm_top);
443 
444 		lastp = p;
445 	}
446 }
447 #else
448 static void validate_nommu_regions(void)
449 {
450 }
451 #endif
452 
453 /*
454  * add a region into the global tree
455  */
456 static void add_nommu_region(struct vm_region *region)
457 {
458 	struct vm_region *pregion;
459 	struct rb_node **p, *parent;
460 
461 	validate_nommu_regions();
462 
463 	parent = NULL;
464 	p = &nommu_region_tree.rb_node;
465 	while (*p) {
466 		parent = *p;
467 		pregion = rb_entry(parent, struct vm_region, vm_rb);
468 		if (region->vm_start < pregion->vm_start)
469 			p = &(*p)->rb_left;
470 		else if (region->vm_start > pregion->vm_start)
471 			p = &(*p)->rb_right;
472 		else if (pregion == region)
473 			return;
474 		else
475 			BUG();
476 	}
477 
478 	rb_link_node(&region->vm_rb, parent, p);
479 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
480 
481 	validate_nommu_regions();
482 }
483 
484 /*
485  * delete a region from the global tree
486  */
487 static void delete_nommu_region(struct vm_region *region)
488 {
489 	BUG_ON(!nommu_region_tree.rb_node);
490 
491 	validate_nommu_regions();
492 	rb_erase(&region->vm_rb, &nommu_region_tree);
493 	validate_nommu_regions();
494 }
495 
496 /*
497  * free a contiguous series of pages
498  */
499 static void free_page_series(unsigned long from, unsigned long to)
500 {
501 	for (; from < to; from += PAGE_SIZE) {
502 		struct page *page = virt_to_page((void *)from);
503 
504 		atomic_long_dec(&mmap_pages_allocated);
505 		put_page(page);
506 	}
507 }
508 
509 /*
510  * release a reference to a region
511  * - the caller must hold the region semaphore for writing, which this releases
512  * - the region may not have been added to the tree yet, in which case vm_top
513  *   will equal vm_start
514  */
515 static void __put_nommu_region(struct vm_region *region)
516 	__releases(nommu_region_sem)
517 {
518 	BUG_ON(!nommu_region_tree.rb_node);
519 
520 	if (--region->vm_usage == 0) {
521 		if (region->vm_top > region->vm_start)
522 			delete_nommu_region(region);
523 		up_write(&nommu_region_sem);
524 
525 		if (region->vm_file)
526 			fput(region->vm_file);
527 
528 		/* IO memory and memory shared directly out of the pagecache
529 		 * from ramfs/tmpfs mustn't be released here */
530 		if (region->vm_flags & VM_MAPPED_COPY)
531 			free_page_series(region->vm_start, region->vm_top);
532 		kmem_cache_free(vm_region_jar, region);
533 	} else {
534 		up_write(&nommu_region_sem);
535 	}
536 }
537 
538 /*
539  * release a reference to a region
540  */
541 static void put_nommu_region(struct vm_region *region)
542 {
543 	down_write(&nommu_region_sem);
544 	__put_nommu_region(region);
545 }
546 
547 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm)
548 {
549 	vma->vm_mm = mm;
550 
551 	/* add the VMA to the mapping */
552 	if (vma->vm_file) {
553 		struct address_space *mapping = vma->vm_file->f_mapping;
554 
555 		i_mmap_lock_write(mapping);
556 		flush_dcache_mmap_lock(mapping);
557 		vma_interval_tree_insert(vma, &mapping->i_mmap);
558 		flush_dcache_mmap_unlock(mapping);
559 		i_mmap_unlock_write(mapping);
560 	}
561 }
562 
563 static void cleanup_vma_from_mm(struct vm_area_struct *vma)
564 {
565 	vma->vm_mm->map_count--;
566 	/* remove the VMA from the mapping */
567 	if (vma->vm_file) {
568 		struct address_space *mapping;
569 		mapping = vma->vm_file->f_mapping;
570 
571 		i_mmap_lock_write(mapping);
572 		flush_dcache_mmap_lock(mapping);
573 		vma_interval_tree_remove(vma, &mapping->i_mmap);
574 		flush_dcache_mmap_unlock(mapping);
575 		i_mmap_unlock_write(mapping);
576 	}
577 }
578 
579 /*
580  * delete a VMA from its owning mm_struct and address space
581  */
582 static int delete_vma_from_mm(struct vm_area_struct *vma)
583 {
584 	VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start);
585 
586 	if (vma_iter_prealloc(&vmi)) {
587 		pr_warn("Allocation of vma tree for process %d failed\n",
588 		       current->pid);
589 		return -ENOMEM;
590 	}
591 	cleanup_vma_from_mm(vma);
592 
593 	/* remove from the MM's tree and list */
594 	vma_iter_clear(&vmi, vma->vm_start, vma->vm_end);
595 	return 0;
596 }
597 /*
598  * destroy a VMA record
599  */
600 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
601 {
602 	if (vma->vm_ops && vma->vm_ops->close)
603 		vma->vm_ops->close(vma);
604 	if (vma->vm_file)
605 		fput(vma->vm_file);
606 	put_nommu_region(vma->vm_region);
607 	vm_area_free(vma);
608 }
609 
610 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
611 					     unsigned long start_addr,
612 					     unsigned long end_addr)
613 {
614 	unsigned long index = start_addr;
615 
616 	mmap_assert_locked(mm);
617 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
618 }
619 EXPORT_SYMBOL(find_vma_intersection);
620 
621 /*
622  * look up the first VMA in which addr resides, NULL if none
623  * - should be called with mm->mmap_lock at least held readlocked
624  */
625 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
626 {
627 	VMA_ITERATOR(vmi, mm, addr);
628 
629 	return vma_iter_load(&vmi);
630 }
631 EXPORT_SYMBOL(find_vma);
632 
633 /*
634  * find a VMA
635  * - we don't extend stack VMAs under NOMMU conditions
636  */
637 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
638 {
639 	return find_vma(mm, addr);
640 }
641 
642 /*
643  * expand a stack to a given address
644  * - not supported under NOMMU conditions
645  */
646 int expand_stack(struct vm_area_struct *vma, unsigned long address)
647 {
648 	return -ENOMEM;
649 }
650 
651 /*
652  * look up the first VMA exactly that exactly matches addr
653  * - should be called with mm->mmap_lock at least held readlocked
654  */
655 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
656 					     unsigned long addr,
657 					     unsigned long len)
658 {
659 	struct vm_area_struct *vma;
660 	unsigned long end = addr + len;
661 	VMA_ITERATOR(vmi, mm, addr);
662 
663 	vma = vma_iter_load(&vmi);
664 	if (!vma)
665 		return NULL;
666 	if (vma->vm_start != addr)
667 		return NULL;
668 	if (vma->vm_end != end)
669 		return NULL;
670 
671 	return vma;
672 }
673 
674 /*
675  * determine whether a mapping should be permitted and, if so, what sort of
676  * mapping we're capable of supporting
677  */
678 static int validate_mmap_request(struct file *file,
679 				 unsigned long addr,
680 				 unsigned long len,
681 				 unsigned long prot,
682 				 unsigned long flags,
683 				 unsigned long pgoff,
684 				 unsigned long *_capabilities)
685 {
686 	unsigned long capabilities, rlen;
687 	int ret;
688 
689 	/* do the simple checks first */
690 	if (flags & MAP_FIXED)
691 		return -EINVAL;
692 
693 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
694 	    (flags & MAP_TYPE) != MAP_SHARED)
695 		return -EINVAL;
696 
697 	if (!len)
698 		return -EINVAL;
699 
700 	/* Careful about overflows.. */
701 	rlen = PAGE_ALIGN(len);
702 	if (!rlen || rlen > TASK_SIZE)
703 		return -ENOMEM;
704 
705 	/* offset overflow? */
706 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
707 		return -EOVERFLOW;
708 
709 	if (file) {
710 		/* files must support mmap */
711 		if (!file->f_op->mmap)
712 			return -ENODEV;
713 
714 		/* work out if what we've got could possibly be shared
715 		 * - we support chardevs that provide their own "memory"
716 		 * - we support files/blockdevs that are memory backed
717 		 */
718 		if (file->f_op->mmap_capabilities) {
719 			capabilities = file->f_op->mmap_capabilities(file);
720 		} else {
721 			/* no explicit capabilities set, so assume some
722 			 * defaults */
723 			switch (file_inode(file)->i_mode & S_IFMT) {
724 			case S_IFREG:
725 			case S_IFBLK:
726 				capabilities = NOMMU_MAP_COPY;
727 				break;
728 
729 			case S_IFCHR:
730 				capabilities =
731 					NOMMU_MAP_DIRECT |
732 					NOMMU_MAP_READ |
733 					NOMMU_MAP_WRITE;
734 				break;
735 
736 			default:
737 				return -EINVAL;
738 			}
739 		}
740 
741 		/* eliminate any capabilities that we can't support on this
742 		 * device */
743 		if (!file->f_op->get_unmapped_area)
744 			capabilities &= ~NOMMU_MAP_DIRECT;
745 		if (!(file->f_mode & FMODE_CAN_READ))
746 			capabilities &= ~NOMMU_MAP_COPY;
747 
748 		/* The file shall have been opened with read permission. */
749 		if (!(file->f_mode & FMODE_READ))
750 			return -EACCES;
751 
752 		if (flags & MAP_SHARED) {
753 			/* do checks for writing, appending and locking */
754 			if ((prot & PROT_WRITE) &&
755 			    !(file->f_mode & FMODE_WRITE))
756 				return -EACCES;
757 
758 			if (IS_APPEND(file_inode(file)) &&
759 			    (file->f_mode & FMODE_WRITE))
760 				return -EACCES;
761 
762 			if (!(capabilities & NOMMU_MAP_DIRECT))
763 				return -ENODEV;
764 
765 			/* we mustn't privatise shared mappings */
766 			capabilities &= ~NOMMU_MAP_COPY;
767 		} else {
768 			/* we're going to read the file into private memory we
769 			 * allocate */
770 			if (!(capabilities & NOMMU_MAP_COPY))
771 				return -ENODEV;
772 
773 			/* we don't permit a private writable mapping to be
774 			 * shared with the backing device */
775 			if (prot & PROT_WRITE)
776 				capabilities &= ~NOMMU_MAP_DIRECT;
777 		}
778 
779 		if (capabilities & NOMMU_MAP_DIRECT) {
780 			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
781 			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
782 			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
783 			    ) {
784 				capabilities &= ~NOMMU_MAP_DIRECT;
785 				if (flags & MAP_SHARED) {
786 					pr_warn("MAP_SHARED not completely supported on !MMU\n");
787 					return -EINVAL;
788 				}
789 			}
790 		}
791 
792 		/* handle executable mappings and implied executable
793 		 * mappings */
794 		if (path_noexec(&file->f_path)) {
795 			if (prot & PROT_EXEC)
796 				return -EPERM;
797 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
798 			/* handle implication of PROT_EXEC by PROT_READ */
799 			if (current->personality & READ_IMPLIES_EXEC) {
800 				if (capabilities & NOMMU_MAP_EXEC)
801 					prot |= PROT_EXEC;
802 			}
803 		} else if ((prot & PROT_READ) &&
804 			 (prot & PROT_EXEC) &&
805 			 !(capabilities & NOMMU_MAP_EXEC)
806 			 ) {
807 			/* backing file is not executable, try to copy */
808 			capabilities &= ~NOMMU_MAP_DIRECT;
809 		}
810 	} else {
811 		/* anonymous mappings are always memory backed and can be
812 		 * privately mapped
813 		 */
814 		capabilities = NOMMU_MAP_COPY;
815 
816 		/* handle PROT_EXEC implication by PROT_READ */
817 		if ((prot & PROT_READ) &&
818 		    (current->personality & READ_IMPLIES_EXEC))
819 			prot |= PROT_EXEC;
820 	}
821 
822 	/* allow the security API to have its say */
823 	ret = security_mmap_addr(addr);
824 	if (ret < 0)
825 		return ret;
826 
827 	/* looks okay */
828 	*_capabilities = capabilities;
829 	return 0;
830 }
831 
832 /*
833  * we've determined that we can make the mapping, now translate what we
834  * now know into VMA flags
835  */
836 static unsigned long determine_vm_flags(struct file *file,
837 					unsigned long prot,
838 					unsigned long flags,
839 					unsigned long capabilities)
840 {
841 	unsigned long vm_flags;
842 
843 	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
844 
845 	if (!file) {
846 		/*
847 		 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because
848 		 * there is no fork().
849 		 */
850 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
851 	} else if (flags & MAP_PRIVATE) {
852 		/* MAP_PRIVATE file mapping */
853 		if (capabilities & NOMMU_MAP_DIRECT)
854 			vm_flags |= (capabilities & NOMMU_VMFLAGS);
855 		else
856 			vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
857 
858 		if (!(prot & PROT_WRITE) && !current->ptrace)
859 			/*
860 			 * R/O private file mapping which cannot be used to
861 			 * modify memory, especially also not via active ptrace
862 			 * (e.g., set breakpoints) or later by upgrading
863 			 * permissions (no mprotect()). We can try overlaying
864 			 * the file mapping, which will work e.g., on chardevs,
865 			 * ramfs/tmpfs/shmfs and romfs/cramf.
866 			 */
867 			vm_flags |= VM_MAYOVERLAY;
868 	} else {
869 		/* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */
870 		vm_flags |= VM_SHARED | VM_MAYSHARE |
871 			    (capabilities & NOMMU_VMFLAGS);
872 	}
873 
874 	return vm_flags;
875 }
876 
877 /*
878  * set up a shared mapping on a file (the driver or filesystem provides and
879  * pins the storage)
880  */
881 static int do_mmap_shared_file(struct vm_area_struct *vma)
882 {
883 	int ret;
884 
885 	ret = call_mmap(vma->vm_file, vma);
886 	if (ret == 0) {
887 		vma->vm_region->vm_top = vma->vm_region->vm_end;
888 		return 0;
889 	}
890 	if (ret != -ENOSYS)
891 		return ret;
892 
893 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
894 	 * opposed to tried but failed) so we can only give a suitable error as
895 	 * it's not possible to make a private copy if MAP_SHARED was given */
896 	return -ENODEV;
897 }
898 
899 /*
900  * set up a private mapping or an anonymous shared mapping
901  */
902 static int do_mmap_private(struct vm_area_struct *vma,
903 			   struct vm_region *region,
904 			   unsigned long len,
905 			   unsigned long capabilities)
906 {
907 	unsigned long total, point;
908 	void *base;
909 	int ret, order;
910 
911 	/*
912 	 * Invoke the file's mapping function so that it can keep track of
913 	 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if
914 	 * it may attempt to share, which will make is_nommu_shared_mapping()
915 	 * happy.
916 	 */
917 	if (capabilities & NOMMU_MAP_DIRECT) {
918 		ret = call_mmap(vma->vm_file, vma);
919 		/* shouldn't return success if we're not sharing */
920 		if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags)))
921 			ret = -ENOSYS;
922 		if (ret == 0) {
923 			vma->vm_region->vm_top = vma->vm_region->vm_end;
924 			return 0;
925 		}
926 		if (ret != -ENOSYS)
927 			return ret;
928 
929 		/* getting an ENOSYS error indicates that direct mmap isn't
930 		 * possible (as opposed to tried but failed) so we'll try to
931 		 * make a private copy of the data and map that instead */
932 	}
933 
934 
935 	/* allocate some memory to hold the mapping
936 	 * - note that this may not return a page-aligned address if the object
937 	 *   we're allocating is smaller than a page
938 	 */
939 	order = get_order(len);
940 	total = 1 << order;
941 	point = len >> PAGE_SHIFT;
942 
943 	/* we don't want to allocate a power-of-2 sized page set */
944 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
945 		total = point;
946 
947 	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
948 	if (!base)
949 		goto enomem;
950 
951 	atomic_long_add(total, &mmap_pages_allocated);
952 
953 	vm_flags_set(vma, VM_MAPPED_COPY);
954 	region->vm_flags = vma->vm_flags;
955 	region->vm_start = (unsigned long) base;
956 	region->vm_end   = region->vm_start + len;
957 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
958 
959 	vma->vm_start = region->vm_start;
960 	vma->vm_end   = region->vm_start + len;
961 
962 	if (vma->vm_file) {
963 		/* read the contents of a file into the copy */
964 		loff_t fpos;
965 
966 		fpos = vma->vm_pgoff;
967 		fpos <<= PAGE_SHIFT;
968 
969 		ret = kernel_read(vma->vm_file, base, len, &fpos);
970 		if (ret < 0)
971 			goto error_free;
972 
973 		/* clear the last little bit */
974 		if (ret < len)
975 			memset(base + ret, 0, len - ret);
976 
977 	} else {
978 		vma_set_anonymous(vma);
979 	}
980 
981 	return 0;
982 
983 error_free:
984 	free_page_series(region->vm_start, region->vm_top);
985 	region->vm_start = vma->vm_start = 0;
986 	region->vm_end   = vma->vm_end = 0;
987 	region->vm_top   = 0;
988 	return ret;
989 
990 enomem:
991 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
992 	       len, current->pid, current->comm);
993 	show_free_areas(0, NULL);
994 	return -ENOMEM;
995 }
996 
997 /*
998  * handle mapping creation for uClinux
999  */
1000 unsigned long do_mmap(struct file *file,
1001 			unsigned long addr,
1002 			unsigned long len,
1003 			unsigned long prot,
1004 			unsigned long flags,
1005 			unsigned long pgoff,
1006 			unsigned long *populate,
1007 			struct list_head *uf)
1008 {
1009 	struct vm_area_struct *vma;
1010 	struct vm_region *region;
1011 	struct rb_node *rb;
1012 	vm_flags_t vm_flags;
1013 	unsigned long capabilities, result;
1014 	int ret;
1015 	VMA_ITERATOR(vmi, current->mm, 0);
1016 
1017 	*populate = 0;
1018 
1019 	/* decide whether we should attempt the mapping, and if so what sort of
1020 	 * mapping */
1021 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1022 				    &capabilities);
1023 	if (ret < 0)
1024 		return ret;
1025 
1026 	/* we ignore the address hint */
1027 	addr = 0;
1028 	len = PAGE_ALIGN(len);
1029 
1030 	/* we've determined that we can make the mapping, now translate what we
1031 	 * now know into VMA flags */
1032 	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1033 
1034 
1035 	/* we're going to need to record the mapping */
1036 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1037 	if (!region)
1038 		goto error_getting_region;
1039 
1040 	vma = vm_area_alloc(current->mm);
1041 	if (!vma)
1042 		goto error_getting_vma;
1043 
1044 	if (vma_iter_prealloc(&vmi))
1045 		goto error_vma_iter_prealloc;
1046 
1047 	region->vm_usage = 1;
1048 	region->vm_flags = vm_flags;
1049 	region->vm_pgoff = pgoff;
1050 
1051 	vm_flags_init(vma, vm_flags);
1052 	vma->vm_pgoff = pgoff;
1053 
1054 	if (file) {
1055 		region->vm_file = get_file(file);
1056 		vma->vm_file = get_file(file);
1057 	}
1058 
1059 	down_write(&nommu_region_sem);
1060 
1061 	/* if we want to share, we need to check for regions created by other
1062 	 * mmap() calls that overlap with our proposed mapping
1063 	 * - we can only share with a superset match on most regular files
1064 	 * - shared mappings on character devices and memory backed files are
1065 	 *   permitted to overlap inexactly as far as we are concerned for in
1066 	 *   these cases, sharing is handled in the driver or filesystem rather
1067 	 *   than here
1068 	 */
1069 	if (is_nommu_shared_mapping(vm_flags)) {
1070 		struct vm_region *pregion;
1071 		unsigned long pglen, rpglen, pgend, rpgend, start;
1072 
1073 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1074 		pgend = pgoff + pglen;
1075 
1076 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1077 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1078 
1079 			if (!is_nommu_shared_mapping(pregion->vm_flags))
1080 				continue;
1081 
1082 			/* search for overlapping mappings on the same file */
1083 			if (file_inode(pregion->vm_file) !=
1084 			    file_inode(file))
1085 				continue;
1086 
1087 			if (pregion->vm_pgoff >= pgend)
1088 				continue;
1089 
1090 			rpglen = pregion->vm_end - pregion->vm_start;
1091 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1092 			rpgend = pregion->vm_pgoff + rpglen;
1093 			if (pgoff >= rpgend)
1094 				continue;
1095 
1096 			/* handle inexactly overlapping matches between
1097 			 * mappings */
1098 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1099 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1100 				/* new mapping is not a subset of the region */
1101 				if (!(capabilities & NOMMU_MAP_DIRECT))
1102 					goto sharing_violation;
1103 				continue;
1104 			}
1105 
1106 			/* we've found a region we can share */
1107 			pregion->vm_usage++;
1108 			vma->vm_region = pregion;
1109 			start = pregion->vm_start;
1110 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1111 			vma->vm_start = start;
1112 			vma->vm_end = start + len;
1113 
1114 			if (pregion->vm_flags & VM_MAPPED_COPY)
1115 				vm_flags_set(vma, VM_MAPPED_COPY);
1116 			else {
1117 				ret = do_mmap_shared_file(vma);
1118 				if (ret < 0) {
1119 					vma->vm_region = NULL;
1120 					vma->vm_start = 0;
1121 					vma->vm_end = 0;
1122 					pregion->vm_usage--;
1123 					pregion = NULL;
1124 					goto error_just_free;
1125 				}
1126 			}
1127 			fput(region->vm_file);
1128 			kmem_cache_free(vm_region_jar, region);
1129 			region = pregion;
1130 			result = start;
1131 			goto share;
1132 		}
1133 
1134 		/* obtain the address at which to make a shared mapping
1135 		 * - this is the hook for quasi-memory character devices to
1136 		 *   tell us the location of a shared mapping
1137 		 */
1138 		if (capabilities & NOMMU_MAP_DIRECT) {
1139 			addr = file->f_op->get_unmapped_area(file, addr, len,
1140 							     pgoff, flags);
1141 			if (IS_ERR_VALUE(addr)) {
1142 				ret = addr;
1143 				if (ret != -ENOSYS)
1144 					goto error_just_free;
1145 
1146 				/* the driver refused to tell us where to site
1147 				 * the mapping so we'll have to attempt to copy
1148 				 * it */
1149 				ret = -ENODEV;
1150 				if (!(capabilities & NOMMU_MAP_COPY))
1151 					goto error_just_free;
1152 
1153 				capabilities &= ~NOMMU_MAP_DIRECT;
1154 			} else {
1155 				vma->vm_start = region->vm_start = addr;
1156 				vma->vm_end = region->vm_end = addr + len;
1157 			}
1158 		}
1159 	}
1160 
1161 	vma->vm_region = region;
1162 
1163 	/* set up the mapping
1164 	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1165 	 */
1166 	if (file && vma->vm_flags & VM_SHARED)
1167 		ret = do_mmap_shared_file(vma);
1168 	else
1169 		ret = do_mmap_private(vma, region, len, capabilities);
1170 	if (ret < 0)
1171 		goto error_just_free;
1172 	add_nommu_region(region);
1173 
1174 	/* clear anonymous mappings that don't ask for uninitialized data */
1175 	if (!vma->vm_file &&
1176 	    (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1177 	     !(flags & MAP_UNINITIALIZED)))
1178 		memset((void *)region->vm_start, 0,
1179 		       region->vm_end - region->vm_start);
1180 
1181 	/* okay... we have a mapping; now we have to register it */
1182 	result = vma->vm_start;
1183 
1184 	current->mm->total_vm += len >> PAGE_SHIFT;
1185 
1186 share:
1187 	BUG_ON(!vma->vm_region);
1188 	setup_vma_to_mm(vma, current->mm);
1189 	current->mm->map_count++;
1190 	/* add the VMA to the tree */
1191 	vma_iter_store(&vmi, vma);
1192 
1193 	/* we flush the region from the icache only when the first executable
1194 	 * mapping of it is made  */
1195 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1196 		flush_icache_user_range(region->vm_start, region->vm_end);
1197 		region->vm_icache_flushed = true;
1198 	}
1199 
1200 	up_write(&nommu_region_sem);
1201 
1202 	return result;
1203 
1204 error_just_free:
1205 	up_write(&nommu_region_sem);
1206 error:
1207 	vma_iter_free(&vmi);
1208 	if (region->vm_file)
1209 		fput(region->vm_file);
1210 	kmem_cache_free(vm_region_jar, region);
1211 	if (vma->vm_file)
1212 		fput(vma->vm_file);
1213 	vm_area_free(vma);
1214 	return ret;
1215 
1216 sharing_violation:
1217 	up_write(&nommu_region_sem);
1218 	pr_warn("Attempt to share mismatched mappings\n");
1219 	ret = -EINVAL;
1220 	goto error;
1221 
1222 error_getting_vma:
1223 	kmem_cache_free(vm_region_jar, region);
1224 	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1225 			len, current->pid);
1226 	show_free_areas(0, NULL);
1227 	return -ENOMEM;
1228 
1229 error_getting_region:
1230 	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1231 			len, current->pid);
1232 	show_free_areas(0, NULL);
1233 	return -ENOMEM;
1234 
1235 error_vma_iter_prealloc:
1236 	kmem_cache_free(vm_region_jar, region);
1237 	vm_area_free(vma);
1238 	pr_warn("Allocation of vma tree for process %d failed\n", current->pid);
1239 	show_free_areas(0, NULL);
1240 	return -ENOMEM;
1241 
1242 }
1243 
1244 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1245 			      unsigned long prot, unsigned long flags,
1246 			      unsigned long fd, unsigned long pgoff)
1247 {
1248 	struct file *file = NULL;
1249 	unsigned long retval = -EBADF;
1250 
1251 	audit_mmap_fd(fd, flags);
1252 	if (!(flags & MAP_ANONYMOUS)) {
1253 		file = fget(fd);
1254 		if (!file)
1255 			goto out;
1256 	}
1257 
1258 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1259 
1260 	if (file)
1261 		fput(file);
1262 out:
1263 	return retval;
1264 }
1265 
1266 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1267 		unsigned long, prot, unsigned long, flags,
1268 		unsigned long, fd, unsigned long, pgoff)
1269 {
1270 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1271 }
1272 
1273 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1274 struct mmap_arg_struct {
1275 	unsigned long addr;
1276 	unsigned long len;
1277 	unsigned long prot;
1278 	unsigned long flags;
1279 	unsigned long fd;
1280 	unsigned long offset;
1281 };
1282 
1283 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1284 {
1285 	struct mmap_arg_struct a;
1286 
1287 	if (copy_from_user(&a, arg, sizeof(a)))
1288 		return -EFAULT;
1289 	if (offset_in_page(a.offset))
1290 		return -EINVAL;
1291 
1292 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1293 			       a.offset >> PAGE_SHIFT);
1294 }
1295 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1296 
1297 /*
1298  * split a vma into two pieces at address 'addr', a new vma is allocated either
1299  * for the first part or the tail.
1300  */
1301 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
1302 	      unsigned long addr, int new_below)
1303 {
1304 	struct vm_area_struct *new;
1305 	struct vm_region *region;
1306 	unsigned long npages;
1307 	struct mm_struct *mm;
1308 
1309 	/* we're only permitted to split anonymous regions (these should have
1310 	 * only a single usage on the region) */
1311 	if (vma->vm_file)
1312 		return -ENOMEM;
1313 
1314 	mm = vma->vm_mm;
1315 	if (mm->map_count >= sysctl_max_map_count)
1316 		return -ENOMEM;
1317 
1318 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1319 	if (!region)
1320 		return -ENOMEM;
1321 
1322 	new = vm_area_dup(vma);
1323 	if (!new)
1324 		goto err_vma_dup;
1325 
1326 	if (vma_iter_prealloc(vmi)) {
1327 		pr_warn("Allocation of vma tree for process %d failed\n",
1328 			current->pid);
1329 		goto err_vmi_preallocate;
1330 	}
1331 
1332 	/* most fields are the same, copy all, and then fixup */
1333 	*region = *vma->vm_region;
1334 	new->vm_region = region;
1335 
1336 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1337 
1338 	if (new_below) {
1339 		region->vm_top = region->vm_end = new->vm_end = addr;
1340 	} else {
1341 		region->vm_start = new->vm_start = addr;
1342 		region->vm_pgoff = new->vm_pgoff += npages;
1343 	}
1344 
1345 	if (new->vm_ops && new->vm_ops->open)
1346 		new->vm_ops->open(new);
1347 
1348 	down_write(&nommu_region_sem);
1349 	delete_nommu_region(vma->vm_region);
1350 	if (new_below) {
1351 		vma->vm_region->vm_start = vma->vm_start = addr;
1352 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1353 	} else {
1354 		vma->vm_region->vm_end = vma->vm_end = addr;
1355 		vma->vm_region->vm_top = addr;
1356 	}
1357 	add_nommu_region(vma->vm_region);
1358 	add_nommu_region(new->vm_region);
1359 	up_write(&nommu_region_sem);
1360 
1361 	setup_vma_to_mm(vma, mm);
1362 	setup_vma_to_mm(new, mm);
1363 	vma_iter_store(vmi, new);
1364 	mm->map_count++;
1365 	return 0;
1366 
1367 err_vmi_preallocate:
1368 	vm_area_free(new);
1369 err_vma_dup:
1370 	kmem_cache_free(vm_region_jar, region);
1371 	return -ENOMEM;
1372 }
1373 
1374 /*
1375  * shrink a VMA by removing the specified chunk from either the beginning or
1376  * the end
1377  */
1378 static int vmi_shrink_vma(struct vma_iterator *vmi,
1379 		      struct vm_area_struct *vma,
1380 		      unsigned long from, unsigned long to)
1381 {
1382 	struct vm_region *region;
1383 
1384 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1385 	 * and list */
1386 	if (vma_iter_prealloc(vmi)) {
1387 		pr_warn("Allocation of vma tree for process %d failed\n",
1388 		       current->pid);
1389 		return -ENOMEM;
1390 	}
1391 
1392 	if (from > vma->vm_start) {
1393 		vma_iter_clear(vmi, from, vma->vm_end);
1394 		vma->vm_end = from;
1395 	} else {
1396 		vma_iter_clear(vmi, vma->vm_start, to);
1397 		vma->vm_start = to;
1398 	}
1399 
1400 	/* cut the backing region down to size */
1401 	region = vma->vm_region;
1402 	BUG_ON(region->vm_usage != 1);
1403 
1404 	down_write(&nommu_region_sem);
1405 	delete_nommu_region(region);
1406 	if (from > region->vm_start) {
1407 		to = region->vm_top;
1408 		region->vm_top = region->vm_end = from;
1409 	} else {
1410 		region->vm_start = to;
1411 	}
1412 	add_nommu_region(region);
1413 	up_write(&nommu_region_sem);
1414 
1415 	free_page_series(from, to);
1416 	return 0;
1417 }
1418 
1419 /*
1420  * release a mapping
1421  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1422  *   VMA, though it need not cover the whole VMA
1423  */
1424 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1425 {
1426 	VMA_ITERATOR(vmi, mm, start);
1427 	struct vm_area_struct *vma;
1428 	unsigned long end;
1429 	int ret = 0;
1430 
1431 	len = PAGE_ALIGN(len);
1432 	if (len == 0)
1433 		return -EINVAL;
1434 
1435 	end = start + len;
1436 
1437 	/* find the first potentially overlapping VMA */
1438 	vma = vma_find(&vmi, end);
1439 	if (!vma) {
1440 		static int limit;
1441 		if (limit < 5) {
1442 			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1443 					current->pid, current->comm,
1444 					start, start + len - 1);
1445 			limit++;
1446 		}
1447 		return -EINVAL;
1448 	}
1449 
1450 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1451 	if (vma->vm_file) {
1452 		do {
1453 			if (start > vma->vm_start)
1454 				return -EINVAL;
1455 			if (end == vma->vm_end)
1456 				goto erase_whole_vma;
1457 			vma = vma_find(&vmi, end);
1458 		} while (vma);
1459 		return -EINVAL;
1460 	} else {
1461 		/* the chunk must be a subset of the VMA found */
1462 		if (start == vma->vm_start && end == vma->vm_end)
1463 			goto erase_whole_vma;
1464 		if (start < vma->vm_start || end > vma->vm_end)
1465 			return -EINVAL;
1466 		if (offset_in_page(start))
1467 			return -EINVAL;
1468 		if (end != vma->vm_end && offset_in_page(end))
1469 			return -EINVAL;
1470 		if (start != vma->vm_start && end != vma->vm_end) {
1471 			ret = split_vma(&vmi, vma, start, 1);
1472 			if (ret < 0)
1473 				return ret;
1474 		}
1475 		return vmi_shrink_vma(&vmi, vma, start, end);
1476 	}
1477 
1478 erase_whole_vma:
1479 	if (delete_vma_from_mm(vma))
1480 		ret = -ENOMEM;
1481 	else
1482 		delete_vma(mm, vma);
1483 	return ret;
1484 }
1485 
1486 int vm_munmap(unsigned long addr, size_t len)
1487 {
1488 	struct mm_struct *mm = current->mm;
1489 	int ret;
1490 
1491 	mmap_write_lock(mm);
1492 	ret = do_munmap(mm, addr, len, NULL);
1493 	mmap_write_unlock(mm);
1494 	return ret;
1495 }
1496 EXPORT_SYMBOL(vm_munmap);
1497 
1498 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1499 {
1500 	return vm_munmap(addr, len);
1501 }
1502 
1503 /*
1504  * release all the mappings made in a process's VM space
1505  */
1506 void exit_mmap(struct mm_struct *mm)
1507 {
1508 	VMA_ITERATOR(vmi, mm, 0);
1509 	struct vm_area_struct *vma;
1510 
1511 	if (!mm)
1512 		return;
1513 
1514 	mm->total_vm = 0;
1515 
1516 	/*
1517 	 * Lock the mm to avoid assert complaining even though this is the only
1518 	 * user of the mm
1519 	 */
1520 	mmap_write_lock(mm);
1521 	for_each_vma(vmi, vma) {
1522 		cleanup_vma_from_mm(vma);
1523 		delete_vma(mm, vma);
1524 		cond_resched();
1525 	}
1526 	__mt_destroy(&mm->mm_mt);
1527 	mmap_write_unlock(mm);
1528 }
1529 
1530 int vm_brk(unsigned long addr, unsigned long len)
1531 {
1532 	return -ENOMEM;
1533 }
1534 
1535 /*
1536  * expand (or shrink) an existing mapping, potentially moving it at the same
1537  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1538  *
1539  * under NOMMU conditions, we only permit changing a mapping's size, and only
1540  * as long as it stays within the region allocated by do_mmap_private() and the
1541  * block is not shareable
1542  *
1543  * MREMAP_FIXED is not supported under NOMMU conditions
1544  */
1545 static unsigned long do_mremap(unsigned long addr,
1546 			unsigned long old_len, unsigned long new_len,
1547 			unsigned long flags, unsigned long new_addr)
1548 {
1549 	struct vm_area_struct *vma;
1550 
1551 	/* insanity checks first */
1552 	old_len = PAGE_ALIGN(old_len);
1553 	new_len = PAGE_ALIGN(new_len);
1554 	if (old_len == 0 || new_len == 0)
1555 		return (unsigned long) -EINVAL;
1556 
1557 	if (offset_in_page(addr))
1558 		return -EINVAL;
1559 
1560 	if (flags & MREMAP_FIXED && new_addr != addr)
1561 		return (unsigned long) -EINVAL;
1562 
1563 	vma = find_vma_exact(current->mm, addr, old_len);
1564 	if (!vma)
1565 		return (unsigned long) -EINVAL;
1566 
1567 	if (vma->vm_end != vma->vm_start + old_len)
1568 		return (unsigned long) -EFAULT;
1569 
1570 	if (is_nommu_shared_mapping(vma->vm_flags))
1571 		return (unsigned long) -EPERM;
1572 
1573 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1574 		return (unsigned long) -ENOMEM;
1575 
1576 	/* all checks complete - do it */
1577 	vma->vm_end = vma->vm_start + new_len;
1578 	return vma->vm_start;
1579 }
1580 
1581 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1582 		unsigned long, new_len, unsigned long, flags,
1583 		unsigned long, new_addr)
1584 {
1585 	unsigned long ret;
1586 
1587 	mmap_write_lock(current->mm);
1588 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1589 	mmap_write_unlock(current->mm);
1590 	return ret;
1591 }
1592 
1593 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1594 			 unsigned int foll_flags)
1595 {
1596 	return NULL;
1597 }
1598 
1599 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1600 		unsigned long pfn, unsigned long size, pgprot_t prot)
1601 {
1602 	if (addr != (pfn << PAGE_SHIFT))
1603 		return -EINVAL;
1604 
1605 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1606 	return 0;
1607 }
1608 EXPORT_SYMBOL(remap_pfn_range);
1609 
1610 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1611 {
1612 	unsigned long pfn = start >> PAGE_SHIFT;
1613 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1614 
1615 	pfn += vma->vm_pgoff;
1616 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1617 }
1618 EXPORT_SYMBOL(vm_iomap_memory);
1619 
1620 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1621 			unsigned long pgoff)
1622 {
1623 	unsigned int size = vma->vm_end - vma->vm_start;
1624 
1625 	if (!(vma->vm_flags & VM_USERMAP))
1626 		return -EINVAL;
1627 
1628 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1629 	vma->vm_end = vma->vm_start + size;
1630 
1631 	return 0;
1632 }
1633 EXPORT_SYMBOL(remap_vmalloc_range);
1634 
1635 vm_fault_t filemap_fault(struct vm_fault *vmf)
1636 {
1637 	BUG();
1638 	return 0;
1639 }
1640 EXPORT_SYMBOL(filemap_fault);
1641 
1642 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1643 		pgoff_t start_pgoff, pgoff_t end_pgoff)
1644 {
1645 	BUG();
1646 	return 0;
1647 }
1648 EXPORT_SYMBOL(filemap_map_pages);
1649 
1650 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
1651 		       int len, unsigned int gup_flags)
1652 {
1653 	struct vm_area_struct *vma;
1654 	int write = gup_flags & FOLL_WRITE;
1655 
1656 	if (mmap_read_lock_killable(mm))
1657 		return 0;
1658 
1659 	/* the access must start within one of the target process's mappings */
1660 	vma = find_vma(mm, addr);
1661 	if (vma) {
1662 		/* don't overrun this mapping */
1663 		if (addr + len >= vma->vm_end)
1664 			len = vma->vm_end - addr;
1665 
1666 		/* only read or write mappings where it is permitted */
1667 		if (write && vma->vm_flags & VM_MAYWRITE)
1668 			copy_to_user_page(vma, NULL, addr,
1669 					 (void *) addr, buf, len);
1670 		else if (!write && vma->vm_flags & VM_MAYREAD)
1671 			copy_from_user_page(vma, NULL, addr,
1672 					    buf, (void *) addr, len);
1673 		else
1674 			len = 0;
1675 	} else {
1676 		len = 0;
1677 	}
1678 
1679 	mmap_read_unlock(mm);
1680 
1681 	return len;
1682 }
1683 
1684 /**
1685  * access_remote_vm - access another process' address space
1686  * @mm:		the mm_struct of the target address space
1687  * @addr:	start address to access
1688  * @buf:	source or destination buffer
1689  * @len:	number of bytes to transfer
1690  * @gup_flags:	flags modifying lookup behaviour
1691  *
1692  * The caller must hold a reference on @mm.
1693  */
1694 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1695 		void *buf, int len, unsigned int gup_flags)
1696 {
1697 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
1698 }
1699 
1700 /*
1701  * Access another process' address space.
1702  * - source/target buffer must be kernel space
1703  */
1704 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1705 		unsigned int gup_flags)
1706 {
1707 	struct mm_struct *mm;
1708 
1709 	if (addr + len < addr)
1710 		return 0;
1711 
1712 	mm = get_task_mm(tsk);
1713 	if (!mm)
1714 		return 0;
1715 
1716 	len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1717 
1718 	mmput(mm);
1719 	return len;
1720 }
1721 EXPORT_SYMBOL_GPL(access_process_vm);
1722 
1723 /**
1724  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1725  * @inode: The inode to check
1726  * @size: The current filesize of the inode
1727  * @newsize: The proposed filesize of the inode
1728  *
1729  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1730  * make sure that any outstanding VMAs aren't broken and then shrink the
1731  * vm_regions that extend beyond so that do_mmap() doesn't
1732  * automatically grant mappings that are too large.
1733  */
1734 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1735 				size_t newsize)
1736 {
1737 	struct vm_area_struct *vma;
1738 	struct vm_region *region;
1739 	pgoff_t low, high;
1740 	size_t r_size, r_top;
1741 
1742 	low = newsize >> PAGE_SHIFT;
1743 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1744 
1745 	down_write(&nommu_region_sem);
1746 	i_mmap_lock_read(inode->i_mapping);
1747 
1748 	/* search for VMAs that fall within the dead zone */
1749 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1750 		/* found one - only interested if it's shared out of the page
1751 		 * cache */
1752 		if (vma->vm_flags & VM_SHARED) {
1753 			i_mmap_unlock_read(inode->i_mapping);
1754 			up_write(&nommu_region_sem);
1755 			return -ETXTBSY; /* not quite true, but near enough */
1756 		}
1757 	}
1758 
1759 	/* reduce any regions that overlap the dead zone - if in existence,
1760 	 * these will be pointed to by VMAs that don't overlap the dead zone
1761 	 *
1762 	 * we don't check for any regions that start beyond the EOF as there
1763 	 * shouldn't be any
1764 	 */
1765 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1766 		if (!(vma->vm_flags & VM_SHARED))
1767 			continue;
1768 
1769 		region = vma->vm_region;
1770 		r_size = region->vm_top - region->vm_start;
1771 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1772 
1773 		if (r_top > newsize) {
1774 			region->vm_top -= r_top - newsize;
1775 			if (region->vm_end > region->vm_top)
1776 				region->vm_end = region->vm_top;
1777 		}
1778 	}
1779 
1780 	i_mmap_unlock_read(inode->i_mapping);
1781 	up_write(&nommu_region_sem);
1782 	return 0;
1783 }
1784 
1785 /*
1786  * Initialise sysctl_user_reserve_kbytes.
1787  *
1788  * This is intended to prevent a user from starting a single memory hogging
1789  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1790  * mode.
1791  *
1792  * The default value is min(3% of free memory, 128MB)
1793  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1794  */
1795 static int __meminit init_user_reserve(void)
1796 {
1797 	unsigned long free_kbytes;
1798 
1799 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1800 
1801 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1802 	return 0;
1803 }
1804 subsys_initcall(init_user_reserve);
1805 
1806 /*
1807  * Initialise sysctl_admin_reserve_kbytes.
1808  *
1809  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1810  * to log in and kill a memory hogging process.
1811  *
1812  * Systems with more than 256MB will reserve 8MB, enough to recover
1813  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1814  * only reserve 3% of free pages by default.
1815  */
1816 static int __meminit init_admin_reserve(void)
1817 {
1818 	unsigned long free_kbytes;
1819 
1820 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1821 
1822 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1823 	return 0;
1824 }
1825 subsys_initcall(init_admin_reserve);
1826