xref: /openbmc/linux/mm/nommu.c (revision e7bae9bb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/nommu.c
4  *
5  *  Replacement code for mm functions to support CPU's that don't
6  *  have any form of memory management unit (thus no virtual memory).
7  *
8  *  See Documentation/mm/nommu-mmap.rst
9  *
10  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
39 
40 #include <linux/uaccess.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
45 
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
54 
55 atomic_long_t mmap_pages_allocated;
56 
57 EXPORT_SYMBOL(mem_map);
58 
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
63 
64 const struct vm_operations_struct generic_file_vm_ops = {
65 };
66 
67 /*
68  * Return the total memory allocated for this pointer, not
69  * just what the caller asked for.
70  *
71  * Doesn't have to be accurate, i.e. may have races.
72  */
73 unsigned int kobjsize(const void *objp)
74 {
75 	struct page *page;
76 
77 	/*
78 	 * If the object we have should not have ksize performed on it,
79 	 * return size of 0
80 	 */
81 	if (!objp || !virt_addr_valid(objp))
82 		return 0;
83 
84 	page = virt_to_head_page(objp);
85 
86 	/*
87 	 * If the allocator sets PageSlab, we know the pointer came from
88 	 * kmalloc().
89 	 */
90 	if (PageSlab(page))
91 		return ksize(objp);
92 
93 	/*
94 	 * If it's not a compound page, see if we have a matching VMA
95 	 * region. This test is intentionally done in reverse order,
96 	 * so if there's no VMA, we still fall through and hand back
97 	 * PAGE_SIZE for 0-order pages.
98 	 */
99 	if (!PageCompound(page)) {
100 		struct vm_area_struct *vma;
101 
102 		vma = find_vma(current->mm, (unsigned long)objp);
103 		if (vma)
104 			return vma->vm_end - vma->vm_start;
105 	}
106 
107 	/*
108 	 * The ksize() function is only guaranteed to work for pointers
109 	 * returned by kmalloc(). So handle arbitrary pointers here.
110 	 */
111 	return page_size(page);
112 }
113 
114 /**
115  * follow_pfn - look up PFN at a user virtual address
116  * @vma: memory mapping
117  * @address: user virtual address
118  * @pfn: location to store found PFN
119  *
120  * Only IO mappings and raw PFN mappings are allowed.
121  *
122  * Returns zero and the pfn at @pfn on success, -ve otherwise.
123  */
124 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
125 	unsigned long *pfn)
126 {
127 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
128 		return -EINVAL;
129 
130 	*pfn = address >> PAGE_SHIFT;
131 	return 0;
132 }
133 EXPORT_SYMBOL(follow_pfn);
134 
135 LIST_HEAD(vmap_area_list);
136 
137 void vfree(const void *addr)
138 {
139 	kfree(addr);
140 }
141 EXPORT_SYMBOL(vfree);
142 
143 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
144 {
145 	/*
146 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
147 	 * returns only a logical address.
148 	 */
149 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
150 }
151 EXPORT_SYMBOL(__vmalloc);
152 
153 void *__vmalloc_node_range(unsigned long size, unsigned long align,
154 		unsigned long start, unsigned long end, gfp_t gfp_mask,
155 		pgprot_t prot, unsigned long vm_flags, int node,
156 		const void *caller)
157 {
158 	return __vmalloc(size, gfp_mask);
159 }
160 
161 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
162 		int node, const void *caller)
163 {
164 	return __vmalloc(size, gfp_mask);
165 }
166 
167 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
168 {
169 	void *ret;
170 
171 	ret = __vmalloc(size, flags);
172 	if (ret) {
173 		struct vm_area_struct *vma;
174 
175 		mmap_write_lock(current->mm);
176 		vma = find_vma(current->mm, (unsigned long)ret);
177 		if (vma)
178 			vma->vm_flags |= VM_USERMAP;
179 		mmap_write_unlock(current->mm);
180 	}
181 
182 	return ret;
183 }
184 
185 void *vmalloc_user(unsigned long size)
186 {
187 	return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
188 }
189 EXPORT_SYMBOL(vmalloc_user);
190 
191 struct page *vmalloc_to_page(const void *addr)
192 {
193 	return virt_to_page(addr);
194 }
195 EXPORT_SYMBOL(vmalloc_to_page);
196 
197 unsigned long vmalloc_to_pfn(const void *addr)
198 {
199 	return page_to_pfn(virt_to_page(addr));
200 }
201 EXPORT_SYMBOL(vmalloc_to_pfn);
202 
203 long vread(char *buf, char *addr, unsigned long count)
204 {
205 	/* Don't allow overflow */
206 	if ((unsigned long) buf + count < count)
207 		count = -(unsigned long) buf;
208 
209 	memcpy(buf, addr, count);
210 	return count;
211 }
212 
213 long vwrite(char *buf, char *addr, unsigned long count)
214 {
215 	/* Don't allow overflow */
216 	if ((unsigned long) addr + count < count)
217 		count = -(unsigned long) addr;
218 
219 	memcpy(addr, buf, count);
220 	return count;
221 }
222 
223 /*
224  *	vmalloc  -  allocate virtually contiguous memory
225  *
226  *	@size:		allocation size
227  *
228  *	Allocate enough pages to cover @size from the page level
229  *	allocator and map them into contiguous kernel virtual space.
230  *
231  *	For tight control over page level allocator and protection flags
232  *	use __vmalloc() instead.
233  */
234 void *vmalloc(unsigned long size)
235 {
236        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM);
237 }
238 EXPORT_SYMBOL(vmalloc);
239 
240 /*
241  *	vzalloc - allocate virtually contiguous memory with zero fill
242  *
243  *	@size:		allocation size
244  *
245  *	Allocate enough pages to cover @size from the page level
246  *	allocator and map them into contiguous kernel virtual space.
247  *	The memory allocated is set to zero.
248  *
249  *	For tight control over page level allocator and protection flags
250  *	use __vmalloc() instead.
251  */
252 void *vzalloc(unsigned long size)
253 {
254 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
255 }
256 EXPORT_SYMBOL(vzalloc);
257 
258 /**
259  * vmalloc_node - allocate memory on a specific node
260  * @size:	allocation size
261  * @node:	numa node
262  *
263  * Allocate enough pages to cover @size from the page level
264  * allocator and map them into contiguous kernel virtual space.
265  *
266  * For tight control over page level allocator and protection flags
267  * use __vmalloc() instead.
268  */
269 void *vmalloc_node(unsigned long size, int node)
270 {
271 	return vmalloc(size);
272 }
273 EXPORT_SYMBOL(vmalloc_node);
274 
275 /**
276  * vzalloc_node - allocate memory on a specific node with zero fill
277  * @size:	allocation size
278  * @node:	numa node
279  *
280  * Allocate enough pages to cover @size from the page level
281  * allocator and map them into contiguous kernel virtual space.
282  * The memory allocated is set to zero.
283  *
284  * For tight control over page level allocator and protection flags
285  * use __vmalloc() instead.
286  */
287 void *vzalloc_node(unsigned long size, int node)
288 {
289 	return vzalloc(size);
290 }
291 EXPORT_SYMBOL(vzalloc_node);
292 
293 /**
294  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
295  *	@size:		allocation size
296  *
297  *	Allocate enough 32bit PA addressable pages to cover @size from the
298  *	page level allocator and map them into contiguous kernel virtual space.
299  */
300 void *vmalloc_32(unsigned long size)
301 {
302 	return __vmalloc(size, GFP_KERNEL);
303 }
304 EXPORT_SYMBOL(vmalloc_32);
305 
306 /**
307  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
308  *	@size:		allocation size
309  *
310  * The resulting memory area is 32bit addressable and zeroed so it can be
311  * mapped to userspace without leaking data.
312  *
313  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
314  * remap_vmalloc_range() are permissible.
315  */
316 void *vmalloc_32_user(unsigned long size)
317 {
318 	/*
319 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
320 	 * but for now this can simply use vmalloc_user() directly.
321 	 */
322 	return vmalloc_user(size);
323 }
324 EXPORT_SYMBOL(vmalloc_32_user);
325 
326 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
327 {
328 	BUG();
329 	return NULL;
330 }
331 EXPORT_SYMBOL(vmap);
332 
333 void vunmap(const void *addr)
334 {
335 	BUG();
336 }
337 EXPORT_SYMBOL(vunmap);
338 
339 void *vm_map_ram(struct page **pages, unsigned int count, int node)
340 {
341 	BUG();
342 	return NULL;
343 }
344 EXPORT_SYMBOL(vm_map_ram);
345 
346 void vm_unmap_ram(const void *mem, unsigned int count)
347 {
348 	BUG();
349 }
350 EXPORT_SYMBOL(vm_unmap_ram);
351 
352 void vm_unmap_aliases(void)
353 {
354 }
355 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
356 
357 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
358 {
359 	BUG();
360 	return NULL;
361 }
362 EXPORT_SYMBOL_GPL(alloc_vm_area);
363 
364 void free_vm_area(struct vm_struct *area)
365 {
366 	BUG();
367 }
368 EXPORT_SYMBOL_GPL(free_vm_area);
369 
370 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
371 		   struct page *page)
372 {
373 	return -EINVAL;
374 }
375 EXPORT_SYMBOL(vm_insert_page);
376 
377 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
378 			unsigned long num)
379 {
380 	return -EINVAL;
381 }
382 EXPORT_SYMBOL(vm_map_pages);
383 
384 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
385 				unsigned long num)
386 {
387 	return -EINVAL;
388 }
389 EXPORT_SYMBOL(vm_map_pages_zero);
390 
391 /*
392  *  sys_brk() for the most part doesn't need the global kernel
393  *  lock, except when an application is doing something nasty
394  *  like trying to un-brk an area that has already been mapped
395  *  to a regular file.  in this case, the unmapping will need
396  *  to invoke file system routines that need the global lock.
397  */
398 SYSCALL_DEFINE1(brk, unsigned long, brk)
399 {
400 	struct mm_struct *mm = current->mm;
401 
402 	if (brk < mm->start_brk || brk > mm->context.end_brk)
403 		return mm->brk;
404 
405 	if (mm->brk == brk)
406 		return mm->brk;
407 
408 	/*
409 	 * Always allow shrinking brk
410 	 */
411 	if (brk <= mm->brk) {
412 		mm->brk = brk;
413 		return brk;
414 	}
415 
416 	/*
417 	 * Ok, looks good - let it rip.
418 	 */
419 	flush_icache_user_range(mm->brk, brk);
420 	return mm->brk = brk;
421 }
422 
423 /*
424  * initialise the percpu counter for VM and region record slabs
425  */
426 void __init mmap_init(void)
427 {
428 	int ret;
429 
430 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
431 	VM_BUG_ON(ret);
432 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
433 }
434 
435 /*
436  * validate the region tree
437  * - the caller must hold the region lock
438  */
439 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
440 static noinline void validate_nommu_regions(void)
441 {
442 	struct vm_region *region, *last;
443 	struct rb_node *p, *lastp;
444 
445 	lastp = rb_first(&nommu_region_tree);
446 	if (!lastp)
447 		return;
448 
449 	last = rb_entry(lastp, struct vm_region, vm_rb);
450 	BUG_ON(last->vm_end <= last->vm_start);
451 	BUG_ON(last->vm_top < last->vm_end);
452 
453 	while ((p = rb_next(lastp))) {
454 		region = rb_entry(p, struct vm_region, vm_rb);
455 		last = rb_entry(lastp, struct vm_region, vm_rb);
456 
457 		BUG_ON(region->vm_end <= region->vm_start);
458 		BUG_ON(region->vm_top < region->vm_end);
459 		BUG_ON(region->vm_start < last->vm_top);
460 
461 		lastp = p;
462 	}
463 }
464 #else
465 static void validate_nommu_regions(void)
466 {
467 }
468 #endif
469 
470 /*
471  * add a region into the global tree
472  */
473 static void add_nommu_region(struct vm_region *region)
474 {
475 	struct vm_region *pregion;
476 	struct rb_node **p, *parent;
477 
478 	validate_nommu_regions();
479 
480 	parent = NULL;
481 	p = &nommu_region_tree.rb_node;
482 	while (*p) {
483 		parent = *p;
484 		pregion = rb_entry(parent, struct vm_region, vm_rb);
485 		if (region->vm_start < pregion->vm_start)
486 			p = &(*p)->rb_left;
487 		else if (region->vm_start > pregion->vm_start)
488 			p = &(*p)->rb_right;
489 		else if (pregion == region)
490 			return;
491 		else
492 			BUG();
493 	}
494 
495 	rb_link_node(&region->vm_rb, parent, p);
496 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
497 
498 	validate_nommu_regions();
499 }
500 
501 /*
502  * delete a region from the global tree
503  */
504 static void delete_nommu_region(struct vm_region *region)
505 {
506 	BUG_ON(!nommu_region_tree.rb_node);
507 
508 	validate_nommu_regions();
509 	rb_erase(&region->vm_rb, &nommu_region_tree);
510 	validate_nommu_regions();
511 }
512 
513 /*
514  * free a contiguous series of pages
515  */
516 static void free_page_series(unsigned long from, unsigned long to)
517 {
518 	for (; from < to; from += PAGE_SIZE) {
519 		struct page *page = virt_to_page(from);
520 
521 		atomic_long_dec(&mmap_pages_allocated);
522 		put_page(page);
523 	}
524 }
525 
526 /*
527  * release a reference to a region
528  * - the caller must hold the region semaphore for writing, which this releases
529  * - the region may not have been added to the tree yet, in which case vm_top
530  *   will equal vm_start
531  */
532 static void __put_nommu_region(struct vm_region *region)
533 	__releases(nommu_region_sem)
534 {
535 	BUG_ON(!nommu_region_tree.rb_node);
536 
537 	if (--region->vm_usage == 0) {
538 		if (region->vm_top > region->vm_start)
539 			delete_nommu_region(region);
540 		up_write(&nommu_region_sem);
541 
542 		if (region->vm_file)
543 			fput(region->vm_file);
544 
545 		/* IO memory and memory shared directly out of the pagecache
546 		 * from ramfs/tmpfs mustn't be released here */
547 		if (region->vm_flags & VM_MAPPED_COPY)
548 			free_page_series(region->vm_start, region->vm_top);
549 		kmem_cache_free(vm_region_jar, region);
550 	} else {
551 		up_write(&nommu_region_sem);
552 	}
553 }
554 
555 /*
556  * release a reference to a region
557  */
558 static void put_nommu_region(struct vm_region *region)
559 {
560 	down_write(&nommu_region_sem);
561 	__put_nommu_region(region);
562 }
563 
564 /*
565  * add a VMA into a process's mm_struct in the appropriate place in the list
566  * and tree and add to the address space's page tree also if not an anonymous
567  * page
568  * - should be called with mm->mmap_lock held writelocked
569  */
570 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
571 {
572 	struct vm_area_struct *pvma, *prev;
573 	struct address_space *mapping;
574 	struct rb_node **p, *parent, *rb_prev;
575 
576 	BUG_ON(!vma->vm_region);
577 
578 	mm->map_count++;
579 	vma->vm_mm = mm;
580 
581 	/* add the VMA to the mapping */
582 	if (vma->vm_file) {
583 		mapping = vma->vm_file->f_mapping;
584 
585 		i_mmap_lock_write(mapping);
586 		flush_dcache_mmap_lock(mapping);
587 		vma_interval_tree_insert(vma, &mapping->i_mmap);
588 		flush_dcache_mmap_unlock(mapping);
589 		i_mmap_unlock_write(mapping);
590 	}
591 
592 	/* add the VMA to the tree */
593 	parent = rb_prev = NULL;
594 	p = &mm->mm_rb.rb_node;
595 	while (*p) {
596 		parent = *p;
597 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
598 
599 		/* sort by: start addr, end addr, VMA struct addr in that order
600 		 * (the latter is necessary as we may get identical VMAs) */
601 		if (vma->vm_start < pvma->vm_start)
602 			p = &(*p)->rb_left;
603 		else if (vma->vm_start > pvma->vm_start) {
604 			rb_prev = parent;
605 			p = &(*p)->rb_right;
606 		} else if (vma->vm_end < pvma->vm_end)
607 			p = &(*p)->rb_left;
608 		else if (vma->vm_end > pvma->vm_end) {
609 			rb_prev = parent;
610 			p = &(*p)->rb_right;
611 		} else if (vma < pvma)
612 			p = &(*p)->rb_left;
613 		else if (vma > pvma) {
614 			rb_prev = parent;
615 			p = &(*p)->rb_right;
616 		} else
617 			BUG();
618 	}
619 
620 	rb_link_node(&vma->vm_rb, parent, p);
621 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
622 
623 	/* add VMA to the VMA list also */
624 	prev = NULL;
625 	if (rb_prev)
626 		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
627 
628 	__vma_link_list(mm, vma, prev);
629 }
630 
631 /*
632  * delete a VMA from its owning mm_struct and address space
633  */
634 static void delete_vma_from_mm(struct vm_area_struct *vma)
635 {
636 	int i;
637 	struct address_space *mapping;
638 	struct mm_struct *mm = vma->vm_mm;
639 	struct task_struct *curr = current;
640 
641 	mm->map_count--;
642 	for (i = 0; i < VMACACHE_SIZE; i++) {
643 		/* if the vma is cached, invalidate the entire cache */
644 		if (curr->vmacache.vmas[i] == vma) {
645 			vmacache_invalidate(mm);
646 			break;
647 		}
648 	}
649 
650 	/* remove the VMA from the mapping */
651 	if (vma->vm_file) {
652 		mapping = vma->vm_file->f_mapping;
653 
654 		i_mmap_lock_write(mapping);
655 		flush_dcache_mmap_lock(mapping);
656 		vma_interval_tree_remove(vma, &mapping->i_mmap);
657 		flush_dcache_mmap_unlock(mapping);
658 		i_mmap_unlock_write(mapping);
659 	}
660 
661 	/* remove from the MM's tree and list */
662 	rb_erase(&vma->vm_rb, &mm->mm_rb);
663 
664 	__vma_unlink_list(mm, vma);
665 }
666 
667 /*
668  * destroy a VMA record
669  */
670 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
671 {
672 	if (vma->vm_ops && vma->vm_ops->close)
673 		vma->vm_ops->close(vma);
674 	if (vma->vm_file)
675 		fput(vma->vm_file);
676 	put_nommu_region(vma->vm_region);
677 	vm_area_free(vma);
678 }
679 
680 /*
681  * look up the first VMA in which addr resides, NULL if none
682  * - should be called with mm->mmap_lock at least held readlocked
683  */
684 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
685 {
686 	struct vm_area_struct *vma;
687 
688 	/* check the cache first */
689 	vma = vmacache_find(mm, addr);
690 	if (likely(vma))
691 		return vma;
692 
693 	/* trawl the list (there may be multiple mappings in which addr
694 	 * resides) */
695 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
696 		if (vma->vm_start > addr)
697 			return NULL;
698 		if (vma->vm_end > addr) {
699 			vmacache_update(addr, vma);
700 			return vma;
701 		}
702 	}
703 
704 	return NULL;
705 }
706 EXPORT_SYMBOL(find_vma);
707 
708 /*
709  * find a VMA
710  * - we don't extend stack VMAs under NOMMU conditions
711  */
712 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
713 {
714 	return find_vma(mm, addr);
715 }
716 
717 /*
718  * expand a stack to a given address
719  * - not supported under NOMMU conditions
720  */
721 int expand_stack(struct vm_area_struct *vma, unsigned long address)
722 {
723 	return -ENOMEM;
724 }
725 
726 /*
727  * look up the first VMA exactly that exactly matches addr
728  * - should be called with mm->mmap_lock at least held readlocked
729  */
730 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
731 					     unsigned long addr,
732 					     unsigned long len)
733 {
734 	struct vm_area_struct *vma;
735 	unsigned long end = addr + len;
736 
737 	/* check the cache first */
738 	vma = vmacache_find_exact(mm, addr, end);
739 	if (vma)
740 		return vma;
741 
742 	/* trawl the list (there may be multiple mappings in which addr
743 	 * resides) */
744 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
745 		if (vma->vm_start < addr)
746 			continue;
747 		if (vma->vm_start > addr)
748 			return NULL;
749 		if (vma->vm_end == end) {
750 			vmacache_update(addr, vma);
751 			return vma;
752 		}
753 	}
754 
755 	return NULL;
756 }
757 
758 /*
759  * determine whether a mapping should be permitted and, if so, what sort of
760  * mapping we're capable of supporting
761  */
762 static int validate_mmap_request(struct file *file,
763 				 unsigned long addr,
764 				 unsigned long len,
765 				 unsigned long prot,
766 				 unsigned long flags,
767 				 unsigned long pgoff,
768 				 unsigned long *_capabilities)
769 {
770 	unsigned long capabilities, rlen;
771 	int ret;
772 
773 	/* do the simple checks first */
774 	if (flags & MAP_FIXED)
775 		return -EINVAL;
776 
777 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
778 	    (flags & MAP_TYPE) != MAP_SHARED)
779 		return -EINVAL;
780 
781 	if (!len)
782 		return -EINVAL;
783 
784 	/* Careful about overflows.. */
785 	rlen = PAGE_ALIGN(len);
786 	if (!rlen || rlen > TASK_SIZE)
787 		return -ENOMEM;
788 
789 	/* offset overflow? */
790 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
791 		return -EOVERFLOW;
792 
793 	if (file) {
794 		/* files must support mmap */
795 		if (!file->f_op->mmap)
796 			return -ENODEV;
797 
798 		/* work out if what we've got could possibly be shared
799 		 * - we support chardevs that provide their own "memory"
800 		 * - we support files/blockdevs that are memory backed
801 		 */
802 		if (file->f_op->mmap_capabilities) {
803 			capabilities = file->f_op->mmap_capabilities(file);
804 		} else {
805 			/* no explicit capabilities set, so assume some
806 			 * defaults */
807 			switch (file_inode(file)->i_mode & S_IFMT) {
808 			case S_IFREG:
809 			case S_IFBLK:
810 				capabilities = NOMMU_MAP_COPY;
811 				break;
812 
813 			case S_IFCHR:
814 				capabilities =
815 					NOMMU_MAP_DIRECT |
816 					NOMMU_MAP_READ |
817 					NOMMU_MAP_WRITE;
818 				break;
819 
820 			default:
821 				return -EINVAL;
822 			}
823 		}
824 
825 		/* eliminate any capabilities that we can't support on this
826 		 * device */
827 		if (!file->f_op->get_unmapped_area)
828 			capabilities &= ~NOMMU_MAP_DIRECT;
829 		if (!(file->f_mode & FMODE_CAN_READ))
830 			capabilities &= ~NOMMU_MAP_COPY;
831 
832 		/* The file shall have been opened with read permission. */
833 		if (!(file->f_mode & FMODE_READ))
834 			return -EACCES;
835 
836 		if (flags & MAP_SHARED) {
837 			/* do checks for writing, appending and locking */
838 			if ((prot & PROT_WRITE) &&
839 			    !(file->f_mode & FMODE_WRITE))
840 				return -EACCES;
841 
842 			if (IS_APPEND(file_inode(file)) &&
843 			    (file->f_mode & FMODE_WRITE))
844 				return -EACCES;
845 
846 			if (locks_verify_locked(file))
847 				return -EAGAIN;
848 
849 			if (!(capabilities & NOMMU_MAP_DIRECT))
850 				return -ENODEV;
851 
852 			/* we mustn't privatise shared mappings */
853 			capabilities &= ~NOMMU_MAP_COPY;
854 		} else {
855 			/* we're going to read the file into private memory we
856 			 * allocate */
857 			if (!(capabilities & NOMMU_MAP_COPY))
858 				return -ENODEV;
859 
860 			/* we don't permit a private writable mapping to be
861 			 * shared with the backing device */
862 			if (prot & PROT_WRITE)
863 				capabilities &= ~NOMMU_MAP_DIRECT;
864 		}
865 
866 		if (capabilities & NOMMU_MAP_DIRECT) {
867 			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
868 			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
869 			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
870 			    ) {
871 				capabilities &= ~NOMMU_MAP_DIRECT;
872 				if (flags & MAP_SHARED) {
873 					pr_warn("MAP_SHARED not completely supported on !MMU\n");
874 					return -EINVAL;
875 				}
876 			}
877 		}
878 
879 		/* handle executable mappings and implied executable
880 		 * mappings */
881 		if (path_noexec(&file->f_path)) {
882 			if (prot & PROT_EXEC)
883 				return -EPERM;
884 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
885 			/* handle implication of PROT_EXEC by PROT_READ */
886 			if (current->personality & READ_IMPLIES_EXEC) {
887 				if (capabilities & NOMMU_MAP_EXEC)
888 					prot |= PROT_EXEC;
889 			}
890 		} else if ((prot & PROT_READ) &&
891 			 (prot & PROT_EXEC) &&
892 			 !(capabilities & NOMMU_MAP_EXEC)
893 			 ) {
894 			/* backing file is not executable, try to copy */
895 			capabilities &= ~NOMMU_MAP_DIRECT;
896 		}
897 	} else {
898 		/* anonymous mappings are always memory backed and can be
899 		 * privately mapped
900 		 */
901 		capabilities = NOMMU_MAP_COPY;
902 
903 		/* handle PROT_EXEC implication by PROT_READ */
904 		if ((prot & PROT_READ) &&
905 		    (current->personality & READ_IMPLIES_EXEC))
906 			prot |= PROT_EXEC;
907 	}
908 
909 	/* allow the security API to have its say */
910 	ret = security_mmap_addr(addr);
911 	if (ret < 0)
912 		return ret;
913 
914 	/* looks okay */
915 	*_capabilities = capabilities;
916 	return 0;
917 }
918 
919 /*
920  * we've determined that we can make the mapping, now translate what we
921  * now know into VMA flags
922  */
923 static unsigned long determine_vm_flags(struct file *file,
924 					unsigned long prot,
925 					unsigned long flags,
926 					unsigned long capabilities)
927 {
928 	unsigned long vm_flags;
929 
930 	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
931 	/* vm_flags |= mm->def_flags; */
932 
933 	if (!(capabilities & NOMMU_MAP_DIRECT)) {
934 		/* attempt to share read-only copies of mapped file chunks */
935 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
936 		if (file && !(prot & PROT_WRITE))
937 			vm_flags |= VM_MAYSHARE;
938 	} else {
939 		/* overlay a shareable mapping on the backing device or inode
940 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
941 		 * romfs/cramfs */
942 		vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
943 		if (flags & MAP_SHARED)
944 			vm_flags |= VM_SHARED;
945 	}
946 
947 	/* refuse to let anyone share private mappings with this process if
948 	 * it's being traced - otherwise breakpoints set in it may interfere
949 	 * with another untraced process
950 	 */
951 	if ((flags & MAP_PRIVATE) && current->ptrace)
952 		vm_flags &= ~VM_MAYSHARE;
953 
954 	return vm_flags;
955 }
956 
957 /*
958  * set up a shared mapping on a file (the driver or filesystem provides and
959  * pins the storage)
960  */
961 static int do_mmap_shared_file(struct vm_area_struct *vma)
962 {
963 	int ret;
964 
965 	ret = call_mmap(vma->vm_file, vma);
966 	if (ret == 0) {
967 		vma->vm_region->vm_top = vma->vm_region->vm_end;
968 		return 0;
969 	}
970 	if (ret != -ENOSYS)
971 		return ret;
972 
973 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
974 	 * opposed to tried but failed) so we can only give a suitable error as
975 	 * it's not possible to make a private copy if MAP_SHARED was given */
976 	return -ENODEV;
977 }
978 
979 /*
980  * set up a private mapping or an anonymous shared mapping
981  */
982 static int do_mmap_private(struct vm_area_struct *vma,
983 			   struct vm_region *region,
984 			   unsigned long len,
985 			   unsigned long capabilities)
986 {
987 	unsigned long total, point;
988 	void *base;
989 	int ret, order;
990 
991 	/* invoke the file's mapping function so that it can keep track of
992 	 * shared mappings on devices or memory
993 	 * - VM_MAYSHARE will be set if it may attempt to share
994 	 */
995 	if (capabilities & NOMMU_MAP_DIRECT) {
996 		ret = call_mmap(vma->vm_file, vma);
997 		if (ret == 0) {
998 			/* shouldn't return success if we're not sharing */
999 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1000 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1001 			return 0;
1002 		}
1003 		if (ret != -ENOSYS)
1004 			return ret;
1005 
1006 		/* getting an ENOSYS error indicates that direct mmap isn't
1007 		 * possible (as opposed to tried but failed) so we'll try to
1008 		 * make a private copy of the data and map that instead */
1009 	}
1010 
1011 
1012 	/* allocate some memory to hold the mapping
1013 	 * - note that this may not return a page-aligned address if the object
1014 	 *   we're allocating is smaller than a page
1015 	 */
1016 	order = get_order(len);
1017 	total = 1 << order;
1018 	point = len >> PAGE_SHIFT;
1019 
1020 	/* we don't want to allocate a power-of-2 sized page set */
1021 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1022 		total = point;
1023 
1024 	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1025 	if (!base)
1026 		goto enomem;
1027 
1028 	atomic_long_add(total, &mmap_pages_allocated);
1029 
1030 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1031 	region->vm_start = (unsigned long) base;
1032 	region->vm_end   = region->vm_start + len;
1033 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1034 
1035 	vma->vm_start = region->vm_start;
1036 	vma->vm_end   = region->vm_start + len;
1037 
1038 	if (vma->vm_file) {
1039 		/* read the contents of a file into the copy */
1040 		loff_t fpos;
1041 
1042 		fpos = vma->vm_pgoff;
1043 		fpos <<= PAGE_SHIFT;
1044 
1045 		ret = kernel_read(vma->vm_file, base, len, &fpos);
1046 		if (ret < 0)
1047 			goto error_free;
1048 
1049 		/* clear the last little bit */
1050 		if (ret < len)
1051 			memset(base + ret, 0, len - ret);
1052 
1053 	} else {
1054 		vma_set_anonymous(vma);
1055 	}
1056 
1057 	return 0;
1058 
1059 error_free:
1060 	free_page_series(region->vm_start, region->vm_top);
1061 	region->vm_start = vma->vm_start = 0;
1062 	region->vm_end   = vma->vm_end = 0;
1063 	region->vm_top   = 0;
1064 	return ret;
1065 
1066 enomem:
1067 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1068 	       len, current->pid, current->comm);
1069 	show_free_areas(0, NULL);
1070 	return -ENOMEM;
1071 }
1072 
1073 /*
1074  * handle mapping creation for uClinux
1075  */
1076 unsigned long do_mmap(struct file *file,
1077 			unsigned long addr,
1078 			unsigned long len,
1079 			unsigned long prot,
1080 			unsigned long flags,
1081 			unsigned long pgoff,
1082 			unsigned long *populate,
1083 			struct list_head *uf)
1084 {
1085 	struct vm_area_struct *vma;
1086 	struct vm_region *region;
1087 	struct rb_node *rb;
1088 	vm_flags_t vm_flags;
1089 	unsigned long capabilities, result;
1090 	int ret;
1091 
1092 	*populate = 0;
1093 
1094 	/* decide whether we should attempt the mapping, and if so what sort of
1095 	 * mapping */
1096 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1097 				    &capabilities);
1098 	if (ret < 0)
1099 		return ret;
1100 
1101 	/* we ignore the address hint */
1102 	addr = 0;
1103 	len = PAGE_ALIGN(len);
1104 
1105 	/* we've determined that we can make the mapping, now translate what we
1106 	 * now know into VMA flags */
1107 	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1108 
1109 	/* we're going to need to record the mapping */
1110 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1111 	if (!region)
1112 		goto error_getting_region;
1113 
1114 	vma = vm_area_alloc(current->mm);
1115 	if (!vma)
1116 		goto error_getting_vma;
1117 
1118 	region->vm_usage = 1;
1119 	region->vm_flags = vm_flags;
1120 	region->vm_pgoff = pgoff;
1121 
1122 	vma->vm_flags = vm_flags;
1123 	vma->vm_pgoff = pgoff;
1124 
1125 	if (file) {
1126 		region->vm_file = get_file(file);
1127 		vma->vm_file = get_file(file);
1128 	}
1129 
1130 	down_write(&nommu_region_sem);
1131 
1132 	/* if we want to share, we need to check for regions created by other
1133 	 * mmap() calls that overlap with our proposed mapping
1134 	 * - we can only share with a superset match on most regular files
1135 	 * - shared mappings on character devices and memory backed files are
1136 	 *   permitted to overlap inexactly as far as we are concerned for in
1137 	 *   these cases, sharing is handled in the driver or filesystem rather
1138 	 *   than here
1139 	 */
1140 	if (vm_flags & VM_MAYSHARE) {
1141 		struct vm_region *pregion;
1142 		unsigned long pglen, rpglen, pgend, rpgend, start;
1143 
1144 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1145 		pgend = pgoff + pglen;
1146 
1147 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1148 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1149 
1150 			if (!(pregion->vm_flags & VM_MAYSHARE))
1151 				continue;
1152 
1153 			/* search for overlapping mappings on the same file */
1154 			if (file_inode(pregion->vm_file) !=
1155 			    file_inode(file))
1156 				continue;
1157 
1158 			if (pregion->vm_pgoff >= pgend)
1159 				continue;
1160 
1161 			rpglen = pregion->vm_end - pregion->vm_start;
1162 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1163 			rpgend = pregion->vm_pgoff + rpglen;
1164 			if (pgoff >= rpgend)
1165 				continue;
1166 
1167 			/* handle inexactly overlapping matches between
1168 			 * mappings */
1169 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1170 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1171 				/* new mapping is not a subset of the region */
1172 				if (!(capabilities & NOMMU_MAP_DIRECT))
1173 					goto sharing_violation;
1174 				continue;
1175 			}
1176 
1177 			/* we've found a region we can share */
1178 			pregion->vm_usage++;
1179 			vma->vm_region = pregion;
1180 			start = pregion->vm_start;
1181 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1182 			vma->vm_start = start;
1183 			vma->vm_end = start + len;
1184 
1185 			if (pregion->vm_flags & VM_MAPPED_COPY)
1186 				vma->vm_flags |= VM_MAPPED_COPY;
1187 			else {
1188 				ret = do_mmap_shared_file(vma);
1189 				if (ret < 0) {
1190 					vma->vm_region = NULL;
1191 					vma->vm_start = 0;
1192 					vma->vm_end = 0;
1193 					pregion->vm_usage--;
1194 					pregion = NULL;
1195 					goto error_just_free;
1196 				}
1197 			}
1198 			fput(region->vm_file);
1199 			kmem_cache_free(vm_region_jar, region);
1200 			region = pregion;
1201 			result = start;
1202 			goto share;
1203 		}
1204 
1205 		/* obtain the address at which to make a shared mapping
1206 		 * - this is the hook for quasi-memory character devices to
1207 		 *   tell us the location of a shared mapping
1208 		 */
1209 		if (capabilities & NOMMU_MAP_DIRECT) {
1210 			addr = file->f_op->get_unmapped_area(file, addr, len,
1211 							     pgoff, flags);
1212 			if (IS_ERR_VALUE(addr)) {
1213 				ret = addr;
1214 				if (ret != -ENOSYS)
1215 					goto error_just_free;
1216 
1217 				/* the driver refused to tell us where to site
1218 				 * the mapping so we'll have to attempt to copy
1219 				 * it */
1220 				ret = -ENODEV;
1221 				if (!(capabilities & NOMMU_MAP_COPY))
1222 					goto error_just_free;
1223 
1224 				capabilities &= ~NOMMU_MAP_DIRECT;
1225 			} else {
1226 				vma->vm_start = region->vm_start = addr;
1227 				vma->vm_end = region->vm_end = addr + len;
1228 			}
1229 		}
1230 	}
1231 
1232 	vma->vm_region = region;
1233 
1234 	/* set up the mapping
1235 	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1236 	 */
1237 	if (file && vma->vm_flags & VM_SHARED)
1238 		ret = do_mmap_shared_file(vma);
1239 	else
1240 		ret = do_mmap_private(vma, region, len, capabilities);
1241 	if (ret < 0)
1242 		goto error_just_free;
1243 	add_nommu_region(region);
1244 
1245 	/* clear anonymous mappings that don't ask for uninitialized data */
1246 	if (!vma->vm_file &&
1247 	    (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1248 	     !(flags & MAP_UNINITIALIZED)))
1249 		memset((void *)region->vm_start, 0,
1250 		       region->vm_end - region->vm_start);
1251 
1252 	/* okay... we have a mapping; now we have to register it */
1253 	result = vma->vm_start;
1254 
1255 	current->mm->total_vm += len >> PAGE_SHIFT;
1256 
1257 share:
1258 	add_vma_to_mm(current->mm, vma);
1259 
1260 	/* we flush the region from the icache only when the first executable
1261 	 * mapping of it is made  */
1262 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1263 		flush_icache_user_range(region->vm_start, region->vm_end);
1264 		region->vm_icache_flushed = true;
1265 	}
1266 
1267 	up_write(&nommu_region_sem);
1268 
1269 	return result;
1270 
1271 error_just_free:
1272 	up_write(&nommu_region_sem);
1273 error:
1274 	if (region->vm_file)
1275 		fput(region->vm_file);
1276 	kmem_cache_free(vm_region_jar, region);
1277 	if (vma->vm_file)
1278 		fput(vma->vm_file);
1279 	vm_area_free(vma);
1280 	return ret;
1281 
1282 sharing_violation:
1283 	up_write(&nommu_region_sem);
1284 	pr_warn("Attempt to share mismatched mappings\n");
1285 	ret = -EINVAL;
1286 	goto error;
1287 
1288 error_getting_vma:
1289 	kmem_cache_free(vm_region_jar, region);
1290 	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1291 			len, current->pid);
1292 	show_free_areas(0, NULL);
1293 	return -ENOMEM;
1294 
1295 error_getting_region:
1296 	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1297 			len, current->pid);
1298 	show_free_areas(0, NULL);
1299 	return -ENOMEM;
1300 }
1301 
1302 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1303 			      unsigned long prot, unsigned long flags,
1304 			      unsigned long fd, unsigned long pgoff)
1305 {
1306 	struct file *file = NULL;
1307 	unsigned long retval = -EBADF;
1308 
1309 	audit_mmap_fd(fd, flags);
1310 	if (!(flags & MAP_ANONYMOUS)) {
1311 		file = fget(fd);
1312 		if (!file)
1313 			goto out;
1314 	}
1315 
1316 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1317 
1318 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1319 
1320 	if (file)
1321 		fput(file);
1322 out:
1323 	return retval;
1324 }
1325 
1326 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1327 		unsigned long, prot, unsigned long, flags,
1328 		unsigned long, fd, unsigned long, pgoff)
1329 {
1330 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1331 }
1332 
1333 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1334 struct mmap_arg_struct {
1335 	unsigned long addr;
1336 	unsigned long len;
1337 	unsigned long prot;
1338 	unsigned long flags;
1339 	unsigned long fd;
1340 	unsigned long offset;
1341 };
1342 
1343 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1344 {
1345 	struct mmap_arg_struct a;
1346 
1347 	if (copy_from_user(&a, arg, sizeof(a)))
1348 		return -EFAULT;
1349 	if (offset_in_page(a.offset))
1350 		return -EINVAL;
1351 
1352 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1353 			       a.offset >> PAGE_SHIFT);
1354 }
1355 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1356 
1357 /*
1358  * split a vma into two pieces at address 'addr', a new vma is allocated either
1359  * for the first part or the tail.
1360  */
1361 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1362 	      unsigned long addr, int new_below)
1363 {
1364 	struct vm_area_struct *new;
1365 	struct vm_region *region;
1366 	unsigned long npages;
1367 
1368 	/* we're only permitted to split anonymous regions (these should have
1369 	 * only a single usage on the region) */
1370 	if (vma->vm_file)
1371 		return -ENOMEM;
1372 
1373 	if (mm->map_count >= sysctl_max_map_count)
1374 		return -ENOMEM;
1375 
1376 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1377 	if (!region)
1378 		return -ENOMEM;
1379 
1380 	new = vm_area_dup(vma);
1381 	if (!new) {
1382 		kmem_cache_free(vm_region_jar, region);
1383 		return -ENOMEM;
1384 	}
1385 
1386 	/* most fields are the same, copy all, and then fixup */
1387 	*region = *vma->vm_region;
1388 	new->vm_region = region;
1389 
1390 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1391 
1392 	if (new_below) {
1393 		region->vm_top = region->vm_end = new->vm_end = addr;
1394 	} else {
1395 		region->vm_start = new->vm_start = addr;
1396 		region->vm_pgoff = new->vm_pgoff += npages;
1397 	}
1398 
1399 	if (new->vm_ops && new->vm_ops->open)
1400 		new->vm_ops->open(new);
1401 
1402 	delete_vma_from_mm(vma);
1403 	down_write(&nommu_region_sem);
1404 	delete_nommu_region(vma->vm_region);
1405 	if (new_below) {
1406 		vma->vm_region->vm_start = vma->vm_start = addr;
1407 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1408 	} else {
1409 		vma->vm_region->vm_end = vma->vm_end = addr;
1410 		vma->vm_region->vm_top = addr;
1411 	}
1412 	add_nommu_region(vma->vm_region);
1413 	add_nommu_region(new->vm_region);
1414 	up_write(&nommu_region_sem);
1415 	add_vma_to_mm(mm, vma);
1416 	add_vma_to_mm(mm, new);
1417 	return 0;
1418 }
1419 
1420 /*
1421  * shrink a VMA by removing the specified chunk from either the beginning or
1422  * the end
1423  */
1424 static int shrink_vma(struct mm_struct *mm,
1425 		      struct vm_area_struct *vma,
1426 		      unsigned long from, unsigned long to)
1427 {
1428 	struct vm_region *region;
1429 
1430 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1431 	 * and list */
1432 	delete_vma_from_mm(vma);
1433 	if (from > vma->vm_start)
1434 		vma->vm_end = from;
1435 	else
1436 		vma->vm_start = to;
1437 	add_vma_to_mm(mm, vma);
1438 
1439 	/* cut the backing region down to size */
1440 	region = vma->vm_region;
1441 	BUG_ON(region->vm_usage != 1);
1442 
1443 	down_write(&nommu_region_sem);
1444 	delete_nommu_region(region);
1445 	if (from > region->vm_start) {
1446 		to = region->vm_top;
1447 		region->vm_top = region->vm_end = from;
1448 	} else {
1449 		region->vm_start = to;
1450 	}
1451 	add_nommu_region(region);
1452 	up_write(&nommu_region_sem);
1453 
1454 	free_page_series(from, to);
1455 	return 0;
1456 }
1457 
1458 /*
1459  * release a mapping
1460  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1461  *   VMA, though it need not cover the whole VMA
1462  */
1463 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1464 {
1465 	struct vm_area_struct *vma;
1466 	unsigned long end;
1467 	int ret;
1468 
1469 	len = PAGE_ALIGN(len);
1470 	if (len == 0)
1471 		return -EINVAL;
1472 
1473 	end = start + len;
1474 
1475 	/* find the first potentially overlapping VMA */
1476 	vma = find_vma(mm, start);
1477 	if (!vma) {
1478 		static int limit;
1479 		if (limit < 5) {
1480 			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1481 					current->pid, current->comm,
1482 					start, start + len - 1);
1483 			limit++;
1484 		}
1485 		return -EINVAL;
1486 	}
1487 
1488 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1489 	if (vma->vm_file) {
1490 		do {
1491 			if (start > vma->vm_start)
1492 				return -EINVAL;
1493 			if (end == vma->vm_end)
1494 				goto erase_whole_vma;
1495 			vma = vma->vm_next;
1496 		} while (vma);
1497 		return -EINVAL;
1498 	} else {
1499 		/* the chunk must be a subset of the VMA found */
1500 		if (start == vma->vm_start && end == vma->vm_end)
1501 			goto erase_whole_vma;
1502 		if (start < vma->vm_start || end > vma->vm_end)
1503 			return -EINVAL;
1504 		if (offset_in_page(start))
1505 			return -EINVAL;
1506 		if (end != vma->vm_end && offset_in_page(end))
1507 			return -EINVAL;
1508 		if (start != vma->vm_start && end != vma->vm_end) {
1509 			ret = split_vma(mm, vma, start, 1);
1510 			if (ret < 0)
1511 				return ret;
1512 		}
1513 		return shrink_vma(mm, vma, start, end);
1514 	}
1515 
1516 erase_whole_vma:
1517 	delete_vma_from_mm(vma);
1518 	delete_vma(mm, vma);
1519 	return 0;
1520 }
1521 EXPORT_SYMBOL(do_munmap);
1522 
1523 int vm_munmap(unsigned long addr, size_t len)
1524 {
1525 	struct mm_struct *mm = current->mm;
1526 	int ret;
1527 
1528 	mmap_write_lock(mm);
1529 	ret = do_munmap(mm, addr, len, NULL);
1530 	mmap_write_unlock(mm);
1531 	return ret;
1532 }
1533 EXPORT_SYMBOL(vm_munmap);
1534 
1535 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1536 {
1537 	return vm_munmap(addr, len);
1538 }
1539 
1540 /*
1541  * release all the mappings made in a process's VM space
1542  */
1543 void exit_mmap(struct mm_struct *mm)
1544 {
1545 	struct vm_area_struct *vma;
1546 
1547 	if (!mm)
1548 		return;
1549 
1550 	mm->total_vm = 0;
1551 
1552 	while ((vma = mm->mmap)) {
1553 		mm->mmap = vma->vm_next;
1554 		delete_vma_from_mm(vma);
1555 		delete_vma(mm, vma);
1556 		cond_resched();
1557 	}
1558 }
1559 
1560 int vm_brk(unsigned long addr, unsigned long len)
1561 {
1562 	return -ENOMEM;
1563 }
1564 
1565 /*
1566  * expand (or shrink) an existing mapping, potentially moving it at the same
1567  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1568  *
1569  * under NOMMU conditions, we only permit changing a mapping's size, and only
1570  * as long as it stays within the region allocated by do_mmap_private() and the
1571  * block is not shareable
1572  *
1573  * MREMAP_FIXED is not supported under NOMMU conditions
1574  */
1575 static unsigned long do_mremap(unsigned long addr,
1576 			unsigned long old_len, unsigned long new_len,
1577 			unsigned long flags, unsigned long new_addr)
1578 {
1579 	struct vm_area_struct *vma;
1580 
1581 	/* insanity checks first */
1582 	old_len = PAGE_ALIGN(old_len);
1583 	new_len = PAGE_ALIGN(new_len);
1584 	if (old_len == 0 || new_len == 0)
1585 		return (unsigned long) -EINVAL;
1586 
1587 	if (offset_in_page(addr))
1588 		return -EINVAL;
1589 
1590 	if (flags & MREMAP_FIXED && new_addr != addr)
1591 		return (unsigned long) -EINVAL;
1592 
1593 	vma = find_vma_exact(current->mm, addr, old_len);
1594 	if (!vma)
1595 		return (unsigned long) -EINVAL;
1596 
1597 	if (vma->vm_end != vma->vm_start + old_len)
1598 		return (unsigned long) -EFAULT;
1599 
1600 	if (vma->vm_flags & VM_MAYSHARE)
1601 		return (unsigned long) -EPERM;
1602 
1603 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1604 		return (unsigned long) -ENOMEM;
1605 
1606 	/* all checks complete - do it */
1607 	vma->vm_end = vma->vm_start + new_len;
1608 	return vma->vm_start;
1609 }
1610 
1611 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1612 		unsigned long, new_len, unsigned long, flags,
1613 		unsigned long, new_addr)
1614 {
1615 	unsigned long ret;
1616 
1617 	mmap_write_lock(current->mm);
1618 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1619 	mmap_write_unlock(current->mm);
1620 	return ret;
1621 }
1622 
1623 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1624 			 unsigned int foll_flags)
1625 {
1626 	return NULL;
1627 }
1628 
1629 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1630 		unsigned long pfn, unsigned long size, pgprot_t prot)
1631 {
1632 	if (addr != (pfn << PAGE_SHIFT))
1633 		return -EINVAL;
1634 
1635 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1636 	return 0;
1637 }
1638 EXPORT_SYMBOL(remap_pfn_range);
1639 
1640 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1641 {
1642 	unsigned long pfn = start >> PAGE_SHIFT;
1643 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1644 
1645 	pfn += vma->vm_pgoff;
1646 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1647 }
1648 EXPORT_SYMBOL(vm_iomap_memory);
1649 
1650 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1651 			unsigned long pgoff)
1652 {
1653 	unsigned int size = vma->vm_end - vma->vm_start;
1654 
1655 	if (!(vma->vm_flags & VM_USERMAP))
1656 		return -EINVAL;
1657 
1658 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1659 	vma->vm_end = vma->vm_start + size;
1660 
1661 	return 0;
1662 }
1663 EXPORT_SYMBOL(remap_vmalloc_range);
1664 
1665 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1666 	unsigned long len, unsigned long pgoff, unsigned long flags)
1667 {
1668 	return -ENOMEM;
1669 }
1670 
1671 vm_fault_t filemap_fault(struct vm_fault *vmf)
1672 {
1673 	BUG();
1674 	return 0;
1675 }
1676 EXPORT_SYMBOL(filemap_fault);
1677 
1678 void filemap_map_pages(struct vm_fault *vmf,
1679 		pgoff_t start_pgoff, pgoff_t end_pgoff)
1680 {
1681 	BUG();
1682 }
1683 EXPORT_SYMBOL(filemap_map_pages);
1684 
1685 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1686 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
1687 {
1688 	struct vm_area_struct *vma;
1689 	int write = gup_flags & FOLL_WRITE;
1690 
1691 	if (mmap_read_lock_killable(mm))
1692 		return 0;
1693 
1694 	/* the access must start within one of the target process's mappings */
1695 	vma = find_vma(mm, addr);
1696 	if (vma) {
1697 		/* don't overrun this mapping */
1698 		if (addr + len >= vma->vm_end)
1699 			len = vma->vm_end - addr;
1700 
1701 		/* only read or write mappings where it is permitted */
1702 		if (write && vma->vm_flags & VM_MAYWRITE)
1703 			copy_to_user_page(vma, NULL, addr,
1704 					 (void *) addr, buf, len);
1705 		else if (!write && vma->vm_flags & VM_MAYREAD)
1706 			copy_from_user_page(vma, NULL, addr,
1707 					    buf, (void *) addr, len);
1708 		else
1709 			len = 0;
1710 	} else {
1711 		len = 0;
1712 	}
1713 
1714 	mmap_read_unlock(mm);
1715 
1716 	return len;
1717 }
1718 
1719 /**
1720  * access_remote_vm - access another process' address space
1721  * @mm:		the mm_struct of the target address space
1722  * @addr:	start address to access
1723  * @buf:	source or destination buffer
1724  * @len:	number of bytes to transfer
1725  * @gup_flags:	flags modifying lookup behaviour
1726  *
1727  * The caller must hold a reference on @mm.
1728  */
1729 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1730 		void *buf, int len, unsigned int gup_flags)
1731 {
1732 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1733 }
1734 
1735 /*
1736  * Access another process' address space.
1737  * - source/target buffer must be kernel space
1738  */
1739 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1740 		unsigned int gup_flags)
1741 {
1742 	struct mm_struct *mm;
1743 
1744 	if (addr + len < addr)
1745 		return 0;
1746 
1747 	mm = get_task_mm(tsk);
1748 	if (!mm)
1749 		return 0;
1750 
1751 	len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1752 
1753 	mmput(mm);
1754 	return len;
1755 }
1756 EXPORT_SYMBOL_GPL(access_process_vm);
1757 
1758 /**
1759  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1760  * @inode: The inode to check
1761  * @size: The current filesize of the inode
1762  * @newsize: The proposed filesize of the inode
1763  *
1764  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1765  * make sure that any outstanding VMAs aren't broken and then shrink the
1766  * vm_regions that extend beyond so that do_mmap() doesn't
1767  * automatically grant mappings that are too large.
1768  */
1769 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1770 				size_t newsize)
1771 {
1772 	struct vm_area_struct *vma;
1773 	struct vm_region *region;
1774 	pgoff_t low, high;
1775 	size_t r_size, r_top;
1776 
1777 	low = newsize >> PAGE_SHIFT;
1778 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1779 
1780 	down_write(&nommu_region_sem);
1781 	i_mmap_lock_read(inode->i_mapping);
1782 
1783 	/* search for VMAs that fall within the dead zone */
1784 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1785 		/* found one - only interested if it's shared out of the page
1786 		 * cache */
1787 		if (vma->vm_flags & VM_SHARED) {
1788 			i_mmap_unlock_read(inode->i_mapping);
1789 			up_write(&nommu_region_sem);
1790 			return -ETXTBSY; /* not quite true, but near enough */
1791 		}
1792 	}
1793 
1794 	/* reduce any regions that overlap the dead zone - if in existence,
1795 	 * these will be pointed to by VMAs that don't overlap the dead zone
1796 	 *
1797 	 * we don't check for any regions that start beyond the EOF as there
1798 	 * shouldn't be any
1799 	 */
1800 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1801 		if (!(vma->vm_flags & VM_SHARED))
1802 			continue;
1803 
1804 		region = vma->vm_region;
1805 		r_size = region->vm_top - region->vm_start;
1806 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1807 
1808 		if (r_top > newsize) {
1809 			region->vm_top -= r_top - newsize;
1810 			if (region->vm_end > region->vm_top)
1811 				region->vm_end = region->vm_top;
1812 		}
1813 	}
1814 
1815 	i_mmap_unlock_read(inode->i_mapping);
1816 	up_write(&nommu_region_sem);
1817 	return 0;
1818 }
1819 
1820 /*
1821  * Initialise sysctl_user_reserve_kbytes.
1822  *
1823  * This is intended to prevent a user from starting a single memory hogging
1824  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1825  * mode.
1826  *
1827  * The default value is min(3% of free memory, 128MB)
1828  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1829  */
1830 static int __meminit init_user_reserve(void)
1831 {
1832 	unsigned long free_kbytes;
1833 
1834 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1835 
1836 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1837 	return 0;
1838 }
1839 subsys_initcall(init_user_reserve);
1840 
1841 /*
1842  * Initialise sysctl_admin_reserve_kbytes.
1843  *
1844  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1845  * to log in and kill a memory hogging process.
1846  *
1847  * Systems with more than 256MB will reserve 8MB, enough to recover
1848  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1849  * only reserve 3% of free pages by default.
1850  */
1851 static int __meminit init_admin_reserve(void)
1852 {
1853 	unsigned long free_kbytes;
1854 
1855 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1856 
1857 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1858 	return 0;
1859 }
1860 subsys_initcall(init_admin_reserve);
1861