1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/nommu.c 4 * 5 * Replacement code for mm functions to support CPU's that don't 6 * have any form of memory management unit (thus no virtual memory). 7 * 8 * See Documentation/admin-guide/mm/nommu-mmap.rst 9 * 10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/export.h> 20 #include <linux/mm.h> 21 #include <linux/sched/mm.h> 22 #include <linux/mman.h> 23 #include <linux/swap.h> 24 #include <linux/file.h> 25 #include <linux/highmem.h> 26 #include <linux/pagemap.h> 27 #include <linux/slab.h> 28 #include <linux/vmalloc.h> 29 #include <linux/backing-dev.h> 30 #include <linux/compiler.h> 31 #include <linux/mount.h> 32 #include <linux/personality.h> 33 #include <linux/security.h> 34 #include <linux/syscalls.h> 35 #include <linux/audit.h> 36 #include <linux/printk.h> 37 38 #include <linux/uaccess.h> 39 #include <linux/uio.h> 40 #include <asm/tlb.h> 41 #include <asm/tlbflush.h> 42 #include <asm/mmu_context.h> 43 #include "internal.h" 44 45 void *high_memory; 46 EXPORT_SYMBOL(high_memory); 47 struct page *mem_map; 48 unsigned long max_mapnr; 49 EXPORT_SYMBOL(max_mapnr); 50 unsigned long highest_memmap_pfn; 51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 52 int heap_stack_gap = 0; 53 54 atomic_long_t mmap_pages_allocated; 55 56 EXPORT_SYMBOL(mem_map); 57 58 /* list of mapped, potentially shareable regions */ 59 static struct kmem_cache *vm_region_jar; 60 struct rb_root nommu_region_tree = RB_ROOT; 61 DECLARE_RWSEM(nommu_region_sem); 62 63 const struct vm_operations_struct generic_file_vm_ops = { 64 }; 65 66 /* 67 * Return the total memory allocated for this pointer, not 68 * just what the caller asked for. 69 * 70 * Doesn't have to be accurate, i.e. may have races. 71 */ 72 unsigned int kobjsize(const void *objp) 73 { 74 struct page *page; 75 76 /* 77 * If the object we have should not have ksize performed on it, 78 * return size of 0 79 */ 80 if (!objp || !virt_addr_valid(objp)) 81 return 0; 82 83 page = virt_to_head_page(objp); 84 85 /* 86 * If the allocator sets PageSlab, we know the pointer came from 87 * kmalloc(). 88 */ 89 if (PageSlab(page)) 90 return ksize(objp); 91 92 /* 93 * If it's not a compound page, see if we have a matching VMA 94 * region. This test is intentionally done in reverse order, 95 * so if there's no VMA, we still fall through and hand back 96 * PAGE_SIZE for 0-order pages. 97 */ 98 if (!PageCompound(page)) { 99 struct vm_area_struct *vma; 100 101 vma = find_vma(current->mm, (unsigned long)objp); 102 if (vma) 103 return vma->vm_end - vma->vm_start; 104 } 105 106 /* 107 * The ksize() function is only guaranteed to work for pointers 108 * returned by kmalloc(). So handle arbitrary pointers here. 109 */ 110 return page_size(page); 111 } 112 113 /** 114 * follow_pfn - look up PFN at a user virtual address 115 * @vma: memory mapping 116 * @address: user virtual address 117 * @pfn: location to store found PFN 118 * 119 * Only IO mappings and raw PFN mappings are allowed. 120 * 121 * Returns zero and the pfn at @pfn on success, -ve otherwise. 122 */ 123 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 124 unsigned long *pfn) 125 { 126 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 127 return -EINVAL; 128 129 *pfn = address >> PAGE_SHIFT; 130 return 0; 131 } 132 EXPORT_SYMBOL(follow_pfn); 133 134 LIST_HEAD(vmap_area_list); 135 136 void vfree(const void *addr) 137 { 138 kfree(addr); 139 } 140 EXPORT_SYMBOL(vfree); 141 142 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 143 { 144 /* 145 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 146 * returns only a logical address. 147 */ 148 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 149 } 150 EXPORT_SYMBOL(__vmalloc); 151 152 void *__vmalloc_node_range(unsigned long size, unsigned long align, 153 unsigned long start, unsigned long end, gfp_t gfp_mask, 154 pgprot_t prot, unsigned long vm_flags, int node, 155 const void *caller) 156 { 157 return __vmalloc(size, gfp_mask); 158 } 159 160 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask, 161 int node, const void *caller) 162 { 163 return __vmalloc(size, gfp_mask); 164 } 165 166 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags) 167 { 168 void *ret; 169 170 ret = __vmalloc(size, flags); 171 if (ret) { 172 struct vm_area_struct *vma; 173 174 mmap_write_lock(current->mm); 175 vma = find_vma(current->mm, (unsigned long)ret); 176 if (vma) 177 vm_flags_set(vma, VM_USERMAP); 178 mmap_write_unlock(current->mm); 179 } 180 181 return ret; 182 } 183 184 void *vmalloc_user(unsigned long size) 185 { 186 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO); 187 } 188 EXPORT_SYMBOL(vmalloc_user); 189 190 struct page *vmalloc_to_page(const void *addr) 191 { 192 return virt_to_page(addr); 193 } 194 EXPORT_SYMBOL(vmalloc_to_page); 195 196 unsigned long vmalloc_to_pfn(const void *addr) 197 { 198 return page_to_pfn(virt_to_page(addr)); 199 } 200 EXPORT_SYMBOL(vmalloc_to_pfn); 201 202 long vread_iter(struct iov_iter *iter, const char *addr, size_t count) 203 { 204 /* Don't allow overflow */ 205 if ((unsigned long) addr + count < count) 206 count = -(unsigned long) addr; 207 208 return copy_to_iter(addr, count, iter); 209 } 210 211 /* 212 * vmalloc - allocate virtually contiguous memory 213 * 214 * @size: allocation size 215 * 216 * Allocate enough pages to cover @size from the page level 217 * allocator and map them into contiguous kernel virtual space. 218 * 219 * For tight control over page level allocator and protection flags 220 * use __vmalloc() instead. 221 */ 222 void *vmalloc(unsigned long size) 223 { 224 return __vmalloc(size, GFP_KERNEL); 225 } 226 EXPORT_SYMBOL(vmalloc); 227 228 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc); 229 230 /* 231 * vzalloc - allocate virtually contiguous memory with zero fill 232 * 233 * @size: allocation size 234 * 235 * Allocate enough pages to cover @size from the page level 236 * allocator and map them into contiguous kernel virtual space. 237 * The memory allocated is set to zero. 238 * 239 * For tight control over page level allocator and protection flags 240 * use __vmalloc() instead. 241 */ 242 void *vzalloc(unsigned long size) 243 { 244 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO); 245 } 246 EXPORT_SYMBOL(vzalloc); 247 248 /** 249 * vmalloc_node - allocate memory on a specific node 250 * @size: allocation size 251 * @node: numa node 252 * 253 * Allocate enough pages to cover @size from the page level 254 * allocator and map them into contiguous kernel virtual space. 255 * 256 * For tight control over page level allocator and protection flags 257 * use __vmalloc() instead. 258 */ 259 void *vmalloc_node(unsigned long size, int node) 260 { 261 return vmalloc(size); 262 } 263 EXPORT_SYMBOL(vmalloc_node); 264 265 /** 266 * vzalloc_node - allocate memory on a specific node with zero fill 267 * @size: allocation size 268 * @node: numa node 269 * 270 * Allocate enough pages to cover @size from the page level 271 * allocator and map them into contiguous kernel virtual space. 272 * The memory allocated is set to zero. 273 * 274 * For tight control over page level allocator and protection flags 275 * use __vmalloc() instead. 276 */ 277 void *vzalloc_node(unsigned long size, int node) 278 { 279 return vzalloc(size); 280 } 281 EXPORT_SYMBOL(vzalloc_node); 282 283 /** 284 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 285 * @size: allocation size 286 * 287 * Allocate enough 32bit PA addressable pages to cover @size from the 288 * page level allocator and map them into contiguous kernel virtual space. 289 */ 290 void *vmalloc_32(unsigned long size) 291 { 292 return __vmalloc(size, GFP_KERNEL); 293 } 294 EXPORT_SYMBOL(vmalloc_32); 295 296 /** 297 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 298 * @size: allocation size 299 * 300 * The resulting memory area is 32bit addressable and zeroed so it can be 301 * mapped to userspace without leaking data. 302 * 303 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 304 * remap_vmalloc_range() are permissible. 305 */ 306 void *vmalloc_32_user(unsigned long size) 307 { 308 /* 309 * We'll have to sort out the ZONE_DMA bits for 64-bit, 310 * but for now this can simply use vmalloc_user() directly. 311 */ 312 return vmalloc_user(size); 313 } 314 EXPORT_SYMBOL(vmalloc_32_user); 315 316 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 317 { 318 BUG(); 319 return NULL; 320 } 321 EXPORT_SYMBOL(vmap); 322 323 void vunmap(const void *addr) 324 { 325 BUG(); 326 } 327 EXPORT_SYMBOL(vunmap); 328 329 void *vm_map_ram(struct page **pages, unsigned int count, int node) 330 { 331 BUG(); 332 return NULL; 333 } 334 EXPORT_SYMBOL(vm_map_ram); 335 336 void vm_unmap_ram(const void *mem, unsigned int count) 337 { 338 BUG(); 339 } 340 EXPORT_SYMBOL(vm_unmap_ram); 341 342 void vm_unmap_aliases(void) 343 { 344 } 345 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 346 347 void free_vm_area(struct vm_struct *area) 348 { 349 BUG(); 350 } 351 EXPORT_SYMBOL_GPL(free_vm_area); 352 353 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 354 struct page *page) 355 { 356 return -EINVAL; 357 } 358 EXPORT_SYMBOL(vm_insert_page); 359 360 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 361 unsigned long num) 362 { 363 return -EINVAL; 364 } 365 EXPORT_SYMBOL(vm_map_pages); 366 367 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 368 unsigned long num) 369 { 370 return -EINVAL; 371 } 372 EXPORT_SYMBOL(vm_map_pages_zero); 373 374 /* 375 * sys_brk() for the most part doesn't need the global kernel 376 * lock, except when an application is doing something nasty 377 * like trying to un-brk an area that has already been mapped 378 * to a regular file. in this case, the unmapping will need 379 * to invoke file system routines that need the global lock. 380 */ 381 SYSCALL_DEFINE1(brk, unsigned long, brk) 382 { 383 struct mm_struct *mm = current->mm; 384 385 if (brk < mm->start_brk || brk > mm->context.end_brk) 386 return mm->brk; 387 388 if (mm->brk == brk) 389 return mm->brk; 390 391 /* 392 * Always allow shrinking brk 393 */ 394 if (brk <= mm->brk) { 395 mm->brk = brk; 396 return brk; 397 } 398 399 /* 400 * Ok, looks good - let it rip. 401 */ 402 flush_icache_user_range(mm->brk, brk); 403 return mm->brk = brk; 404 } 405 406 /* 407 * initialise the percpu counter for VM and region record slabs 408 */ 409 void __init mmap_init(void) 410 { 411 int ret; 412 413 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 414 VM_BUG_ON(ret); 415 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 416 } 417 418 /* 419 * validate the region tree 420 * - the caller must hold the region lock 421 */ 422 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 423 static noinline void validate_nommu_regions(void) 424 { 425 struct vm_region *region, *last; 426 struct rb_node *p, *lastp; 427 428 lastp = rb_first(&nommu_region_tree); 429 if (!lastp) 430 return; 431 432 last = rb_entry(lastp, struct vm_region, vm_rb); 433 BUG_ON(last->vm_end <= last->vm_start); 434 BUG_ON(last->vm_top < last->vm_end); 435 436 while ((p = rb_next(lastp))) { 437 region = rb_entry(p, struct vm_region, vm_rb); 438 last = rb_entry(lastp, struct vm_region, vm_rb); 439 440 BUG_ON(region->vm_end <= region->vm_start); 441 BUG_ON(region->vm_top < region->vm_end); 442 BUG_ON(region->vm_start < last->vm_top); 443 444 lastp = p; 445 } 446 } 447 #else 448 static void validate_nommu_regions(void) 449 { 450 } 451 #endif 452 453 /* 454 * add a region into the global tree 455 */ 456 static void add_nommu_region(struct vm_region *region) 457 { 458 struct vm_region *pregion; 459 struct rb_node **p, *parent; 460 461 validate_nommu_regions(); 462 463 parent = NULL; 464 p = &nommu_region_tree.rb_node; 465 while (*p) { 466 parent = *p; 467 pregion = rb_entry(parent, struct vm_region, vm_rb); 468 if (region->vm_start < pregion->vm_start) 469 p = &(*p)->rb_left; 470 else if (region->vm_start > pregion->vm_start) 471 p = &(*p)->rb_right; 472 else if (pregion == region) 473 return; 474 else 475 BUG(); 476 } 477 478 rb_link_node(®ion->vm_rb, parent, p); 479 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 480 481 validate_nommu_regions(); 482 } 483 484 /* 485 * delete a region from the global tree 486 */ 487 static void delete_nommu_region(struct vm_region *region) 488 { 489 BUG_ON(!nommu_region_tree.rb_node); 490 491 validate_nommu_regions(); 492 rb_erase(®ion->vm_rb, &nommu_region_tree); 493 validate_nommu_regions(); 494 } 495 496 /* 497 * free a contiguous series of pages 498 */ 499 static void free_page_series(unsigned long from, unsigned long to) 500 { 501 for (; from < to; from += PAGE_SIZE) { 502 struct page *page = virt_to_page((void *)from); 503 504 atomic_long_dec(&mmap_pages_allocated); 505 put_page(page); 506 } 507 } 508 509 /* 510 * release a reference to a region 511 * - the caller must hold the region semaphore for writing, which this releases 512 * - the region may not have been added to the tree yet, in which case vm_top 513 * will equal vm_start 514 */ 515 static void __put_nommu_region(struct vm_region *region) 516 __releases(nommu_region_sem) 517 { 518 BUG_ON(!nommu_region_tree.rb_node); 519 520 if (--region->vm_usage == 0) { 521 if (region->vm_top > region->vm_start) 522 delete_nommu_region(region); 523 up_write(&nommu_region_sem); 524 525 if (region->vm_file) 526 fput(region->vm_file); 527 528 /* IO memory and memory shared directly out of the pagecache 529 * from ramfs/tmpfs mustn't be released here */ 530 if (region->vm_flags & VM_MAPPED_COPY) 531 free_page_series(region->vm_start, region->vm_top); 532 kmem_cache_free(vm_region_jar, region); 533 } else { 534 up_write(&nommu_region_sem); 535 } 536 } 537 538 /* 539 * release a reference to a region 540 */ 541 static void put_nommu_region(struct vm_region *region) 542 { 543 down_write(&nommu_region_sem); 544 __put_nommu_region(region); 545 } 546 547 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm) 548 { 549 vma->vm_mm = mm; 550 551 /* add the VMA to the mapping */ 552 if (vma->vm_file) { 553 struct address_space *mapping = vma->vm_file->f_mapping; 554 555 i_mmap_lock_write(mapping); 556 flush_dcache_mmap_lock(mapping); 557 vma_interval_tree_insert(vma, &mapping->i_mmap); 558 flush_dcache_mmap_unlock(mapping); 559 i_mmap_unlock_write(mapping); 560 } 561 } 562 563 static void cleanup_vma_from_mm(struct vm_area_struct *vma) 564 { 565 vma->vm_mm->map_count--; 566 /* remove the VMA from the mapping */ 567 if (vma->vm_file) { 568 struct address_space *mapping; 569 mapping = vma->vm_file->f_mapping; 570 571 i_mmap_lock_write(mapping); 572 flush_dcache_mmap_lock(mapping); 573 vma_interval_tree_remove(vma, &mapping->i_mmap); 574 flush_dcache_mmap_unlock(mapping); 575 i_mmap_unlock_write(mapping); 576 } 577 } 578 579 /* 580 * delete a VMA from its owning mm_struct and address space 581 */ 582 static int delete_vma_from_mm(struct vm_area_struct *vma) 583 { 584 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start); 585 586 if (vma_iter_prealloc(&vmi)) { 587 pr_warn("Allocation of vma tree for process %d failed\n", 588 current->pid); 589 return -ENOMEM; 590 } 591 cleanup_vma_from_mm(vma); 592 593 /* remove from the MM's tree and list */ 594 vma_iter_clear(&vmi, vma->vm_start, vma->vm_end); 595 return 0; 596 } 597 /* 598 * destroy a VMA record 599 */ 600 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 601 { 602 if (vma->vm_ops && vma->vm_ops->close) 603 vma->vm_ops->close(vma); 604 if (vma->vm_file) 605 fput(vma->vm_file); 606 put_nommu_region(vma->vm_region); 607 vm_area_free(vma); 608 } 609 610 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 611 unsigned long start_addr, 612 unsigned long end_addr) 613 { 614 unsigned long index = start_addr; 615 616 mmap_assert_locked(mm); 617 return mt_find(&mm->mm_mt, &index, end_addr - 1); 618 } 619 EXPORT_SYMBOL(find_vma_intersection); 620 621 /* 622 * look up the first VMA in which addr resides, NULL if none 623 * - should be called with mm->mmap_lock at least held readlocked 624 */ 625 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 626 { 627 VMA_ITERATOR(vmi, mm, addr); 628 629 return vma_iter_load(&vmi); 630 } 631 EXPORT_SYMBOL(find_vma); 632 633 /* 634 * At least xtensa ends up having protection faults even with no 635 * MMU.. No stack expansion, at least. 636 */ 637 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 638 unsigned long addr, struct pt_regs *regs) 639 { 640 struct vm_area_struct *vma; 641 642 mmap_read_lock(mm); 643 vma = vma_lookup(mm, addr); 644 if (!vma) 645 mmap_read_unlock(mm); 646 return vma; 647 } 648 649 /* 650 * expand a stack to a given address 651 * - not supported under NOMMU conditions 652 */ 653 int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr) 654 { 655 return -ENOMEM; 656 } 657 658 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr) 659 { 660 mmap_read_unlock(mm); 661 return NULL; 662 } 663 664 /* 665 * look up the first VMA exactly that exactly matches addr 666 * - should be called with mm->mmap_lock at least held readlocked 667 */ 668 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 669 unsigned long addr, 670 unsigned long len) 671 { 672 struct vm_area_struct *vma; 673 unsigned long end = addr + len; 674 VMA_ITERATOR(vmi, mm, addr); 675 676 vma = vma_iter_load(&vmi); 677 if (!vma) 678 return NULL; 679 if (vma->vm_start != addr) 680 return NULL; 681 if (vma->vm_end != end) 682 return NULL; 683 684 return vma; 685 } 686 687 /* 688 * determine whether a mapping should be permitted and, if so, what sort of 689 * mapping we're capable of supporting 690 */ 691 static int validate_mmap_request(struct file *file, 692 unsigned long addr, 693 unsigned long len, 694 unsigned long prot, 695 unsigned long flags, 696 unsigned long pgoff, 697 unsigned long *_capabilities) 698 { 699 unsigned long capabilities, rlen; 700 int ret; 701 702 /* do the simple checks first */ 703 if (flags & MAP_FIXED) 704 return -EINVAL; 705 706 if ((flags & MAP_TYPE) != MAP_PRIVATE && 707 (flags & MAP_TYPE) != MAP_SHARED) 708 return -EINVAL; 709 710 if (!len) 711 return -EINVAL; 712 713 /* Careful about overflows.. */ 714 rlen = PAGE_ALIGN(len); 715 if (!rlen || rlen > TASK_SIZE) 716 return -ENOMEM; 717 718 /* offset overflow? */ 719 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 720 return -EOVERFLOW; 721 722 if (file) { 723 /* files must support mmap */ 724 if (!file->f_op->mmap) 725 return -ENODEV; 726 727 /* work out if what we've got could possibly be shared 728 * - we support chardevs that provide their own "memory" 729 * - we support files/blockdevs that are memory backed 730 */ 731 if (file->f_op->mmap_capabilities) { 732 capabilities = file->f_op->mmap_capabilities(file); 733 } else { 734 /* no explicit capabilities set, so assume some 735 * defaults */ 736 switch (file_inode(file)->i_mode & S_IFMT) { 737 case S_IFREG: 738 case S_IFBLK: 739 capabilities = NOMMU_MAP_COPY; 740 break; 741 742 case S_IFCHR: 743 capabilities = 744 NOMMU_MAP_DIRECT | 745 NOMMU_MAP_READ | 746 NOMMU_MAP_WRITE; 747 break; 748 749 default: 750 return -EINVAL; 751 } 752 } 753 754 /* eliminate any capabilities that we can't support on this 755 * device */ 756 if (!file->f_op->get_unmapped_area) 757 capabilities &= ~NOMMU_MAP_DIRECT; 758 if (!(file->f_mode & FMODE_CAN_READ)) 759 capabilities &= ~NOMMU_MAP_COPY; 760 761 /* The file shall have been opened with read permission. */ 762 if (!(file->f_mode & FMODE_READ)) 763 return -EACCES; 764 765 if (flags & MAP_SHARED) { 766 /* do checks for writing, appending and locking */ 767 if ((prot & PROT_WRITE) && 768 !(file->f_mode & FMODE_WRITE)) 769 return -EACCES; 770 771 if (IS_APPEND(file_inode(file)) && 772 (file->f_mode & FMODE_WRITE)) 773 return -EACCES; 774 775 if (!(capabilities & NOMMU_MAP_DIRECT)) 776 return -ENODEV; 777 778 /* we mustn't privatise shared mappings */ 779 capabilities &= ~NOMMU_MAP_COPY; 780 } else { 781 /* we're going to read the file into private memory we 782 * allocate */ 783 if (!(capabilities & NOMMU_MAP_COPY)) 784 return -ENODEV; 785 786 /* we don't permit a private writable mapping to be 787 * shared with the backing device */ 788 if (prot & PROT_WRITE) 789 capabilities &= ~NOMMU_MAP_DIRECT; 790 } 791 792 if (capabilities & NOMMU_MAP_DIRECT) { 793 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 794 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 795 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 796 ) { 797 capabilities &= ~NOMMU_MAP_DIRECT; 798 if (flags & MAP_SHARED) { 799 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 800 return -EINVAL; 801 } 802 } 803 } 804 805 /* handle executable mappings and implied executable 806 * mappings */ 807 if (path_noexec(&file->f_path)) { 808 if (prot & PROT_EXEC) 809 return -EPERM; 810 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 811 /* handle implication of PROT_EXEC by PROT_READ */ 812 if (current->personality & READ_IMPLIES_EXEC) { 813 if (capabilities & NOMMU_MAP_EXEC) 814 prot |= PROT_EXEC; 815 } 816 } else if ((prot & PROT_READ) && 817 (prot & PROT_EXEC) && 818 !(capabilities & NOMMU_MAP_EXEC) 819 ) { 820 /* backing file is not executable, try to copy */ 821 capabilities &= ~NOMMU_MAP_DIRECT; 822 } 823 } else { 824 /* anonymous mappings are always memory backed and can be 825 * privately mapped 826 */ 827 capabilities = NOMMU_MAP_COPY; 828 829 /* handle PROT_EXEC implication by PROT_READ */ 830 if ((prot & PROT_READ) && 831 (current->personality & READ_IMPLIES_EXEC)) 832 prot |= PROT_EXEC; 833 } 834 835 /* allow the security API to have its say */ 836 ret = security_mmap_addr(addr); 837 if (ret < 0) 838 return ret; 839 840 /* looks okay */ 841 *_capabilities = capabilities; 842 return 0; 843 } 844 845 /* 846 * we've determined that we can make the mapping, now translate what we 847 * now know into VMA flags 848 */ 849 static unsigned long determine_vm_flags(struct file *file, 850 unsigned long prot, 851 unsigned long flags, 852 unsigned long capabilities) 853 { 854 unsigned long vm_flags; 855 856 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags); 857 858 if (!file) { 859 /* 860 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because 861 * there is no fork(). 862 */ 863 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 864 } else if (flags & MAP_PRIVATE) { 865 /* MAP_PRIVATE file mapping */ 866 if (capabilities & NOMMU_MAP_DIRECT) 867 vm_flags |= (capabilities & NOMMU_VMFLAGS); 868 else 869 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 870 871 if (!(prot & PROT_WRITE) && !current->ptrace) 872 /* 873 * R/O private file mapping which cannot be used to 874 * modify memory, especially also not via active ptrace 875 * (e.g., set breakpoints) or later by upgrading 876 * permissions (no mprotect()). We can try overlaying 877 * the file mapping, which will work e.g., on chardevs, 878 * ramfs/tmpfs/shmfs and romfs/cramf. 879 */ 880 vm_flags |= VM_MAYOVERLAY; 881 } else { 882 /* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */ 883 vm_flags |= VM_SHARED | VM_MAYSHARE | 884 (capabilities & NOMMU_VMFLAGS); 885 } 886 887 return vm_flags; 888 } 889 890 /* 891 * set up a shared mapping on a file (the driver or filesystem provides and 892 * pins the storage) 893 */ 894 static int do_mmap_shared_file(struct vm_area_struct *vma) 895 { 896 int ret; 897 898 ret = call_mmap(vma->vm_file, vma); 899 if (ret == 0) { 900 vma->vm_region->vm_top = vma->vm_region->vm_end; 901 return 0; 902 } 903 if (ret != -ENOSYS) 904 return ret; 905 906 /* getting -ENOSYS indicates that direct mmap isn't possible (as 907 * opposed to tried but failed) so we can only give a suitable error as 908 * it's not possible to make a private copy if MAP_SHARED was given */ 909 return -ENODEV; 910 } 911 912 /* 913 * set up a private mapping or an anonymous shared mapping 914 */ 915 static int do_mmap_private(struct vm_area_struct *vma, 916 struct vm_region *region, 917 unsigned long len, 918 unsigned long capabilities) 919 { 920 unsigned long total, point; 921 void *base; 922 int ret, order; 923 924 /* 925 * Invoke the file's mapping function so that it can keep track of 926 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if 927 * it may attempt to share, which will make is_nommu_shared_mapping() 928 * happy. 929 */ 930 if (capabilities & NOMMU_MAP_DIRECT) { 931 ret = call_mmap(vma->vm_file, vma); 932 /* shouldn't return success if we're not sharing */ 933 if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags))) 934 ret = -ENOSYS; 935 if (ret == 0) { 936 vma->vm_region->vm_top = vma->vm_region->vm_end; 937 return 0; 938 } 939 if (ret != -ENOSYS) 940 return ret; 941 942 /* getting an ENOSYS error indicates that direct mmap isn't 943 * possible (as opposed to tried but failed) so we'll try to 944 * make a private copy of the data and map that instead */ 945 } 946 947 948 /* allocate some memory to hold the mapping 949 * - note that this may not return a page-aligned address if the object 950 * we're allocating is smaller than a page 951 */ 952 order = get_order(len); 953 total = 1 << order; 954 point = len >> PAGE_SHIFT; 955 956 /* we don't want to allocate a power-of-2 sized page set */ 957 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 958 total = point; 959 960 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 961 if (!base) 962 goto enomem; 963 964 atomic_long_add(total, &mmap_pages_allocated); 965 966 vm_flags_set(vma, VM_MAPPED_COPY); 967 region->vm_flags = vma->vm_flags; 968 region->vm_start = (unsigned long) base; 969 region->vm_end = region->vm_start + len; 970 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 971 972 vma->vm_start = region->vm_start; 973 vma->vm_end = region->vm_start + len; 974 975 if (vma->vm_file) { 976 /* read the contents of a file into the copy */ 977 loff_t fpos; 978 979 fpos = vma->vm_pgoff; 980 fpos <<= PAGE_SHIFT; 981 982 ret = kernel_read(vma->vm_file, base, len, &fpos); 983 if (ret < 0) 984 goto error_free; 985 986 /* clear the last little bit */ 987 if (ret < len) 988 memset(base + ret, 0, len - ret); 989 990 } else { 991 vma_set_anonymous(vma); 992 } 993 994 return 0; 995 996 error_free: 997 free_page_series(region->vm_start, region->vm_top); 998 region->vm_start = vma->vm_start = 0; 999 region->vm_end = vma->vm_end = 0; 1000 region->vm_top = 0; 1001 return ret; 1002 1003 enomem: 1004 pr_err("Allocation of length %lu from process %d (%s) failed\n", 1005 len, current->pid, current->comm); 1006 show_free_areas(0, NULL); 1007 return -ENOMEM; 1008 } 1009 1010 /* 1011 * handle mapping creation for uClinux 1012 */ 1013 unsigned long do_mmap(struct file *file, 1014 unsigned long addr, 1015 unsigned long len, 1016 unsigned long prot, 1017 unsigned long flags, 1018 unsigned long pgoff, 1019 unsigned long *populate, 1020 struct list_head *uf) 1021 { 1022 struct vm_area_struct *vma; 1023 struct vm_region *region; 1024 struct rb_node *rb; 1025 vm_flags_t vm_flags; 1026 unsigned long capabilities, result; 1027 int ret; 1028 VMA_ITERATOR(vmi, current->mm, 0); 1029 1030 *populate = 0; 1031 1032 /* decide whether we should attempt the mapping, and if so what sort of 1033 * mapping */ 1034 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1035 &capabilities); 1036 if (ret < 0) 1037 return ret; 1038 1039 /* we ignore the address hint */ 1040 addr = 0; 1041 len = PAGE_ALIGN(len); 1042 1043 /* we've determined that we can make the mapping, now translate what we 1044 * now know into VMA flags */ 1045 vm_flags = determine_vm_flags(file, prot, flags, capabilities); 1046 1047 1048 /* we're going to need to record the mapping */ 1049 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1050 if (!region) 1051 goto error_getting_region; 1052 1053 vma = vm_area_alloc(current->mm); 1054 if (!vma) 1055 goto error_getting_vma; 1056 1057 if (vma_iter_prealloc(&vmi)) 1058 goto error_vma_iter_prealloc; 1059 1060 region->vm_usage = 1; 1061 region->vm_flags = vm_flags; 1062 region->vm_pgoff = pgoff; 1063 1064 vm_flags_init(vma, vm_flags); 1065 vma->vm_pgoff = pgoff; 1066 1067 if (file) { 1068 region->vm_file = get_file(file); 1069 vma->vm_file = get_file(file); 1070 } 1071 1072 down_write(&nommu_region_sem); 1073 1074 /* if we want to share, we need to check for regions created by other 1075 * mmap() calls that overlap with our proposed mapping 1076 * - we can only share with a superset match on most regular files 1077 * - shared mappings on character devices and memory backed files are 1078 * permitted to overlap inexactly as far as we are concerned for in 1079 * these cases, sharing is handled in the driver or filesystem rather 1080 * than here 1081 */ 1082 if (is_nommu_shared_mapping(vm_flags)) { 1083 struct vm_region *pregion; 1084 unsigned long pglen, rpglen, pgend, rpgend, start; 1085 1086 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1087 pgend = pgoff + pglen; 1088 1089 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1090 pregion = rb_entry(rb, struct vm_region, vm_rb); 1091 1092 if (!is_nommu_shared_mapping(pregion->vm_flags)) 1093 continue; 1094 1095 /* search for overlapping mappings on the same file */ 1096 if (file_inode(pregion->vm_file) != 1097 file_inode(file)) 1098 continue; 1099 1100 if (pregion->vm_pgoff >= pgend) 1101 continue; 1102 1103 rpglen = pregion->vm_end - pregion->vm_start; 1104 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1105 rpgend = pregion->vm_pgoff + rpglen; 1106 if (pgoff >= rpgend) 1107 continue; 1108 1109 /* handle inexactly overlapping matches between 1110 * mappings */ 1111 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1112 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1113 /* new mapping is not a subset of the region */ 1114 if (!(capabilities & NOMMU_MAP_DIRECT)) 1115 goto sharing_violation; 1116 continue; 1117 } 1118 1119 /* we've found a region we can share */ 1120 pregion->vm_usage++; 1121 vma->vm_region = pregion; 1122 start = pregion->vm_start; 1123 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1124 vma->vm_start = start; 1125 vma->vm_end = start + len; 1126 1127 if (pregion->vm_flags & VM_MAPPED_COPY) 1128 vm_flags_set(vma, VM_MAPPED_COPY); 1129 else { 1130 ret = do_mmap_shared_file(vma); 1131 if (ret < 0) { 1132 vma->vm_region = NULL; 1133 vma->vm_start = 0; 1134 vma->vm_end = 0; 1135 pregion->vm_usage--; 1136 pregion = NULL; 1137 goto error_just_free; 1138 } 1139 } 1140 fput(region->vm_file); 1141 kmem_cache_free(vm_region_jar, region); 1142 region = pregion; 1143 result = start; 1144 goto share; 1145 } 1146 1147 /* obtain the address at which to make a shared mapping 1148 * - this is the hook for quasi-memory character devices to 1149 * tell us the location of a shared mapping 1150 */ 1151 if (capabilities & NOMMU_MAP_DIRECT) { 1152 addr = file->f_op->get_unmapped_area(file, addr, len, 1153 pgoff, flags); 1154 if (IS_ERR_VALUE(addr)) { 1155 ret = addr; 1156 if (ret != -ENOSYS) 1157 goto error_just_free; 1158 1159 /* the driver refused to tell us where to site 1160 * the mapping so we'll have to attempt to copy 1161 * it */ 1162 ret = -ENODEV; 1163 if (!(capabilities & NOMMU_MAP_COPY)) 1164 goto error_just_free; 1165 1166 capabilities &= ~NOMMU_MAP_DIRECT; 1167 } else { 1168 vma->vm_start = region->vm_start = addr; 1169 vma->vm_end = region->vm_end = addr + len; 1170 } 1171 } 1172 } 1173 1174 vma->vm_region = region; 1175 1176 /* set up the mapping 1177 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1178 */ 1179 if (file && vma->vm_flags & VM_SHARED) 1180 ret = do_mmap_shared_file(vma); 1181 else 1182 ret = do_mmap_private(vma, region, len, capabilities); 1183 if (ret < 0) 1184 goto error_just_free; 1185 add_nommu_region(region); 1186 1187 /* clear anonymous mappings that don't ask for uninitialized data */ 1188 if (!vma->vm_file && 1189 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) || 1190 !(flags & MAP_UNINITIALIZED))) 1191 memset((void *)region->vm_start, 0, 1192 region->vm_end - region->vm_start); 1193 1194 /* okay... we have a mapping; now we have to register it */ 1195 result = vma->vm_start; 1196 1197 current->mm->total_vm += len >> PAGE_SHIFT; 1198 1199 share: 1200 BUG_ON(!vma->vm_region); 1201 setup_vma_to_mm(vma, current->mm); 1202 current->mm->map_count++; 1203 /* add the VMA to the tree */ 1204 vma_iter_store(&vmi, vma); 1205 1206 /* we flush the region from the icache only when the first executable 1207 * mapping of it is made */ 1208 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1209 flush_icache_user_range(region->vm_start, region->vm_end); 1210 region->vm_icache_flushed = true; 1211 } 1212 1213 up_write(&nommu_region_sem); 1214 1215 return result; 1216 1217 error_just_free: 1218 up_write(&nommu_region_sem); 1219 error: 1220 vma_iter_free(&vmi); 1221 if (region->vm_file) 1222 fput(region->vm_file); 1223 kmem_cache_free(vm_region_jar, region); 1224 if (vma->vm_file) 1225 fput(vma->vm_file); 1226 vm_area_free(vma); 1227 return ret; 1228 1229 sharing_violation: 1230 up_write(&nommu_region_sem); 1231 pr_warn("Attempt to share mismatched mappings\n"); 1232 ret = -EINVAL; 1233 goto error; 1234 1235 error_getting_vma: 1236 kmem_cache_free(vm_region_jar, region); 1237 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1238 len, current->pid); 1239 show_free_areas(0, NULL); 1240 return -ENOMEM; 1241 1242 error_getting_region: 1243 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1244 len, current->pid); 1245 show_free_areas(0, NULL); 1246 return -ENOMEM; 1247 1248 error_vma_iter_prealloc: 1249 kmem_cache_free(vm_region_jar, region); 1250 vm_area_free(vma); 1251 pr_warn("Allocation of vma tree for process %d failed\n", current->pid); 1252 show_free_areas(0, NULL); 1253 return -ENOMEM; 1254 1255 } 1256 1257 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1258 unsigned long prot, unsigned long flags, 1259 unsigned long fd, unsigned long pgoff) 1260 { 1261 struct file *file = NULL; 1262 unsigned long retval = -EBADF; 1263 1264 audit_mmap_fd(fd, flags); 1265 if (!(flags & MAP_ANONYMOUS)) { 1266 file = fget(fd); 1267 if (!file) 1268 goto out; 1269 } 1270 1271 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1272 1273 if (file) 1274 fput(file); 1275 out: 1276 return retval; 1277 } 1278 1279 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1280 unsigned long, prot, unsigned long, flags, 1281 unsigned long, fd, unsigned long, pgoff) 1282 { 1283 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1284 } 1285 1286 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1287 struct mmap_arg_struct { 1288 unsigned long addr; 1289 unsigned long len; 1290 unsigned long prot; 1291 unsigned long flags; 1292 unsigned long fd; 1293 unsigned long offset; 1294 }; 1295 1296 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1297 { 1298 struct mmap_arg_struct a; 1299 1300 if (copy_from_user(&a, arg, sizeof(a))) 1301 return -EFAULT; 1302 if (offset_in_page(a.offset)) 1303 return -EINVAL; 1304 1305 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1306 a.offset >> PAGE_SHIFT); 1307 } 1308 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1309 1310 /* 1311 * split a vma into two pieces at address 'addr', a new vma is allocated either 1312 * for the first part or the tail. 1313 */ 1314 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 1315 unsigned long addr, int new_below) 1316 { 1317 struct vm_area_struct *new; 1318 struct vm_region *region; 1319 unsigned long npages; 1320 struct mm_struct *mm; 1321 1322 /* we're only permitted to split anonymous regions (these should have 1323 * only a single usage on the region) */ 1324 if (vma->vm_file) 1325 return -ENOMEM; 1326 1327 mm = vma->vm_mm; 1328 if (mm->map_count >= sysctl_max_map_count) 1329 return -ENOMEM; 1330 1331 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1332 if (!region) 1333 return -ENOMEM; 1334 1335 new = vm_area_dup(vma); 1336 if (!new) 1337 goto err_vma_dup; 1338 1339 if (vma_iter_prealloc(vmi)) { 1340 pr_warn("Allocation of vma tree for process %d failed\n", 1341 current->pid); 1342 goto err_vmi_preallocate; 1343 } 1344 1345 /* most fields are the same, copy all, and then fixup */ 1346 *region = *vma->vm_region; 1347 new->vm_region = region; 1348 1349 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1350 1351 if (new_below) { 1352 region->vm_top = region->vm_end = new->vm_end = addr; 1353 } else { 1354 region->vm_start = new->vm_start = addr; 1355 region->vm_pgoff = new->vm_pgoff += npages; 1356 } 1357 1358 if (new->vm_ops && new->vm_ops->open) 1359 new->vm_ops->open(new); 1360 1361 down_write(&nommu_region_sem); 1362 delete_nommu_region(vma->vm_region); 1363 if (new_below) { 1364 vma->vm_region->vm_start = vma->vm_start = addr; 1365 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1366 } else { 1367 vma->vm_region->vm_end = vma->vm_end = addr; 1368 vma->vm_region->vm_top = addr; 1369 } 1370 add_nommu_region(vma->vm_region); 1371 add_nommu_region(new->vm_region); 1372 up_write(&nommu_region_sem); 1373 1374 setup_vma_to_mm(vma, mm); 1375 setup_vma_to_mm(new, mm); 1376 vma_iter_store(vmi, new); 1377 mm->map_count++; 1378 return 0; 1379 1380 err_vmi_preallocate: 1381 vm_area_free(new); 1382 err_vma_dup: 1383 kmem_cache_free(vm_region_jar, region); 1384 return -ENOMEM; 1385 } 1386 1387 /* 1388 * shrink a VMA by removing the specified chunk from either the beginning or 1389 * the end 1390 */ 1391 static int vmi_shrink_vma(struct vma_iterator *vmi, 1392 struct vm_area_struct *vma, 1393 unsigned long from, unsigned long to) 1394 { 1395 struct vm_region *region; 1396 1397 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1398 * and list */ 1399 if (vma_iter_prealloc(vmi)) { 1400 pr_warn("Allocation of vma tree for process %d failed\n", 1401 current->pid); 1402 return -ENOMEM; 1403 } 1404 1405 if (from > vma->vm_start) { 1406 vma_iter_clear(vmi, from, vma->vm_end); 1407 vma->vm_end = from; 1408 } else { 1409 vma_iter_clear(vmi, vma->vm_start, to); 1410 vma->vm_start = to; 1411 } 1412 1413 /* cut the backing region down to size */ 1414 region = vma->vm_region; 1415 BUG_ON(region->vm_usage != 1); 1416 1417 down_write(&nommu_region_sem); 1418 delete_nommu_region(region); 1419 if (from > region->vm_start) { 1420 to = region->vm_top; 1421 region->vm_top = region->vm_end = from; 1422 } else { 1423 region->vm_start = to; 1424 } 1425 add_nommu_region(region); 1426 up_write(&nommu_region_sem); 1427 1428 free_page_series(from, to); 1429 return 0; 1430 } 1431 1432 /* 1433 * release a mapping 1434 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1435 * VMA, though it need not cover the whole VMA 1436 */ 1437 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf) 1438 { 1439 VMA_ITERATOR(vmi, mm, start); 1440 struct vm_area_struct *vma; 1441 unsigned long end; 1442 int ret = 0; 1443 1444 len = PAGE_ALIGN(len); 1445 if (len == 0) 1446 return -EINVAL; 1447 1448 end = start + len; 1449 1450 /* find the first potentially overlapping VMA */ 1451 vma = vma_find(&vmi, end); 1452 if (!vma) { 1453 static int limit; 1454 if (limit < 5) { 1455 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1456 current->pid, current->comm, 1457 start, start + len - 1); 1458 limit++; 1459 } 1460 return -EINVAL; 1461 } 1462 1463 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1464 if (vma->vm_file) { 1465 do { 1466 if (start > vma->vm_start) 1467 return -EINVAL; 1468 if (end == vma->vm_end) 1469 goto erase_whole_vma; 1470 vma = vma_find(&vmi, end); 1471 } while (vma); 1472 return -EINVAL; 1473 } else { 1474 /* the chunk must be a subset of the VMA found */ 1475 if (start == vma->vm_start && end == vma->vm_end) 1476 goto erase_whole_vma; 1477 if (start < vma->vm_start || end > vma->vm_end) 1478 return -EINVAL; 1479 if (offset_in_page(start)) 1480 return -EINVAL; 1481 if (end != vma->vm_end && offset_in_page(end)) 1482 return -EINVAL; 1483 if (start != vma->vm_start && end != vma->vm_end) { 1484 ret = split_vma(&vmi, vma, start, 1); 1485 if (ret < 0) 1486 return ret; 1487 } 1488 return vmi_shrink_vma(&vmi, vma, start, end); 1489 } 1490 1491 erase_whole_vma: 1492 if (delete_vma_from_mm(vma)) 1493 ret = -ENOMEM; 1494 else 1495 delete_vma(mm, vma); 1496 return ret; 1497 } 1498 1499 int vm_munmap(unsigned long addr, size_t len) 1500 { 1501 struct mm_struct *mm = current->mm; 1502 int ret; 1503 1504 mmap_write_lock(mm); 1505 ret = do_munmap(mm, addr, len, NULL); 1506 mmap_write_unlock(mm); 1507 return ret; 1508 } 1509 EXPORT_SYMBOL(vm_munmap); 1510 1511 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1512 { 1513 return vm_munmap(addr, len); 1514 } 1515 1516 /* 1517 * release all the mappings made in a process's VM space 1518 */ 1519 void exit_mmap(struct mm_struct *mm) 1520 { 1521 VMA_ITERATOR(vmi, mm, 0); 1522 struct vm_area_struct *vma; 1523 1524 if (!mm) 1525 return; 1526 1527 mm->total_vm = 0; 1528 1529 /* 1530 * Lock the mm to avoid assert complaining even though this is the only 1531 * user of the mm 1532 */ 1533 mmap_write_lock(mm); 1534 for_each_vma(vmi, vma) { 1535 cleanup_vma_from_mm(vma); 1536 delete_vma(mm, vma); 1537 cond_resched(); 1538 } 1539 __mt_destroy(&mm->mm_mt); 1540 mmap_write_unlock(mm); 1541 } 1542 1543 int vm_brk(unsigned long addr, unsigned long len) 1544 { 1545 return -ENOMEM; 1546 } 1547 1548 /* 1549 * expand (or shrink) an existing mapping, potentially moving it at the same 1550 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1551 * 1552 * under NOMMU conditions, we only permit changing a mapping's size, and only 1553 * as long as it stays within the region allocated by do_mmap_private() and the 1554 * block is not shareable 1555 * 1556 * MREMAP_FIXED is not supported under NOMMU conditions 1557 */ 1558 static unsigned long do_mremap(unsigned long addr, 1559 unsigned long old_len, unsigned long new_len, 1560 unsigned long flags, unsigned long new_addr) 1561 { 1562 struct vm_area_struct *vma; 1563 1564 /* insanity checks first */ 1565 old_len = PAGE_ALIGN(old_len); 1566 new_len = PAGE_ALIGN(new_len); 1567 if (old_len == 0 || new_len == 0) 1568 return (unsigned long) -EINVAL; 1569 1570 if (offset_in_page(addr)) 1571 return -EINVAL; 1572 1573 if (flags & MREMAP_FIXED && new_addr != addr) 1574 return (unsigned long) -EINVAL; 1575 1576 vma = find_vma_exact(current->mm, addr, old_len); 1577 if (!vma) 1578 return (unsigned long) -EINVAL; 1579 1580 if (vma->vm_end != vma->vm_start + old_len) 1581 return (unsigned long) -EFAULT; 1582 1583 if (is_nommu_shared_mapping(vma->vm_flags)) 1584 return (unsigned long) -EPERM; 1585 1586 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1587 return (unsigned long) -ENOMEM; 1588 1589 /* all checks complete - do it */ 1590 vma->vm_end = vma->vm_start + new_len; 1591 return vma->vm_start; 1592 } 1593 1594 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1595 unsigned long, new_len, unsigned long, flags, 1596 unsigned long, new_addr) 1597 { 1598 unsigned long ret; 1599 1600 mmap_write_lock(current->mm); 1601 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1602 mmap_write_unlock(current->mm); 1603 return ret; 1604 } 1605 1606 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1607 unsigned int foll_flags) 1608 { 1609 return NULL; 1610 } 1611 1612 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1613 unsigned long pfn, unsigned long size, pgprot_t prot) 1614 { 1615 if (addr != (pfn << PAGE_SHIFT)) 1616 return -EINVAL; 1617 1618 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 1619 return 0; 1620 } 1621 EXPORT_SYMBOL(remap_pfn_range); 1622 1623 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1624 { 1625 unsigned long pfn = start >> PAGE_SHIFT; 1626 unsigned long vm_len = vma->vm_end - vma->vm_start; 1627 1628 pfn += vma->vm_pgoff; 1629 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1630 } 1631 EXPORT_SYMBOL(vm_iomap_memory); 1632 1633 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1634 unsigned long pgoff) 1635 { 1636 unsigned int size = vma->vm_end - vma->vm_start; 1637 1638 if (!(vma->vm_flags & VM_USERMAP)) 1639 return -EINVAL; 1640 1641 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1642 vma->vm_end = vma->vm_start + size; 1643 1644 return 0; 1645 } 1646 EXPORT_SYMBOL(remap_vmalloc_range); 1647 1648 vm_fault_t filemap_fault(struct vm_fault *vmf) 1649 { 1650 BUG(); 1651 return 0; 1652 } 1653 EXPORT_SYMBOL(filemap_fault); 1654 1655 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 1656 pgoff_t start_pgoff, pgoff_t end_pgoff) 1657 { 1658 BUG(); 1659 return 0; 1660 } 1661 EXPORT_SYMBOL(filemap_map_pages); 1662 1663 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 1664 int len, unsigned int gup_flags) 1665 { 1666 struct vm_area_struct *vma; 1667 int write = gup_flags & FOLL_WRITE; 1668 1669 if (mmap_read_lock_killable(mm)) 1670 return 0; 1671 1672 /* the access must start within one of the target process's mappings */ 1673 vma = find_vma(mm, addr); 1674 if (vma) { 1675 /* don't overrun this mapping */ 1676 if (addr + len >= vma->vm_end) 1677 len = vma->vm_end - addr; 1678 1679 /* only read or write mappings where it is permitted */ 1680 if (write && vma->vm_flags & VM_MAYWRITE) 1681 copy_to_user_page(vma, NULL, addr, 1682 (void *) addr, buf, len); 1683 else if (!write && vma->vm_flags & VM_MAYREAD) 1684 copy_from_user_page(vma, NULL, addr, 1685 buf, (void *) addr, len); 1686 else 1687 len = 0; 1688 } else { 1689 len = 0; 1690 } 1691 1692 mmap_read_unlock(mm); 1693 1694 return len; 1695 } 1696 1697 /** 1698 * access_remote_vm - access another process' address space 1699 * @mm: the mm_struct of the target address space 1700 * @addr: start address to access 1701 * @buf: source or destination buffer 1702 * @len: number of bytes to transfer 1703 * @gup_flags: flags modifying lookup behaviour 1704 * 1705 * The caller must hold a reference on @mm. 1706 */ 1707 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1708 void *buf, int len, unsigned int gup_flags) 1709 { 1710 return __access_remote_vm(mm, addr, buf, len, gup_flags); 1711 } 1712 1713 /* 1714 * Access another process' address space. 1715 * - source/target buffer must be kernel space 1716 */ 1717 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1718 unsigned int gup_flags) 1719 { 1720 struct mm_struct *mm; 1721 1722 if (addr + len < addr) 1723 return 0; 1724 1725 mm = get_task_mm(tsk); 1726 if (!mm) 1727 return 0; 1728 1729 len = __access_remote_vm(mm, addr, buf, len, gup_flags); 1730 1731 mmput(mm); 1732 return len; 1733 } 1734 EXPORT_SYMBOL_GPL(access_process_vm); 1735 1736 /** 1737 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1738 * @inode: The inode to check 1739 * @size: The current filesize of the inode 1740 * @newsize: The proposed filesize of the inode 1741 * 1742 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1743 * make sure that any outstanding VMAs aren't broken and then shrink the 1744 * vm_regions that extend beyond so that do_mmap() doesn't 1745 * automatically grant mappings that are too large. 1746 */ 1747 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1748 size_t newsize) 1749 { 1750 struct vm_area_struct *vma; 1751 struct vm_region *region; 1752 pgoff_t low, high; 1753 size_t r_size, r_top; 1754 1755 low = newsize >> PAGE_SHIFT; 1756 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1757 1758 down_write(&nommu_region_sem); 1759 i_mmap_lock_read(inode->i_mapping); 1760 1761 /* search for VMAs that fall within the dead zone */ 1762 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1763 /* found one - only interested if it's shared out of the page 1764 * cache */ 1765 if (vma->vm_flags & VM_SHARED) { 1766 i_mmap_unlock_read(inode->i_mapping); 1767 up_write(&nommu_region_sem); 1768 return -ETXTBSY; /* not quite true, but near enough */ 1769 } 1770 } 1771 1772 /* reduce any regions that overlap the dead zone - if in existence, 1773 * these will be pointed to by VMAs that don't overlap the dead zone 1774 * 1775 * we don't check for any regions that start beyond the EOF as there 1776 * shouldn't be any 1777 */ 1778 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1779 if (!(vma->vm_flags & VM_SHARED)) 1780 continue; 1781 1782 region = vma->vm_region; 1783 r_size = region->vm_top - region->vm_start; 1784 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1785 1786 if (r_top > newsize) { 1787 region->vm_top -= r_top - newsize; 1788 if (region->vm_end > region->vm_top) 1789 region->vm_end = region->vm_top; 1790 } 1791 } 1792 1793 i_mmap_unlock_read(inode->i_mapping); 1794 up_write(&nommu_region_sem); 1795 return 0; 1796 } 1797 1798 /* 1799 * Initialise sysctl_user_reserve_kbytes. 1800 * 1801 * This is intended to prevent a user from starting a single memory hogging 1802 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1803 * mode. 1804 * 1805 * The default value is min(3% of free memory, 128MB) 1806 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1807 */ 1808 static int __meminit init_user_reserve(void) 1809 { 1810 unsigned long free_kbytes; 1811 1812 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1813 1814 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1815 return 0; 1816 } 1817 subsys_initcall(init_user_reserve); 1818 1819 /* 1820 * Initialise sysctl_admin_reserve_kbytes. 1821 * 1822 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1823 * to log in and kill a memory hogging process. 1824 * 1825 * Systems with more than 256MB will reserve 8MB, enough to recover 1826 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1827 * only reserve 3% of free pages by default. 1828 */ 1829 static int __meminit init_admin_reserve(void) 1830 { 1831 unsigned long free_kbytes; 1832 1833 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1834 1835 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1836 return 0; 1837 } 1838 subsys_initcall(init_admin_reserve); 1839