xref: /openbmc/linux/mm/nommu.c (revision e190bfe5)
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 
33 #include <asm/uaccess.h>
34 #include <asm/tlb.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
37 #include "internal.h"
38 
39 static inline __attribute__((format(printf, 1, 2)))
40 void no_printk(const char *fmt, ...)
41 {
42 }
43 
44 #if 0
45 #define kenter(FMT, ...) \
46 	printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
47 #define kleave(FMT, ...) \
48 	printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
49 #define kdebug(FMT, ...) \
50 	printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
51 #else
52 #define kenter(FMT, ...) \
53 	no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
54 #define kleave(FMT, ...) \
55 	no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
56 #define kdebug(FMT, ...) \
57 	no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
58 #endif
59 
60 void *high_memory;
61 struct page *mem_map;
62 unsigned long max_mapnr;
63 unsigned long num_physpages;
64 unsigned long highest_memmap_pfn;
65 struct percpu_counter vm_committed_as;
66 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
67 int sysctl_overcommit_ratio = 50; /* default is 50% */
68 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
69 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
70 int heap_stack_gap = 0;
71 
72 atomic_long_t mmap_pages_allocated;
73 
74 EXPORT_SYMBOL(mem_map);
75 EXPORT_SYMBOL(num_physpages);
76 
77 /* list of mapped, potentially shareable regions */
78 static struct kmem_cache *vm_region_jar;
79 struct rb_root nommu_region_tree = RB_ROOT;
80 DECLARE_RWSEM(nommu_region_sem);
81 
82 const struct vm_operations_struct generic_file_vm_ops = {
83 };
84 
85 /*
86  * Return the total memory allocated for this pointer, not
87  * just what the caller asked for.
88  *
89  * Doesn't have to be accurate, i.e. may have races.
90  */
91 unsigned int kobjsize(const void *objp)
92 {
93 	struct page *page;
94 
95 	/*
96 	 * If the object we have should not have ksize performed on it,
97 	 * return size of 0
98 	 */
99 	if (!objp || !virt_addr_valid(objp))
100 		return 0;
101 
102 	page = virt_to_head_page(objp);
103 
104 	/*
105 	 * If the allocator sets PageSlab, we know the pointer came from
106 	 * kmalloc().
107 	 */
108 	if (PageSlab(page))
109 		return ksize(objp);
110 
111 	/*
112 	 * If it's not a compound page, see if we have a matching VMA
113 	 * region. This test is intentionally done in reverse order,
114 	 * so if there's no VMA, we still fall through and hand back
115 	 * PAGE_SIZE for 0-order pages.
116 	 */
117 	if (!PageCompound(page)) {
118 		struct vm_area_struct *vma;
119 
120 		vma = find_vma(current->mm, (unsigned long)objp);
121 		if (vma)
122 			return vma->vm_end - vma->vm_start;
123 	}
124 
125 	/*
126 	 * The ksize() function is only guaranteed to work for pointers
127 	 * returned by kmalloc(). So handle arbitrary pointers here.
128 	 */
129 	return PAGE_SIZE << compound_order(page);
130 }
131 
132 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
133 		     unsigned long start, int nr_pages, unsigned int foll_flags,
134 		     struct page **pages, struct vm_area_struct **vmas)
135 {
136 	struct vm_area_struct *vma;
137 	unsigned long vm_flags;
138 	int i;
139 
140 	/* calculate required read or write permissions.
141 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
142 	 */
143 	vm_flags  = (foll_flags & FOLL_WRITE) ?
144 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
145 	vm_flags &= (foll_flags & FOLL_FORCE) ?
146 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
147 
148 	for (i = 0; i < nr_pages; i++) {
149 		vma = find_vma(mm, start);
150 		if (!vma)
151 			goto finish_or_fault;
152 
153 		/* protect what we can, including chardevs */
154 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
155 		    !(vm_flags & vma->vm_flags))
156 			goto finish_or_fault;
157 
158 		if (pages) {
159 			pages[i] = virt_to_page(start);
160 			if (pages[i])
161 				page_cache_get(pages[i]);
162 		}
163 		if (vmas)
164 			vmas[i] = vma;
165 		start = (start + PAGE_SIZE) & PAGE_MASK;
166 	}
167 
168 	return i;
169 
170 finish_or_fault:
171 	return i ? : -EFAULT;
172 }
173 
174 /*
175  * get a list of pages in an address range belonging to the specified process
176  * and indicate the VMA that covers each page
177  * - this is potentially dodgy as we may end incrementing the page count of a
178  *   slab page or a secondary page from a compound page
179  * - don't permit access to VMAs that don't support it, such as I/O mappings
180  */
181 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
182 	unsigned long start, int nr_pages, int write, int force,
183 	struct page **pages, struct vm_area_struct **vmas)
184 {
185 	int flags = 0;
186 
187 	if (write)
188 		flags |= FOLL_WRITE;
189 	if (force)
190 		flags |= FOLL_FORCE;
191 
192 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
193 }
194 EXPORT_SYMBOL(get_user_pages);
195 
196 /**
197  * follow_pfn - look up PFN at a user virtual address
198  * @vma: memory mapping
199  * @address: user virtual address
200  * @pfn: location to store found PFN
201  *
202  * Only IO mappings and raw PFN mappings are allowed.
203  *
204  * Returns zero and the pfn at @pfn on success, -ve otherwise.
205  */
206 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
207 	unsigned long *pfn)
208 {
209 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
210 		return -EINVAL;
211 
212 	*pfn = address >> PAGE_SHIFT;
213 	return 0;
214 }
215 EXPORT_SYMBOL(follow_pfn);
216 
217 DEFINE_RWLOCK(vmlist_lock);
218 struct vm_struct *vmlist;
219 
220 void vfree(const void *addr)
221 {
222 	kfree(addr);
223 }
224 EXPORT_SYMBOL(vfree);
225 
226 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
227 {
228 	/*
229 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
230 	 * returns only a logical address.
231 	 */
232 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
233 }
234 EXPORT_SYMBOL(__vmalloc);
235 
236 void *vmalloc_user(unsigned long size)
237 {
238 	void *ret;
239 
240 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
241 			PAGE_KERNEL);
242 	if (ret) {
243 		struct vm_area_struct *vma;
244 
245 		down_write(&current->mm->mmap_sem);
246 		vma = find_vma(current->mm, (unsigned long)ret);
247 		if (vma)
248 			vma->vm_flags |= VM_USERMAP;
249 		up_write(&current->mm->mmap_sem);
250 	}
251 
252 	return ret;
253 }
254 EXPORT_SYMBOL(vmalloc_user);
255 
256 struct page *vmalloc_to_page(const void *addr)
257 {
258 	return virt_to_page(addr);
259 }
260 EXPORT_SYMBOL(vmalloc_to_page);
261 
262 unsigned long vmalloc_to_pfn(const void *addr)
263 {
264 	return page_to_pfn(virt_to_page(addr));
265 }
266 EXPORT_SYMBOL(vmalloc_to_pfn);
267 
268 long vread(char *buf, char *addr, unsigned long count)
269 {
270 	memcpy(buf, addr, count);
271 	return count;
272 }
273 
274 long vwrite(char *buf, char *addr, unsigned long count)
275 {
276 	/* Don't allow overflow */
277 	if ((unsigned long) addr + count < count)
278 		count = -(unsigned long) addr;
279 
280 	memcpy(addr, buf, count);
281 	return(count);
282 }
283 
284 /*
285  *	vmalloc  -  allocate virtually continguos memory
286  *
287  *	@size:		allocation size
288  *
289  *	Allocate enough pages to cover @size from the page level
290  *	allocator and map them into continguos kernel virtual space.
291  *
292  *	For tight control over page level allocator and protection flags
293  *	use __vmalloc() instead.
294  */
295 void *vmalloc(unsigned long size)
296 {
297        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
298 }
299 EXPORT_SYMBOL(vmalloc);
300 
301 void *vmalloc_node(unsigned long size, int node)
302 {
303 	return vmalloc(size);
304 }
305 EXPORT_SYMBOL(vmalloc_node);
306 
307 #ifndef PAGE_KERNEL_EXEC
308 # define PAGE_KERNEL_EXEC PAGE_KERNEL
309 #endif
310 
311 /**
312  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
313  *	@size:		allocation size
314  *
315  *	Kernel-internal function to allocate enough pages to cover @size
316  *	the page level allocator and map them into contiguous and
317  *	executable kernel virtual space.
318  *
319  *	For tight control over page level allocator and protection flags
320  *	use __vmalloc() instead.
321  */
322 
323 void *vmalloc_exec(unsigned long size)
324 {
325 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
326 }
327 
328 /**
329  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
330  *	@size:		allocation size
331  *
332  *	Allocate enough 32bit PA addressable pages to cover @size from the
333  *	page level allocator and map them into continguos kernel virtual space.
334  */
335 void *vmalloc_32(unsigned long size)
336 {
337 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
338 }
339 EXPORT_SYMBOL(vmalloc_32);
340 
341 /**
342  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
343  *	@size:		allocation size
344  *
345  * The resulting memory area is 32bit addressable and zeroed so it can be
346  * mapped to userspace without leaking data.
347  *
348  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
349  * remap_vmalloc_range() are permissible.
350  */
351 void *vmalloc_32_user(unsigned long size)
352 {
353 	/*
354 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
355 	 * but for now this can simply use vmalloc_user() directly.
356 	 */
357 	return vmalloc_user(size);
358 }
359 EXPORT_SYMBOL(vmalloc_32_user);
360 
361 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
362 {
363 	BUG();
364 	return NULL;
365 }
366 EXPORT_SYMBOL(vmap);
367 
368 void vunmap(const void *addr)
369 {
370 	BUG();
371 }
372 EXPORT_SYMBOL(vunmap);
373 
374 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
375 {
376 	BUG();
377 	return NULL;
378 }
379 EXPORT_SYMBOL(vm_map_ram);
380 
381 void vm_unmap_ram(const void *mem, unsigned int count)
382 {
383 	BUG();
384 }
385 EXPORT_SYMBOL(vm_unmap_ram);
386 
387 void vm_unmap_aliases(void)
388 {
389 }
390 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
391 
392 /*
393  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
394  * have one.
395  */
396 void  __attribute__((weak)) vmalloc_sync_all(void)
397 {
398 }
399 
400 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
401 		   struct page *page)
402 {
403 	return -EINVAL;
404 }
405 EXPORT_SYMBOL(vm_insert_page);
406 
407 /*
408  *  sys_brk() for the most part doesn't need the global kernel
409  *  lock, except when an application is doing something nasty
410  *  like trying to un-brk an area that has already been mapped
411  *  to a regular file.  in this case, the unmapping will need
412  *  to invoke file system routines that need the global lock.
413  */
414 SYSCALL_DEFINE1(brk, unsigned long, brk)
415 {
416 	struct mm_struct *mm = current->mm;
417 
418 	if (brk < mm->start_brk || brk > mm->context.end_brk)
419 		return mm->brk;
420 
421 	if (mm->brk == brk)
422 		return mm->brk;
423 
424 	/*
425 	 * Always allow shrinking brk
426 	 */
427 	if (brk <= mm->brk) {
428 		mm->brk = brk;
429 		return brk;
430 	}
431 
432 	/*
433 	 * Ok, looks good - let it rip.
434 	 */
435 	flush_icache_range(mm->brk, brk);
436 	return mm->brk = brk;
437 }
438 
439 /*
440  * initialise the VMA and region record slabs
441  */
442 void __init mmap_init(void)
443 {
444 	int ret;
445 
446 	ret = percpu_counter_init(&vm_committed_as, 0);
447 	VM_BUG_ON(ret);
448 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
449 }
450 
451 /*
452  * validate the region tree
453  * - the caller must hold the region lock
454  */
455 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
456 static noinline void validate_nommu_regions(void)
457 {
458 	struct vm_region *region, *last;
459 	struct rb_node *p, *lastp;
460 
461 	lastp = rb_first(&nommu_region_tree);
462 	if (!lastp)
463 		return;
464 
465 	last = rb_entry(lastp, struct vm_region, vm_rb);
466 	BUG_ON(unlikely(last->vm_end <= last->vm_start));
467 	BUG_ON(unlikely(last->vm_top < last->vm_end));
468 
469 	while ((p = rb_next(lastp))) {
470 		region = rb_entry(p, struct vm_region, vm_rb);
471 		last = rb_entry(lastp, struct vm_region, vm_rb);
472 
473 		BUG_ON(unlikely(region->vm_end <= region->vm_start));
474 		BUG_ON(unlikely(region->vm_top < region->vm_end));
475 		BUG_ON(unlikely(region->vm_start < last->vm_top));
476 
477 		lastp = p;
478 	}
479 }
480 #else
481 static void validate_nommu_regions(void)
482 {
483 }
484 #endif
485 
486 /*
487  * add a region into the global tree
488  */
489 static void add_nommu_region(struct vm_region *region)
490 {
491 	struct vm_region *pregion;
492 	struct rb_node **p, *parent;
493 
494 	validate_nommu_regions();
495 
496 	parent = NULL;
497 	p = &nommu_region_tree.rb_node;
498 	while (*p) {
499 		parent = *p;
500 		pregion = rb_entry(parent, struct vm_region, vm_rb);
501 		if (region->vm_start < pregion->vm_start)
502 			p = &(*p)->rb_left;
503 		else if (region->vm_start > pregion->vm_start)
504 			p = &(*p)->rb_right;
505 		else if (pregion == region)
506 			return;
507 		else
508 			BUG();
509 	}
510 
511 	rb_link_node(&region->vm_rb, parent, p);
512 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
513 
514 	validate_nommu_regions();
515 }
516 
517 /*
518  * delete a region from the global tree
519  */
520 static void delete_nommu_region(struct vm_region *region)
521 {
522 	BUG_ON(!nommu_region_tree.rb_node);
523 
524 	validate_nommu_regions();
525 	rb_erase(&region->vm_rb, &nommu_region_tree);
526 	validate_nommu_regions();
527 }
528 
529 /*
530  * free a contiguous series of pages
531  */
532 static void free_page_series(unsigned long from, unsigned long to)
533 {
534 	for (; from < to; from += PAGE_SIZE) {
535 		struct page *page = virt_to_page(from);
536 
537 		kdebug("- free %lx", from);
538 		atomic_long_dec(&mmap_pages_allocated);
539 		if (page_count(page) != 1)
540 			kdebug("free page %p: refcount not one: %d",
541 			       page, page_count(page));
542 		put_page(page);
543 	}
544 }
545 
546 /*
547  * release a reference to a region
548  * - the caller must hold the region semaphore for writing, which this releases
549  * - the region may not have been added to the tree yet, in which case vm_top
550  *   will equal vm_start
551  */
552 static void __put_nommu_region(struct vm_region *region)
553 	__releases(nommu_region_sem)
554 {
555 	kenter("%p{%d}", region, region->vm_usage);
556 
557 	BUG_ON(!nommu_region_tree.rb_node);
558 
559 	if (--region->vm_usage == 0) {
560 		if (region->vm_top > region->vm_start)
561 			delete_nommu_region(region);
562 		up_write(&nommu_region_sem);
563 
564 		if (region->vm_file)
565 			fput(region->vm_file);
566 
567 		/* IO memory and memory shared directly out of the pagecache
568 		 * from ramfs/tmpfs mustn't be released here */
569 		if (region->vm_flags & VM_MAPPED_COPY) {
570 			kdebug("free series");
571 			free_page_series(region->vm_start, region->vm_top);
572 		}
573 		kmem_cache_free(vm_region_jar, region);
574 	} else {
575 		up_write(&nommu_region_sem);
576 	}
577 }
578 
579 /*
580  * release a reference to a region
581  */
582 static void put_nommu_region(struct vm_region *region)
583 {
584 	down_write(&nommu_region_sem);
585 	__put_nommu_region(region);
586 }
587 
588 /*
589  * update protection on a vma
590  */
591 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
592 {
593 #ifdef CONFIG_MPU
594 	struct mm_struct *mm = vma->vm_mm;
595 	long start = vma->vm_start & PAGE_MASK;
596 	while (start < vma->vm_end) {
597 		protect_page(mm, start, flags);
598 		start += PAGE_SIZE;
599 	}
600 	update_protections(mm);
601 #endif
602 }
603 
604 /*
605  * add a VMA into a process's mm_struct in the appropriate place in the list
606  * and tree and add to the address space's page tree also if not an anonymous
607  * page
608  * - should be called with mm->mmap_sem held writelocked
609  */
610 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
611 {
612 	struct vm_area_struct *pvma, **pp;
613 	struct address_space *mapping;
614 	struct rb_node **p, *parent;
615 
616 	kenter(",%p", vma);
617 
618 	BUG_ON(!vma->vm_region);
619 
620 	mm->map_count++;
621 	vma->vm_mm = mm;
622 
623 	protect_vma(vma, vma->vm_flags);
624 
625 	/* add the VMA to the mapping */
626 	if (vma->vm_file) {
627 		mapping = vma->vm_file->f_mapping;
628 
629 		flush_dcache_mmap_lock(mapping);
630 		vma_prio_tree_insert(vma, &mapping->i_mmap);
631 		flush_dcache_mmap_unlock(mapping);
632 	}
633 
634 	/* add the VMA to the tree */
635 	parent = NULL;
636 	p = &mm->mm_rb.rb_node;
637 	while (*p) {
638 		parent = *p;
639 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
640 
641 		/* sort by: start addr, end addr, VMA struct addr in that order
642 		 * (the latter is necessary as we may get identical VMAs) */
643 		if (vma->vm_start < pvma->vm_start)
644 			p = &(*p)->rb_left;
645 		else if (vma->vm_start > pvma->vm_start)
646 			p = &(*p)->rb_right;
647 		else if (vma->vm_end < pvma->vm_end)
648 			p = &(*p)->rb_left;
649 		else if (vma->vm_end > pvma->vm_end)
650 			p = &(*p)->rb_right;
651 		else if (vma < pvma)
652 			p = &(*p)->rb_left;
653 		else if (vma > pvma)
654 			p = &(*p)->rb_right;
655 		else
656 			BUG();
657 	}
658 
659 	rb_link_node(&vma->vm_rb, parent, p);
660 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
661 
662 	/* add VMA to the VMA list also */
663 	for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) {
664 		if (pvma->vm_start > vma->vm_start)
665 			break;
666 		if (pvma->vm_start < vma->vm_start)
667 			continue;
668 		if (pvma->vm_end < vma->vm_end)
669 			break;
670 	}
671 
672 	vma->vm_next = *pp;
673 	*pp = vma;
674 }
675 
676 /*
677  * delete a VMA from its owning mm_struct and address space
678  */
679 static void delete_vma_from_mm(struct vm_area_struct *vma)
680 {
681 	struct vm_area_struct **pp;
682 	struct address_space *mapping;
683 	struct mm_struct *mm = vma->vm_mm;
684 
685 	kenter("%p", vma);
686 
687 	protect_vma(vma, 0);
688 
689 	mm->map_count--;
690 	if (mm->mmap_cache == vma)
691 		mm->mmap_cache = NULL;
692 
693 	/* remove the VMA from the mapping */
694 	if (vma->vm_file) {
695 		mapping = vma->vm_file->f_mapping;
696 
697 		flush_dcache_mmap_lock(mapping);
698 		vma_prio_tree_remove(vma, &mapping->i_mmap);
699 		flush_dcache_mmap_unlock(mapping);
700 	}
701 
702 	/* remove from the MM's tree and list */
703 	rb_erase(&vma->vm_rb, &mm->mm_rb);
704 	for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) {
705 		if (*pp == vma) {
706 			*pp = vma->vm_next;
707 			break;
708 		}
709 	}
710 
711 	vma->vm_mm = NULL;
712 }
713 
714 /*
715  * destroy a VMA record
716  */
717 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
718 {
719 	kenter("%p", vma);
720 	if (vma->vm_ops && vma->vm_ops->close)
721 		vma->vm_ops->close(vma);
722 	if (vma->vm_file) {
723 		fput(vma->vm_file);
724 		if (vma->vm_flags & VM_EXECUTABLE)
725 			removed_exe_file_vma(mm);
726 	}
727 	put_nommu_region(vma->vm_region);
728 	kmem_cache_free(vm_area_cachep, vma);
729 }
730 
731 /*
732  * look up the first VMA in which addr resides, NULL if none
733  * - should be called with mm->mmap_sem at least held readlocked
734  */
735 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
736 {
737 	struct vm_area_struct *vma;
738 	struct rb_node *n = mm->mm_rb.rb_node;
739 
740 	/* check the cache first */
741 	vma = mm->mmap_cache;
742 	if (vma && vma->vm_start <= addr && vma->vm_end > addr)
743 		return vma;
744 
745 	/* trawl the tree (there may be multiple mappings in which addr
746 	 * resides) */
747 	for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
748 		vma = rb_entry(n, struct vm_area_struct, vm_rb);
749 		if (vma->vm_start > addr)
750 			return NULL;
751 		if (vma->vm_end > addr) {
752 			mm->mmap_cache = vma;
753 			return vma;
754 		}
755 	}
756 
757 	return NULL;
758 }
759 EXPORT_SYMBOL(find_vma);
760 
761 /*
762  * find a VMA
763  * - we don't extend stack VMAs under NOMMU conditions
764  */
765 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
766 {
767 	return find_vma(mm, addr);
768 }
769 
770 /*
771  * expand a stack to a given address
772  * - not supported under NOMMU conditions
773  */
774 int expand_stack(struct vm_area_struct *vma, unsigned long address)
775 {
776 	return -ENOMEM;
777 }
778 
779 /*
780  * look up the first VMA exactly that exactly matches addr
781  * - should be called with mm->mmap_sem at least held readlocked
782  */
783 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
784 					     unsigned long addr,
785 					     unsigned long len)
786 {
787 	struct vm_area_struct *vma;
788 	struct rb_node *n = mm->mm_rb.rb_node;
789 	unsigned long end = addr + len;
790 
791 	/* check the cache first */
792 	vma = mm->mmap_cache;
793 	if (vma && vma->vm_start == addr && vma->vm_end == end)
794 		return vma;
795 
796 	/* trawl the tree (there may be multiple mappings in which addr
797 	 * resides) */
798 	for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
799 		vma = rb_entry(n, struct vm_area_struct, vm_rb);
800 		if (vma->vm_start < addr)
801 			continue;
802 		if (vma->vm_start > addr)
803 			return NULL;
804 		if (vma->vm_end == end) {
805 			mm->mmap_cache = vma;
806 			return vma;
807 		}
808 	}
809 
810 	return NULL;
811 }
812 
813 /*
814  * determine whether a mapping should be permitted and, if so, what sort of
815  * mapping we're capable of supporting
816  */
817 static int validate_mmap_request(struct file *file,
818 				 unsigned long addr,
819 				 unsigned long len,
820 				 unsigned long prot,
821 				 unsigned long flags,
822 				 unsigned long pgoff,
823 				 unsigned long *_capabilities)
824 {
825 	unsigned long capabilities, rlen;
826 	unsigned long reqprot = prot;
827 	int ret;
828 
829 	/* do the simple checks first */
830 	if (flags & MAP_FIXED) {
831 		printk(KERN_DEBUG
832 		       "%d: Can't do fixed-address/overlay mmap of RAM\n",
833 		       current->pid);
834 		return -EINVAL;
835 	}
836 
837 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
838 	    (flags & MAP_TYPE) != MAP_SHARED)
839 		return -EINVAL;
840 
841 	if (!len)
842 		return -EINVAL;
843 
844 	/* Careful about overflows.. */
845 	rlen = PAGE_ALIGN(len);
846 	if (!rlen || rlen > TASK_SIZE)
847 		return -ENOMEM;
848 
849 	/* offset overflow? */
850 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
851 		return -EOVERFLOW;
852 
853 	if (file) {
854 		/* validate file mapping requests */
855 		struct address_space *mapping;
856 
857 		/* files must support mmap */
858 		if (!file->f_op || !file->f_op->mmap)
859 			return -ENODEV;
860 
861 		/* work out if what we've got could possibly be shared
862 		 * - we support chardevs that provide their own "memory"
863 		 * - we support files/blockdevs that are memory backed
864 		 */
865 		mapping = file->f_mapping;
866 		if (!mapping)
867 			mapping = file->f_path.dentry->d_inode->i_mapping;
868 
869 		capabilities = 0;
870 		if (mapping && mapping->backing_dev_info)
871 			capabilities = mapping->backing_dev_info->capabilities;
872 
873 		if (!capabilities) {
874 			/* no explicit capabilities set, so assume some
875 			 * defaults */
876 			switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
877 			case S_IFREG:
878 			case S_IFBLK:
879 				capabilities = BDI_CAP_MAP_COPY;
880 				break;
881 
882 			case S_IFCHR:
883 				capabilities =
884 					BDI_CAP_MAP_DIRECT |
885 					BDI_CAP_READ_MAP |
886 					BDI_CAP_WRITE_MAP;
887 				break;
888 
889 			default:
890 				return -EINVAL;
891 			}
892 		}
893 
894 		/* eliminate any capabilities that we can't support on this
895 		 * device */
896 		if (!file->f_op->get_unmapped_area)
897 			capabilities &= ~BDI_CAP_MAP_DIRECT;
898 		if (!file->f_op->read)
899 			capabilities &= ~BDI_CAP_MAP_COPY;
900 
901 		/* The file shall have been opened with read permission. */
902 		if (!(file->f_mode & FMODE_READ))
903 			return -EACCES;
904 
905 		if (flags & MAP_SHARED) {
906 			/* do checks for writing, appending and locking */
907 			if ((prot & PROT_WRITE) &&
908 			    !(file->f_mode & FMODE_WRITE))
909 				return -EACCES;
910 
911 			if (IS_APPEND(file->f_path.dentry->d_inode) &&
912 			    (file->f_mode & FMODE_WRITE))
913 				return -EACCES;
914 
915 			if (locks_verify_locked(file->f_path.dentry->d_inode))
916 				return -EAGAIN;
917 
918 			if (!(capabilities & BDI_CAP_MAP_DIRECT))
919 				return -ENODEV;
920 
921 			/* we mustn't privatise shared mappings */
922 			capabilities &= ~BDI_CAP_MAP_COPY;
923 		}
924 		else {
925 			/* we're going to read the file into private memory we
926 			 * allocate */
927 			if (!(capabilities & BDI_CAP_MAP_COPY))
928 				return -ENODEV;
929 
930 			/* we don't permit a private writable mapping to be
931 			 * shared with the backing device */
932 			if (prot & PROT_WRITE)
933 				capabilities &= ~BDI_CAP_MAP_DIRECT;
934 		}
935 
936 		if (capabilities & BDI_CAP_MAP_DIRECT) {
937 			if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
938 			    ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
939 			    ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
940 			    ) {
941 				capabilities &= ~BDI_CAP_MAP_DIRECT;
942 				if (flags & MAP_SHARED) {
943 					printk(KERN_WARNING
944 					       "MAP_SHARED not completely supported on !MMU\n");
945 					return -EINVAL;
946 				}
947 			}
948 		}
949 
950 		/* handle executable mappings and implied executable
951 		 * mappings */
952 		if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
953 			if (prot & PROT_EXEC)
954 				return -EPERM;
955 		}
956 		else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
957 			/* handle implication of PROT_EXEC by PROT_READ */
958 			if (current->personality & READ_IMPLIES_EXEC) {
959 				if (capabilities & BDI_CAP_EXEC_MAP)
960 					prot |= PROT_EXEC;
961 			}
962 		}
963 		else if ((prot & PROT_READ) &&
964 			 (prot & PROT_EXEC) &&
965 			 !(capabilities & BDI_CAP_EXEC_MAP)
966 			 ) {
967 			/* backing file is not executable, try to copy */
968 			capabilities &= ~BDI_CAP_MAP_DIRECT;
969 		}
970 	}
971 	else {
972 		/* anonymous mappings are always memory backed and can be
973 		 * privately mapped
974 		 */
975 		capabilities = BDI_CAP_MAP_COPY;
976 
977 		/* handle PROT_EXEC implication by PROT_READ */
978 		if ((prot & PROT_READ) &&
979 		    (current->personality & READ_IMPLIES_EXEC))
980 			prot |= PROT_EXEC;
981 	}
982 
983 	/* allow the security API to have its say */
984 	ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
985 	if (ret < 0)
986 		return ret;
987 
988 	/* looks okay */
989 	*_capabilities = capabilities;
990 	return 0;
991 }
992 
993 /*
994  * we've determined that we can make the mapping, now translate what we
995  * now know into VMA flags
996  */
997 static unsigned long determine_vm_flags(struct file *file,
998 					unsigned long prot,
999 					unsigned long flags,
1000 					unsigned long capabilities)
1001 {
1002 	unsigned long vm_flags;
1003 
1004 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1005 	/* vm_flags |= mm->def_flags; */
1006 
1007 	if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1008 		/* attempt to share read-only copies of mapped file chunks */
1009 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1010 		if (file && !(prot & PROT_WRITE))
1011 			vm_flags |= VM_MAYSHARE;
1012 	} else {
1013 		/* overlay a shareable mapping on the backing device or inode
1014 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1015 		 * romfs/cramfs */
1016 		vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1017 		if (flags & MAP_SHARED)
1018 			vm_flags |= VM_SHARED;
1019 	}
1020 
1021 	/* refuse to let anyone share private mappings with this process if
1022 	 * it's being traced - otherwise breakpoints set in it may interfere
1023 	 * with another untraced process
1024 	 */
1025 	if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1026 		vm_flags &= ~VM_MAYSHARE;
1027 
1028 	return vm_flags;
1029 }
1030 
1031 /*
1032  * set up a shared mapping on a file (the driver or filesystem provides and
1033  * pins the storage)
1034  */
1035 static int do_mmap_shared_file(struct vm_area_struct *vma)
1036 {
1037 	int ret;
1038 
1039 	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1040 	if (ret == 0) {
1041 		vma->vm_region->vm_top = vma->vm_region->vm_end;
1042 		return 0;
1043 	}
1044 	if (ret != -ENOSYS)
1045 		return ret;
1046 
1047 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1048 	 * opposed to tried but failed) so we can only give a suitable error as
1049 	 * it's not possible to make a private copy if MAP_SHARED was given */
1050 	return -ENODEV;
1051 }
1052 
1053 /*
1054  * set up a private mapping or an anonymous shared mapping
1055  */
1056 static int do_mmap_private(struct vm_area_struct *vma,
1057 			   struct vm_region *region,
1058 			   unsigned long len,
1059 			   unsigned long capabilities)
1060 {
1061 	struct page *pages;
1062 	unsigned long total, point, n, rlen;
1063 	void *base;
1064 	int ret, order;
1065 
1066 	/* invoke the file's mapping function so that it can keep track of
1067 	 * shared mappings on devices or memory
1068 	 * - VM_MAYSHARE will be set if it may attempt to share
1069 	 */
1070 	if (capabilities & BDI_CAP_MAP_DIRECT) {
1071 		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1072 		if (ret == 0) {
1073 			/* shouldn't return success if we're not sharing */
1074 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1075 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1076 			return 0;
1077 		}
1078 		if (ret != -ENOSYS)
1079 			return ret;
1080 
1081 		/* getting an ENOSYS error indicates that direct mmap isn't
1082 		 * possible (as opposed to tried but failed) so we'll try to
1083 		 * make a private copy of the data and map that instead */
1084 	}
1085 
1086 	rlen = PAGE_ALIGN(len);
1087 
1088 	/* allocate some memory to hold the mapping
1089 	 * - note that this may not return a page-aligned address if the object
1090 	 *   we're allocating is smaller than a page
1091 	 */
1092 	order = get_order(rlen);
1093 	kdebug("alloc order %d for %lx", order, len);
1094 
1095 	pages = alloc_pages(GFP_KERNEL, order);
1096 	if (!pages)
1097 		goto enomem;
1098 
1099 	total = 1 << order;
1100 	atomic_long_add(total, &mmap_pages_allocated);
1101 
1102 	point = rlen >> PAGE_SHIFT;
1103 
1104 	/* we allocated a power-of-2 sized page set, so we may want to trim off
1105 	 * the excess */
1106 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1107 		while (total > point) {
1108 			order = ilog2(total - point);
1109 			n = 1 << order;
1110 			kdebug("shave %lu/%lu @%lu", n, total - point, total);
1111 			atomic_long_sub(n, &mmap_pages_allocated);
1112 			total -= n;
1113 			set_page_refcounted(pages + total);
1114 			__free_pages(pages + total, order);
1115 		}
1116 	}
1117 
1118 	for (point = 1; point < total; point++)
1119 		set_page_refcounted(&pages[point]);
1120 
1121 	base = page_address(pages);
1122 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1123 	region->vm_start = (unsigned long) base;
1124 	region->vm_end   = region->vm_start + rlen;
1125 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1126 
1127 	vma->vm_start = region->vm_start;
1128 	vma->vm_end   = region->vm_start + len;
1129 
1130 	if (vma->vm_file) {
1131 		/* read the contents of a file into the copy */
1132 		mm_segment_t old_fs;
1133 		loff_t fpos;
1134 
1135 		fpos = vma->vm_pgoff;
1136 		fpos <<= PAGE_SHIFT;
1137 
1138 		old_fs = get_fs();
1139 		set_fs(KERNEL_DS);
1140 		ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1141 		set_fs(old_fs);
1142 
1143 		if (ret < 0)
1144 			goto error_free;
1145 
1146 		/* clear the last little bit */
1147 		if (ret < rlen)
1148 			memset(base + ret, 0, rlen - ret);
1149 
1150 	}
1151 
1152 	return 0;
1153 
1154 error_free:
1155 	free_page_series(region->vm_start, region->vm_end);
1156 	region->vm_start = vma->vm_start = 0;
1157 	region->vm_end   = vma->vm_end = 0;
1158 	region->vm_top   = 0;
1159 	return ret;
1160 
1161 enomem:
1162 	printk("Allocation of length %lu from process %d (%s) failed\n",
1163 	       len, current->pid, current->comm);
1164 	show_free_areas();
1165 	return -ENOMEM;
1166 }
1167 
1168 /*
1169  * handle mapping creation for uClinux
1170  */
1171 unsigned long do_mmap_pgoff(struct file *file,
1172 			    unsigned long addr,
1173 			    unsigned long len,
1174 			    unsigned long prot,
1175 			    unsigned long flags,
1176 			    unsigned long pgoff)
1177 {
1178 	struct vm_area_struct *vma;
1179 	struct vm_region *region;
1180 	struct rb_node *rb;
1181 	unsigned long capabilities, vm_flags, result;
1182 	int ret;
1183 
1184 	kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1185 
1186 	/* decide whether we should attempt the mapping, and if so what sort of
1187 	 * mapping */
1188 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1189 				    &capabilities);
1190 	if (ret < 0) {
1191 		kleave(" = %d [val]", ret);
1192 		return ret;
1193 	}
1194 
1195 	/* we ignore the address hint */
1196 	addr = 0;
1197 
1198 	/* we've determined that we can make the mapping, now translate what we
1199 	 * now know into VMA flags */
1200 	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1201 
1202 	/* we're going to need to record the mapping */
1203 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1204 	if (!region)
1205 		goto error_getting_region;
1206 
1207 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1208 	if (!vma)
1209 		goto error_getting_vma;
1210 
1211 	region->vm_usage = 1;
1212 	region->vm_flags = vm_flags;
1213 	region->vm_pgoff = pgoff;
1214 
1215 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1216 	vma->vm_flags = vm_flags;
1217 	vma->vm_pgoff = pgoff;
1218 
1219 	if (file) {
1220 		region->vm_file = file;
1221 		get_file(file);
1222 		vma->vm_file = file;
1223 		get_file(file);
1224 		if (vm_flags & VM_EXECUTABLE) {
1225 			added_exe_file_vma(current->mm);
1226 			vma->vm_mm = current->mm;
1227 		}
1228 	}
1229 
1230 	down_write(&nommu_region_sem);
1231 
1232 	/* if we want to share, we need to check for regions created by other
1233 	 * mmap() calls that overlap with our proposed mapping
1234 	 * - we can only share with a superset match on most regular files
1235 	 * - shared mappings on character devices and memory backed files are
1236 	 *   permitted to overlap inexactly as far as we are concerned for in
1237 	 *   these cases, sharing is handled in the driver or filesystem rather
1238 	 *   than here
1239 	 */
1240 	if (vm_flags & VM_MAYSHARE) {
1241 		struct vm_region *pregion;
1242 		unsigned long pglen, rpglen, pgend, rpgend, start;
1243 
1244 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1245 		pgend = pgoff + pglen;
1246 
1247 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1248 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1249 
1250 			if (!(pregion->vm_flags & VM_MAYSHARE))
1251 				continue;
1252 
1253 			/* search for overlapping mappings on the same file */
1254 			if (pregion->vm_file->f_path.dentry->d_inode !=
1255 			    file->f_path.dentry->d_inode)
1256 				continue;
1257 
1258 			if (pregion->vm_pgoff >= pgend)
1259 				continue;
1260 
1261 			rpglen = pregion->vm_end - pregion->vm_start;
1262 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1263 			rpgend = pregion->vm_pgoff + rpglen;
1264 			if (pgoff >= rpgend)
1265 				continue;
1266 
1267 			/* handle inexactly overlapping matches between
1268 			 * mappings */
1269 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1270 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1271 				/* new mapping is not a subset of the region */
1272 				if (!(capabilities & BDI_CAP_MAP_DIRECT))
1273 					goto sharing_violation;
1274 				continue;
1275 			}
1276 
1277 			/* we've found a region we can share */
1278 			pregion->vm_usage++;
1279 			vma->vm_region = pregion;
1280 			start = pregion->vm_start;
1281 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1282 			vma->vm_start = start;
1283 			vma->vm_end = start + len;
1284 
1285 			if (pregion->vm_flags & VM_MAPPED_COPY) {
1286 				kdebug("share copy");
1287 				vma->vm_flags |= VM_MAPPED_COPY;
1288 			} else {
1289 				kdebug("share mmap");
1290 				ret = do_mmap_shared_file(vma);
1291 				if (ret < 0) {
1292 					vma->vm_region = NULL;
1293 					vma->vm_start = 0;
1294 					vma->vm_end = 0;
1295 					pregion->vm_usage--;
1296 					pregion = NULL;
1297 					goto error_just_free;
1298 				}
1299 			}
1300 			fput(region->vm_file);
1301 			kmem_cache_free(vm_region_jar, region);
1302 			region = pregion;
1303 			result = start;
1304 			goto share;
1305 		}
1306 
1307 		/* obtain the address at which to make a shared mapping
1308 		 * - this is the hook for quasi-memory character devices to
1309 		 *   tell us the location of a shared mapping
1310 		 */
1311 		if (capabilities & BDI_CAP_MAP_DIRECT) {
1312 			addr = file->f_op->get_unmapped_area(file, addr, len,
1313 							     pgoff, flags);
1314 			if (IS_ERR((void *) addr)) {
1315 				ret = addr;
1316 				if (ret != (unsigned long) -ENOSYS)
1317 					goto error_just_free;
1318 
1319 				/* the driver refused to tell us where to site
1320 				 * the mapping so we'll have to attempt to copy
1321 				 * it */
1322 				ret = (unsigned long) -ENODEV;
1323 				if (!(capabilities & BDI_CAP_MAP_COPY))
1324 					goto error_just_free;
1325 
1326 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1327 			} else {
1328 				vma->vm_start = region->vm_start = addr;
1329 				vma->vm_end = region->vm_end = addr + len;
1330 			}
1331 		}
1332 	}
1333 
1334 	vma->vm_region = region;
1335 
1336 	/* set up the mapping
1337 	 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1338 	 */
1339 	if (file && vma->vm_flags & VM_SHARED)
1340 		ret = do_mmap_shared_file(vma);
1341 	else
1342 		ret = do_mmap_private(vma, region, len, capabilities);
1343 	if (ret < 0)
1344 		goto error_just_free;
1345 	add_nommu_region(region);
1346 
1347 	/* clear anonymous mappings that don't ask for uninitialized data */
1348 	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1349 		memset((void *)region->vm_start, 0,
1350 		       region->vm_end - region->vm_start);
1351 
1352 	/* okay... we have a mapping; now we have to register it */
1353 	result = vma->vm_start;
1354 
1355 	current->mm->total_vm += len >> PAGE_SHIFT;
1356 
1357 share:
1358 	add_vma_to_mm(current->mm, vma);
1359 
1360 	/* we flush the region from the icache only when the first executable
1361 	 * mapping of it is made  */
1362 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1363 		flush_icache_range(region->vm_start, region->vm_end);
1364 		region->vm_icache_flushed = true;
1365 	}
1366 
1367 	up_write(&nommu_region_sem);
1368 
1369 	kleave(" = %lx", result);
1370 	return result;
1371 
1372 error_just_free:
1373 	up_write(&nommu_region_sem);
1374 error:
1375 	if (region->vm_file)
1376 		fput(region->vm_file);
1377 	kmem_cache_free(vm_region_jar, region);
1378 	if (vma->vm_file)
1379 		fput(vma->vm_file);
1380 	if (vma->vm_flags & VM_EXECUTABLE)
1381 		removed_exe_file_vma(vma->vm_mm);
1382 	kmem_cache_free(vm_area_cachep, vma);
1383 	kleave(" = %d", ret);
1384 	return ret;
1385 
1386 sharing_violation:
1387 	up_write(&nommu_region_sem);
1388 	printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1389 	ret = -EINVAL;
1390 	goto error;
1391 
1392 error_getting_vma:
1393 	kmem_cache_free(vm_region_jar, region);
1394 	printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1395 	       " from process %d failed\n",
1396 	       len, current->pid);
1397 	show_free_areas();
1398 	return -ENOMEM;
1399 
1400 error_getting_region:
1401 	printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1402 	       " from process %d failed\n",
1403 	       len, current->pid);
1404 	show_free_areas();
1405 	return -ENOMEM;
1406 }
1407 EXPORT_SYMBOL(do_mmap_pgoff);
1408 
1409 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1410 		unsigned long, prot, unsigned long, flags,
1411 		unsigned long, fd, unsigned long, pgoff)
1412 {
1413 	struct file *file = NULL;
1414 	unsigned long retval = -EBADF;
1415 
1416 	if (!(flags & MAP_ANONYMOUS)) {
1417 		file = fget(fd);
1418 		if (!file)
1419 			goto out;
1420 	}
1421 
1422 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1423 
1424 	down_write(&current->mm->mmap_sem);
1425 	retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1426 	up_write(&current->mm->mmap_sem);
1427 
1428 	if (file)
1429 		fput(file);
1430 out:
1431 	return retval;
1432 }
1433 
1434 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1435 struct mmap_arg_struct {
1436 	unsigned long addr;
1437 	unsigned long len;
1438 	unsigned long prot;
1439 	unsigned long flags;
1440 	unsigned long fd;
1441 	unsigned long offset;
1442 };
1443 
1444 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1445 {
1446 	struct mmap_arg_struct a;
1447 
1448 	if (copy_from_user(&a, arg, sizeof(a)))
1449 		return -EFAULT;
1450 	if (a.offset & ~PAGE_MASK)
1451 		return -EINVAL;
1452 
1453 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1454 			      a.offset >> PAGE_SHIFT);
1455 }
1456 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1457 
1458 /*
1459  * split a vma into two pieces at address 'addr', a new vma is allocated either
1460  * for the first part or the tail.
1461  */
1462 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1463 	      unsigned long addr, int new_below)
1464 {
1465 	struct vm_area_struct *new;
1466 	struct vm_region *region;
1467 	unsigned long npages;
1468 
1469 	kenter("");
1470 
1471 	/* we're only permitted to split anonymous regions (these should have
1472 	 * only a single usage on the region) */
1473 	if (vma->vm_file)
1474 		return -ENOMEM;
1475 
1476 	if (mm->map_count >= sysctl_max_map_count)
1477 		return -ENOMEM;
1478 
1479 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1480 	if (!region)
1481 		return -ENOMEM;
1482 
1483 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1484 	if (!new) {
1485 		kmem_cache_free(vm_region_jar, region);
1486 		return -ENOMEM;
1487 	}
1488 
1489 	/* most fields are the same, copy all, and then fixup */
1490 	*new = *vma;
1491 	*region = *vma->vm_region;
1492 	new->vm_region = region;
1493 
1494 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1495 
1496 	if (new_below) {
1497 		region->vm_top = region->vm_end = new->vm_end = addr;
1498 	} else {
1499 		region->vm_start = new->vm_start = addr;
1500 		region->vm_pgoff = new->vm_pgoff += npages;
1501 	}
1502 
1503 	if (new->vm_ops && new->vm_ops->open)
1504 		new->vm_ops->open(new);
1505 
1506 	delete_vma_from_mm(vma);
1507 	down_write(&nommu_region_sem);
1508 	delete_nommu_region(vma->vm_region);
1509 	if (new_below) {
1510 		vma->vm_region->vm_start = vma->vm_start = addr;
1511 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1512 	} else {
1513 		vma->vm_region->vm_end = vma->vm_end = addr;
1514 		vma->vm_region->vm_top = addr;
1515 	}
1516 	add_nommu_region(vma->vm_region);
1517 	add_nommu_region(new->vm_region);
1518 	up_write(&nommu_region_sem);
1519 	add_vma_to_mm(mm, vma);
1520 	add_vma_to_mm(mm, new);
1521 	return 0;
1522 }
1523 
1524 /*
1525  * shrink a VMA by removing the specified chunk from either the beginning or
1526  * the end
1527  */
1528 static int shrink_vma(struct mm_struct *mm,
1529 		      struct vm_area_struct *vma,
1530 		      unsigned long from, unsigned long to)
1531 {
1532 	struct vm_region *region;
1533 
1534 	kenter("");
1535 
1536 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1537 	 * and list */
1538 	delete_vma_from_mm(vma);
1539 	if (from > vma->vm_start)
1540 		vma->vm_end = from;
1541 	else
1542 		vma->vm_start = to;
1543 	add_vma_to_mm(mm, vma);
1544 
1545 	/* cut the backing region down to size */
1546 	region = vma->vm_region;
1547 	BUG_ON(region->vm_usage != 1);
1548 
1549 	down_write(&nommu_region_sem);
1550 	delete_nommu_region(region);
1551 	if (from > region->vm_start) {
1552 		to = region->vm_top;
1553 		region->vm_top = region->vm_end = from;
1554 	} else {
1555 		region->vm_start = to;
1556 	}
1557 	add_nommu_region(region);
1558 	up_write(&nommu_region_sem);
1559 
1560 	free_page_series(from, to);
1561 	return 0;
1562 }
1563 
1564 /*
1565  * release a mapping
1566  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1567  *   VMA, though it need not cover the whole VMA
1568  */
1569 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1570 {
1571 	struct vm_area_struct *vma;
1572 	struct rb_node *rb;
1573 	unsigned long end = start + len;
1574 	int ret;
1575 
1576 	kenter(",%lx,%zx", start, len);
1577 
1578 	if (len == 0)
1579 		return -EINVAL;
1580 
1581 	/* find the first potentially overlapping VMA */
1582 	vma = find_vma(mm, start);
1583 	if (!vma) {
1584 		static int limit = 0;
1585 		if (limit < 5) {
1586 			printk(KERN_WARNING
1587 			       "munmap of memory not mmapped by process %d"
1588 			       " (%s): 0x%lx-0x%lx\n",
1589 			       current->pid, current->comm,
1590 			       start, start + len - 1);
1591 			limit++;
1592 		}
1593 		return -EINVAL;
1594 	}
1595 
1596 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1597 	if (vma->vm_file) {
1598 		do {
1599 			if (start > vma->vm_start) {
1600 				kleave(" = -EINVAL [miss]");
1601 				return -EINVAL;
1602 			}
1603 			if (end == vma->vm_end)
1604 				goto erase_whole_vma;
1605 			rb = rb_next(&vma->vm_rb);
1606 			vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1607 		} while (rb);
1608 		kleave(" = -EINVAL [split file]");
1609 		return -EINVAL;
1610 	} else {
1611 		/* the chunk must be a subset of the VMA found */
1612 		if (start == vma->vm_start && end == vma->vm_end)
1613 			goto erase_whole_vma;
1614 		if (start < vma->vm_start || end > vma->vm_end) {
1615 			kleave(" = -EINVAL [superset]");
1616 			return -EINVAL;
1617 		}
1618 		if (start & ~PAGE_MASK) {
1619 			kleave(" = -EINVAL [unaligned start]");
1620 			return -EINVAL;
1621 		}
1622 		if (end != vma->vm_end && end & ~PAGE_MASK) {
1623 			kleave(" = -EINVAL [unaligned split]");
1624 			return -EINVAL;
1625 		}
1626 		if (start != vma->vm_start && end != vma->vm_end) {
1627 			ret = split_vma(mm, vma, start, 1);
1628 			if (ret < 0) {
1629 				kleave(" = %d [split]", ret);
1630 				return ret;
1631 			}
1632 		}
1633 		return shrink_vma(mm, vma, start, end);
1634 	}
1635 
1636 erase_whole_vma:
1637 	delete_vma_from_mm(vma);
1638 	delete_vma(mm, vma);
1639 	kleave(" = 0");
1640 	return 0;
1641 }
1642 EXPORT_SYMBOL(do_munmap);
1643 
1644 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1645 {
1646 	int ret;
1647 	struct mm_struct *mm = current->mm;
1648 
1649 	down_write(&mm->mmap_sem);
1650 	ret = do_munmap(mm, addr, len);
1651 	up_write(&mm->mmap_sem);
1652 	return ret;
1653 }
1654 
1655 /*
1656  * release all the mappings made in a process's VM space
1657  */
1658 void exit_mmap(struct mm_struct *mm)
1659 {
1660 	struct vm_area_struct *vma;
1661 
1662 	if (!mm)
1663 		return;
1664 
1665 	kenter("");
1666 
1667 	mm->total_vm = 0;
1668 
1669 	while ((vma = mm->mmap)) {
1670 		mm->mmap = vma->vm_next;
1671 		delete_vma_from_mm(vma);
1672 		delete_vma(mm, vma);
1673 	}
1674 
1675 	kleave("");
1676 }
1677 
1678 unsigned long do_brk(unsigned long addr, unsigned long len)
1679 {
1680 	return -ENOMEM;
1681 }
1682 
1683 /*
1684  * expand (or shrink) an existing mapping, potentially moving it at the same
1685  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1686  *
1687  * under NOMMU conditions, we only permit changing a mapping's size, and only
1688  * as long as it stays within the region allocated by do_mmap_private() and the
1689  * block is not shareable
1690  *
1691  * MREMAP_FIXED is not supported under NOMMU conditions
1692  */
1693 unsigned long do_mremap(unsigned long addr,
1694 			unsigned long old_len, unsigned long new_len,
1695 			unsigned long flags, unsigned long new_addr)
1696 {
1697 	struct vm_area_struct *vma;
1698 
1699 	/* insanity checks first */
1700 	if (old_len == 0 || new_len == 0)
1701 		return (unsigned long) -EINVAL;
1702 
1703 	if (addr & ~PAGE_MASK)
1704 		return -EINVAL;
1705 
1706 	if (flags & MREMAP_FIXED && new_addr != addr)
1707 		return (unsigned long) -EINVAL;
1708 
1709 	vma = find_vma_exact(current->mm, addr, old_len);
1710 	if (!vma)
1711 		return (unsigned long) -EINVAL;
1712 
1713 	if (vma->vm_end != vma->vm_start + old_len)
1714 		return (unsigned long) -EFAULT;
1715 
1716 	if (vma->vm_flags & VM_MAYSHARE)
1717 		return (unsigned long) -EPERM;
1718 
1719 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1720 		return (unsigned long) -ENOMEM;
1721 
1722 	/* all checks complete - do it */
1723 	vma->vm_end = vma->vm_start + new_len;
1724 	return vma->vm_start;
1725 }
1726 EXPORT_SYMBOL(do_mremap);
1727 
1728 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1729 		unsigned long, new_len, unsigned long, flags,
1730 		unsigned long, new_addr)
1731 {
1732 	unsigned long ret;
1733 
1734 	down_write(&current->mm->mmap_sem);
1735 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1736 	up_write(&current->mm->mmap_sem);
1737 	return ret;
1738 }
1739 
1740 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1741 			unsigned int foll_flags)
1742 {
1743 	return NULL;
1744 }
1745 
1746 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1747 		unsigned long to, unsigned long size, pgprot_t prot)
1748 {
1749 	vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1750 	return 0;
1751 }
1752 EXPORT_SYMBOL(remap_pfn_range);
1753 
1754 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1755 			unsigned long pgoff)
1756 {
1757 	unsigned int size = vma->vm_end - vma->vm_start;
1758 
1759 	if (!(vma->vm_flags & VM_USERMAP))
1760 		return -EINVAL;
1761 
1762 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1763 	vma->vm_end = vma->vm_start + size;
1764 
1765 	return 0;
1766 }
1767 EXPORT_SYMBOL(remap_vmalloc_range);
1768 
1769 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1770 {
1771 }
1772 
1773 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1774 	unsigned long len, unsigned long pgoff, unsigned long flags)
1775 {
1776 	return -ENOMEM;
1777 }
1778 
1779 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1780 {
1781 }
1782 
1783 void unmap_mapping_range(struct address_space *mapping,
1784 			 loff_t const holebegin, loff_t const holelen,
1785 			 int even_cows)
1786 {
1787 }
1788 EXPORT_SYMBOL(unmap_mapping_range);
1789 
1790 /*
1791  * Check that a process has enough memory to allocate a new virtual
1792  * mapping. 0 means there is enough memory for the allocation to
1793  * succeed and -ENOMEM implies there is not.
1794  *
1795  * We currently support three overcommit policies, which are set via the
1796  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1797  *
1798  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1799  * Additional code 2002 Jul 20 by Robert Love.
1800  *
1801  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1802  *
1803  * Note this is a helper function intended to be used by LSMs which
1804  * wish to use this logic.
1805  */
1806 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1807 {
1808 	unsigned long free, allowed;
1809 
1810 	vm_acct_memory(pages);
1811 
1812 	/*
1813 	 * Sometimes we want to use more memory than we have
1814 	 */
1815 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1816 		return 0;
1817 
1818 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1819 		unsigned long n;
1820 
1821 		free = global_page_state(NR_FILE_PAGES);
1822 		free += nr_swap_pages;
1823 
1824 		/*
1825 		 * Any slabs which are created with the
1826 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1827 		 * which are reclaimable, under pressure.  The dentry
1828 		 * cache and most inode caches should fall into this
1829 		 */
1830 		free += global_page_state(NR_SLAB_RECLAIMABLE);
1831 
1832 		/*
1833 		 * Leave the last 3% for root
1834 		 */
1835 		if (!cap_sys_admin)
1836 			free -= free / 32;
1837 
1838 		if (free > pages)
1839 			return 0;
1840 
1841 		/*
1842 		 * nr_free_pages() is very expensive on large systems,
1843 		 * only call if we're about to fail.
1844 		 */
1845 		n = nr_free_pages();
1846 
1847 		/*
1848 		 * Leave reserved pages. The pages are not for anonymous pages.
1849 		 */
1850 		if (n <= totalreserve_pages)
1851 			goto error;
1852 		else
1853 			n -= totalreserve_pages;
1854 
1855 		/*
1856 		 * Leave the last 3% for root
1857 		 */
1858 		if (!cap_sys_admin)
1859 			n -= n / 32;
1860 		free += n;
1861 
1862 		if (free > pages)
1863 			return 0;
1864 
1865 		goto error;
1866 	}
1867 
1868 	allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1869 	/*
1870 	 * Leave the last 3% for root
1871 	 */
1872 	if (!cap_sys_admin)
1873 		allowed -= allowed / 32;
1874 	allowed += total_swap_pages;
1875 
1876 	/* Don't let a single process grow too big:
1877 	   leave 3% of the size of this process for other processes */
1878 	if (mm)
1879 		allowed -= mm->total_vm / 32;
1880 
1881 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1882 		return 0;
1883 
1884 error:
1885 	vm_unacct_memory(pages);
1886 
1887 	return -ENOMEM;
1888 }
1889 
1890 int in_gate_area_no_task(unsigned long addr)
1891 {
1892 	return 0;
1893 }
1894 
1895 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1896 {
1897 	BUG();
1898 	return 0;
1899 }
1900 EXPORT_SYMBOL(filemap_fault);
1901 
1902 /*
1903  * Access another process' address space.
1904  * - source/target buffer must be kernel space
1905  */
1906 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1907 {
1908 	struct vm_area_struct *vma;
1909 	struct mm_struct *mm;
1910 
1911 	if (addr + len < addr)
1912 		return 0;
1913 
1914 	mm = get_task_mm(tsk);
1915 	if (!mm)
1916 		return 0;
1917 
1918 	down_read(&mm->mmap_sem);
1919 
1920 	/* the access must start within one of the target process's mappings */
1921 	vma = find_vma(mm, addr);
1922 	if (vma) {
1923 		/* don't overrun this mapping */
1924 		if (addr + len >= vma->vm_end)
1925 			len = vma->vm_end - addr;
1926 
1927 		/* only read or write mappings where it is permitted */
1928 		if (write && vma->vm_flags & VM_MAYWRITE)
1929 			copy_to_user_page(vma, NULL, addr,
1930 					 (void *) addr, buf, len);
1931 		else if (!write && vma->vm_flags & VM_MAYREAD)
1932 			copy_from_user_page(vma, NULL, addr,
1933 					    buf, (void *) addr, len);
1934 		else
1935 			len = 0;
1936 	} else {
1937 		len = 0;
1938 	}
1939 
1940 	up_read(&mm->mmap_sem);
1941 	mmput(mm);
1942 	return len;
1943 }
1944 
1945 /**
1946  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1947  * @inode: The inode to check
1948  * @size: The current filesize of the inode
1949  * @newsize: The proposed filesize of the inode
1950  *
1951  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1952  * make sure that that any outstanding VMAs aren't broken and then shrink the
1953  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1954  * automatically grant mappings that are too large.
1955  */
1956 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1957 				size_t newsize)
1958 {
1959 	struct vm_area_struct *vma;
1960 	struct prio_tree_iter iter;
1961 	struct vm_region *region;
1962 	pgoff_t low, high;
1963 	size_t r_size, r_top;
1964 
1965 	low = newsize >> PAGE_SHIFT;
1966 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1967 
1968 	down_write(&nommu_region_sem);
1969 
1970 	/* search for VMAs that fall within the dead zone */
1971 	vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
1972 			      low, high) {
1973 		/* found one - only interested if it's shared out of the page
1974 		 * cache */
1975 		if (vma->vm_flags & VM_SHARED) {
1976 			up_write(&nommu_region_sem);
1977 			return -ETXTBSY; /* not quite true, but near enough */
1978 		}
1979 	}
1980 
1981 	/* reduce any regions that overlap the dead zone - if in existence,
1982 	 * these will be pointed to by VMAs that don't overlap the dead zone
1983 	 *
1984 	 * we don't check for any regions that start beyond the EOF as there
1985 	 * shouldn't be any
1986 	 */
1987 	vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
1988 			      0, ULONG_MAX) {
1989 		if (!(vma->vm_flags & VM_SHARED))
1990 			continue;
1991 
1992 		region = vma->vm_region;
1993 		r_size = region->vm_top - region->vm_start;
1994 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1995 
1996 		if (r_top > newsize) {
1997 			region->vm_top -= r_top - newsize;
1998 			if (region->vm_end > region->vm_top)
1999 				region->vm_end = region->vm_top;
2000 		}
2001 	}
2002 
2003 	up_write(&nommu_region_sem);
2004 	return 0;
2005 }
2006