1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/nommu.c 4 * 5 * Replacement code for mm functions to support CPU's that don't 6 * have any form of memory management unit (thus no virtual memory). 7 * 8 * See Documentation/admin-guide/mm/nommu-mmap.rst 9 * 10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/export.h> 20 #include <linux/mm.h> 21 #include <linux/sched/mm.h> 22 #include <linux/mman.h> 23 #include <linux/swap.h> 24 #include <linux/file.h> 25 #include <linux/highmem.h> 26 #include <linux/pagemap.h> 27 #include <linux/slab.h> 28 #include <linux/vmalloc.h> 29 #include <linux/backing-dev.h> 30 #include <linux/compiler.h> 31 #include <linux/mount.h> 32 #include <linux/personality.h> 33 #include <linux/security.h> 34 #include <linux/syscalls.h> 35 #include <linux/audit.h> 36 #include <linux/printk.h> 37 38 #include <linux/uaccess.h> 39 #include <linux/uio.h> 40 #include <asm/tlb.h> 41 #include <asm/tlbflush.h> 42 #include <asm/mmu_context.h> 43 #include "internal.h" 44 45 void *high_memory; 46 EXPORT_SYMBOL(high_memory); 47 struct page *mem_map; 48 unsigned long max_mapnr; 49 EXPORT_SYMBOL(max_mapnr); 50 unsigned long highest_memmap_pfn; 51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 52 int heap_stack_gap = 0; 53 54 atomic_long_t mmap_pages_allocated; 55 56 EXPORT_SYMBOL(mem_map); 57 58 /* list of mapped, potentially shareable regions */ 59 static struct kmem_cache *vm_region_jar; 60 struct rb_root nommu_region_tree = RB_ROOT; 61 DECLARE_RWSEM(nommu_region_sem); 62 63 const struct vm_operations_struct generic_file_vm_ops = { 64 }; 65 66 /* 67 * Return the total memory allocated for this pointer, not 68 * just what the caller asked for. 69 * 70 * Doesn't have to be accurate, i.e. may have races. 71 */ 72 unsigned int kobjsize(const void *objp) 73 { 74 struct page *page; 75 76 /* 77 * If the object we have should not have ksize performed on it, 78 * return size of 0 79 */ 80 if (!objp || !virt_addr_valid(objp)) 81 return 0; 82 83 page = virt_to_head_page(objp); 84 85 /* 86 * If the allocator sets PageSlab, we know the pointer came from 87 * kmalloc(). 88 */ 89 if (PageSlab(page)) 90 return ksize(objp); 91 92 /* 93 * If it's not a compound page, see if we have a matching VMA 94 * region. This test is intentionally done in reverse order, 95 * so if there's no VMA, we still fall through and hand back 96 * PAGE_SIZE for 0-order pages. 97 */ 98 if (!PageCompound(page)) { 99 struct vm_area_struct *vma; 100 101 vma = find_vma(current->mm, (unsigned long)objp); 102 if (vma) 103 return vma->vm_end - vma->vm_start; 104 } 105 106 /* 107 * The ksize() function is only guaranteed to work for pointers 108 * returned by kmalloc(). So handle arbitrary pointers here. 109 */ 110 return page_size(page); 111 } 112 113 /** 114 * follow_pfn - look up PFN at a user virtual address 115 * @vma: memory mapping 116 * @address: user virtual address 117 * @pfn: location to store found PFN 118 * 119 * Only IO mappings and raw PFN mappings are allowed. 120 * 121 * Returns zero and the pfn at @pfn on success, -ve otherwise. 122 */ 123 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 124 unsigned long *pfn) 125 { 126 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 127 return -EINVAL; 128 129 *pfn = address >> PAGE_SHIFT; 130 return 0; 131 } 132 EXPORT_SYMBOL(follow_pfn); 133 134 LIST_HEAD(vmap_area_list); 135 136 void vfree(const void *addr) 137 { 138 kfree(addr); 139 } 140 EXPORT_SYMBOL(vfree); 141 142 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 143 { 144 /* 145 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 146 * returns only a logical address. 147 */ 148 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 149 } 150 EXPORT_SYMBOL(__vmalloc); 151 152 void *__vmalloc_node_range(unsigned long size, unsigned long align, 153 unsigned long start, unsigned long end, gfp_t gfp_mask, 154 pgprot_t prot, unsigned long vm_flags, int node, 155 const void *caller) 156 { 157 return __vmalloc(size, gfp_mask); 158 } 159 160 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask, 161 int node, const void *caller) 162 { 163 return __vmalloc(size, gfp_mask); 164 } 165 166 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags) 167 { 168 void *ret; 169 170 ret = __vmalloc(size, flags); 171 if (ret) { 172 struct vm_area_struct *vma; 173 174 mmap_write_lock(current->mm); 175 vma = find_vma(current->mm, (unsigned long)ret); 176 if (vma) 177 vm_flags_set(vma, VM_USERMAP); 178 mmap_write_unlock(current->mm); 179 } 180 181 return ret; 182 } 183 184 void *vmalloc_user(unsigned long size) 185 { 186 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO); 187 } 188 EXPORT_SYMBOL(vmalloc_user); 189 190 struct page *vmalloc_to_page(const void *addr) 191 { 192 return virt_to_page(addr); 193 } 194 EXPORT_SYMBOL(vmalloc_to_page); 195 196 unsigned long vmalloc_to_pfn(const void *addr) 197 { 198 return page_to_pfn(virt_to_page(addr)); 199 } 200 EXPORT_SYMBOL(vmalloc_to_pfn); 201 202 long vread_iter(struct iov_iter *iter, const char *addr, size_t count) 203 { 204 /* Don't allow overflow */ 205 if ((unsigned long) addr + count < count) 206 count = -(unsigned long) addr; 207 208 return copy_to_iter(addr, count, iter); 209 } 210 211 /* 212 * vmalloc - allocate virtually contiguous memory 213 * 214 * @size: allocation size 215 * 216 * Allocate enough pages to cover @size from the page level 217 * allocator and map them into contiguous kernel virtual space. 218 * 219 * For tight control over page level allocator and protection flags 220 * use __vmalloc() instead. 221 */ 222 void *vmalloc(unsigned long size) 223 { 224 return __vmalloc(size, GFP_KERNEL); 225 } 226 EXPORT_SYMBOL(vmalloc); 227 228 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc); 229 230 /* 231 * vzalloc - allocate virtually contiguous memory with zero fill 232 * 233 * @size: allocation size 234 * 235 * Allocate enough pages to cover @size from the page level 236 * allocator and map them into contiguous kernel virtual space. 237 * The memory allocated is set to zero. 238 * 239 * For tight control over page level allocator and protection flags 240 * use __vmalloc() instead. 241 */ 242 void *vzalloc(unsigned long size) 243 { 244 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO); 245 } 246 EXPORT_SYMBOL(vzalloc); 247 248 /** 249 * vmalloc_node - allocate memory on a specific node 250 * @size: allocation size 251 * @node: numa node 252 * 253 * Allocate enough pages to cover @size from the page level 254 * allocator and map them into contiguous kernel virtual space. 255 * 256 * For tight control over page level allocator and protection flags 257 * use __vmalloc() instead. 258 */ 259 void *vmalloc_node(unsigned long size, int node) 260 { 261 return vmalloc(size); 262 } 263 EXPORT_SYMBOL(vmalloc_node); 264 265 /** 266 * vzalloc_node - allocate memory on a specific node with zero fill 267 * @size: allocation size 268 * @node: numa node 269 * 270 * Allocate enough pages to cover @size from the page level 271 * allocator and map them into contiguous kernel virtual space. 272 * The memory allocated is set to zero. 273 * 274 * For tight control over page level allocator and protection flags 275 * use __vmalloc() instead. 276 */ 277 void *vzalloc_node(unsigned long size, int node) 278 { 279 return vzalloc(size); 280 } 281 EXPORT_SYMBOL(vzalloc_node); 282 283 /** 284 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 285 * @size: allocation size 286 * 287 * Allocate enough 32bit PA addressable pages to cover @size from the 288 * page level allocator and map them into contiguous kernel virtual space. 289 */ 290 void *vmalloc_32(unsigned long size) 291 { 292 return __vmalloc(size, GFP_KERNEL); 293 } 294 EXPORT_SYMBOL(vmalloc_32); 295 296 /** 297 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 298 * @size: allocation size 299 * 300 * The resulting memory area is 32bit addressable and zeroed so it can be 301 * mapped to userspace without leaking data. 302 * 303 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 304 * remap_vmalloc_range() are permissible. 305 */ 306 void *vmalloc_32_user(unsigned long size) 307 { 308 /* 309 * We'll have to sort out the ZONE_DMA bits for 64-bit, 310 * but for now this can simply use vmalloc_user() directly. 311 */ 312 return vmalloc_user(size); 313 } 314 EXPORT_SYMBOL(vmalloc_32_user); 315 316 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 317 { 318 BUG(); 319 return NULL; 320 } 321 EXPORT_SYMBOL(vmap); 322 323 void vunmap(const void *addr) 324 { 325 BUG(); 326 } 327 EXPORT_SYMBOL(vunmap); 328 329 void *vm_map_ram(struct page **pages, unsigned int count, int node) 330 { 331 BUG(); 332 return NULL; 333 } 334 EXPORT_SYMBOL(vm_map_ram); 335 336 void vm_unmap_ram(const void *mem, unsigned int count) 337 { 338 BUG(); 339 } 340 EXPORT_SYMBOL(vm_unmap_ram); 341 342 void vm_unmap_aliases(void) 343 { 344 } 345 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 346 347 void free_vm_area(struct vm_struct *area) 348 { 349 BUG(); 350 } 351 EXPORT_SYMBOL_GPL(free_vm_area); 352 353 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 354 struct page *page) 355 { 356 return -EINVAL; 357 } 358 EXPORT_SYMBOL(vm_insert_page); 359 360 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 361 unsigned long num) 362 { 363 return -EINVAL; 364 } 365 EXPORT_SYMBOL(vm_map_pages); 366 367 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 368 unsigned long num) 369 { 370 return -EINVAL; 371 } 372 EXPORT_SYMBOL(vm_map_pages_zero); 373 374 /* 375 * sys_brk() for the most part doesn't need the global kernel 376 * lock, except when an application is doing something nasty 377 * like trying to un-brk an area that has already been mapped 378 * to a regular file. in this case, the unmapping will need 379 * to invoke file system routines that need the global lock. 380 */ 381 SYSCALL_DEFINE1(brk, unsigned long, brk) 382 { 383 struct mm_struct *mm = current->mm; 384 385 if (brk < mm->start_brk || brk > mm->context.end_brk) 386 return mm->brk; 387 388 if (mm->brk == brk) 389 return mm->brk; 390 391 /* 392 * Always allow shrinking brk 393 */ 394 if (brk <= mm->brk) { 395 mm->brk = brk; 396 return brk; 397 } 398 399 /* 400 * Ok, looks good - let it rip. 401 */ 402 flush_icache_user_range(mm->brk, brk); 403 return mm->brk = brk; 404 } 405 406 /* 407 * initialise the percpu counter for VM and region record slabs 408 */ 409 void __init mmap_init(void) 410 { 411 int ret; 412 413 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 414 VM_BUG_ON(ret); 415 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 416 } 417 418 /* 419 * validate the region tree 420 * - the caller must hold the region lock 421 */ 422 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 423 static noinline void validate_nommu_regions(void) 424 { 425 struct vm_region *region, *last; 426 struct rb_node *p, *lastp; 427 428 lastp = rb_first(&nommu_region_tree); 429 if (!lastp) 430 return; 431 432 last = rb_entry(lastp, struct vm_region, vm_rb); 433 BUG_ON(last->vm_end <= last->vm_start); 434 BUG_ON(last->vm_top < last->vm_end); 435 436 while ((p = rb_next(lastp))) { 437 region = rb_entry(p, struct vm_region, vm_rb); 438 last = rb_entry(lastp, struct vm_region, vm_rb); 439 440 BUG_ON(region->vm_end <= region->vm_start); 441 BUG_ON(region->vm_top < region->vm_end); 442 BUG_ON(region->vm_start < last->vm_top); 443 444 lastp = p; 445 } 446 } 447 #else 448 static void validate_nommu_regions(void) 449 { 450 } 451 #endif 452 453 /* 454 * add a region into the global tree 455 */ 456 static void add_nommu_region(struct vm_region *region) 457 { 458 struct vm_region *pregion; 459 struct rb_node **p, *parent; 460 461 validate_nommu_regions(); 462 463 parent = NULL; 464 p = &nommu_region_tree.rb_node; 465 while (*p) { 466 parent = *p; 467 pregion = rb_entry(parent, struct vm_region, vm_rb); 468 if (region->vm_start < pregion->vm_start) 469 p = &(*p)->rb_left; 470 else if (region->vm_start > pregion->vm_start) 471 p = &(*p)->rb_right; 472 else if (pregion == region) 473 return; 474 else 475 BUG(); 476 } 477 478 rb_link_node(®ion->vm_rb, parent, p); 479 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 480 481 validate_nommu_regions(); 482 } 483 484 /* 485 * delete a region from the global tree 486 */ 487 static void delete_nommu_region(struct vm_region *region) 488 { 489 BUG_ON(!nommu_region_tree.rb_node); 490 491 validate_nommu_regions(); 492 rb_erase(®ion->vm_rb, &nommu_region_tree); 493 validate_nommu_regions(); 494 } 495 496 /* 497 * free a contiguous series of pages 498 */ 499 static void free_page_series(unsigned long from, unsigned long to) 500 { 501 for (; from < to; from += PAGE_SIZE) { 502 struct page *page = virt_to_page((void *)from); 503 504 atomic_long_dec(&mmap_pages_allocated); 505 put_page(page); 506 } 507 } 508 509 /* 510 * release a reference to a region 511 * - the caller must hold the region semaphore for writing, which this releases 512 * - the region may not have been added to the tree yet, in which case vm_top 513 * will equal vm_start 514 */ 515 static void __put_nommu_region(struct vm_region *region) 516 __releases(nommu_region_sem) 517 { 518 BUG_ON(!nommu_region_tree.rb_node); 519 520 if (--region->vm_usage == 0) { 521 if (region->vm_top > region->vm_start) 522 delete_nommu_region(region); 523 up_write(&nommu_region_sem); 524 525 if (region->vm_file) 526 fput(region->vm_file); 527 528 /* IO memory and memory shared directly out of the pagecache 529 * from ramfs/tmpfs mustn't be released here */ 530 if (region->vm_flags & VM_MAPPED_COPY) 531 free_page_series(region->vm_start, region->vm_top); 532 kmem_cache_free(vm_region_jar, region); 533 } else { 534 up_write(&nommu_region_sem); 535 } 536 } 537 538 /* 539 * release a reference to a region 540 */ 541 static void put_nommu_region(struct vm_region *region) 542 { 543 down_write(&nommu_region_sem); 544 __put_nommu_region(region); 545 } 546 547 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm) 548 { 549 vma->vm_mm = mm; 550 551 /* add the VMA to the mapping */ 552 if (vma->vm_file) { 553 struct address_space *mapping = vma->vm_file->f_mapping; 554 555 i_mmap_lock_write(mapping); 556 flush_dcache_mmap_lock(mapping); 557 vma_interval_tree_insert(vma, &mapping->i_mmap); 558 flush_dcache_mmap_unlock(mapping); 559 i_mmap_unlock_write(mapping); 560 } 561 } 562 563 static void cleanup_vma_from_mm(struct vm_area_struct *vma) 564 { 565 vma->vm_mm->map_count--; 566 /* remove the VMA from the mapping */ 567 if (vma->vm_file) { 568 struct address_space *mapping; 569 mapping = vma->vm_file->f_mapping; 570 571 i_mmap_lock_write(mapping); 572 flush_dcache_mmap_lock(mapping); 573 vma_interval_tree_remove(vma, &mapping->i_mmap); 574 flush_dcache_mmap_unlock(mapping); 575 i_mmap_unlock_write(mapping); 576 } 577 } 578 579 /* 580 * delete a VMA from its owning mm_struct and address space 581 */ 582 static int delete_vma_from_mm(struct vm_area_struct *vma) 583 { 584 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start); 585 586 if (vma_iter_prealloc(&vmi)) { 587 pr_warn("Allocation of vma tree for process %d failed\n", 588 current->pid); 589 return -ENOMEM; 590 } 591 cleanup_vma_from_mm(vma); 592 593 /* remove from the MM's tree and list */ 594 vma_iter_clear(&vmi, vma->vm_start, vma->vm_end); 595 return 0; 596 } 597 /* 598 * destroy a VMA record 599 */ 600 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 601 { 602 if (vma->vm_ops && vma->vm_ops->close) 603 vma->vm_ops->close(vma); 604 if (vma->vm_file) 605 fput(vma->vm_file); 606 put_nommu_region(vma->vm_region); 607 vm_area_free(vma); 608 } 609 610 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 611 unsigned long start_addr, 612 unsigned long end_addr) 613 { 614 unsigned long index = start_addr; 615 616 mmap_assert_locked(mm); 617 return mt_find(&mm->mm_mt, &index, end_addr - 1); 618 } 619 EXPORT_SYMBOL(find_vma_intersection); 620 621 /* 622 * look up the first VMA in which addr resides, NULL if none 623 * - should be called with mm->mmap_lock at least held readlocked 624 */ 625 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 626 { 627 VMA_ITERATOR(vmi, mm, addr); 628 629 return vma_iter_load(&vmi); 630 } 631 EXPORT_SYMBOL(find_vma); 632 633 /* 634 * expand a stack to a given address 635 * - not supported under NOMMU conditions 636 */ 637 int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr) 638 { 639 return -ENOMEM; 640 } 641 642 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr) 643 { 644 mmap_read_unlock(mm); 645 return NULL; 646 } 647 648 /* 649 * look up the first VMA exactly that exactly matches addr 650 * - should be called with mm->mmap_lock at least held readlocked 651 */ 652 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 653 unsigned long addr, 654 unsigned long len) 655 { 656 struct vm_area_struct *vma; 657 unsigned long end = addr + len; 658 VMA_ITERATOR(vmi, mm, addr); 659 660 vma = vma_iter_load(&vmi); 661 if (!vma) 662 return NULL; 663 if (vma->vm_start != addr) 664 return NULL; 665 if (vma->vm_end != end) 666 return NULL; 667 668 return vma; 669 } 670 671 /* 672 * determine whether a mapping should be permitted and, if so, what sort of 673 * mapping we're capable of supporting 674 */ 675 static int validate_mmap_request(struct file *file, 676 unsigned long addr, 677 unsigned long len, 678 unsigned long prot, 679 unsigned long flags, 680 unsigned long pgoff, 681 unsigned long *_capabilities) 682 { 683 unsigned long capabilities, rlen; 684 int ret; 685 686 /* do the simple checks first */ 687 if (flags & MAP_FIXED) 688 return -EINVAL; 689 690 if ((flags & MAP_TYPE) != MAP_PRIVATE && 691 (flags & MAP_TYPE) != MAP_SHARED) 692 return -EINVAL; 693 694 if (!len) 695 return -EINVAL; 696 697 /* Careful about overflows.. */ 698 rlen = PAGE_ALIGN(len); 699 if (!rlen || rlen > TASK_SIZE) 700 return -ENOMEM; 701 702 /* offset overflow? */ 703 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 704 return -EOVERFLOW; 705 706 if (file) { 707 /* files must support mmap */ 708 if (!file->f_op->mmap) 709 return -ENODEV; 710 711 /* work out if what we've got could possibly be shared 712 * - we support chardevs that provide their own "memory" 713 * - we support files/blockdevs that are memory backed 714 */ 715 if (file->f_op->mmap_capabilities) { 716 capabilities = file->f_op->mmap_capabilities(file); 717 } else { 718 /* no explicit capabilities set, so assume some 719 * defaults */ 720 switch (file_inode(file)->i_mode & S_IFMT) { 721 case S_IFREG: 722 case S_IFBLK: 723 capabilities = NOMMU_MAP_COPY; 724 break; 725 726 case S_IFCHR: 727 capabilities = 728 NOMMU_MAP_DIRECT | 729 NOMMU_MAP_READ | 730 NOMMU_MAP_WRITE; 731 break; 732 733 default: 734 return -EINVAL; 735 } 736 } 737 738 /* eliminate any capabilities that we can't support on this 739 * device */ 740 if (!file->f_op->get_unmapped_area) 741 capabilities &= ~NOMMU_MAP_DIRECT; 742 if (!(file->f_mode & FMODE_CAN_READ)) 743 capabilities &= ~NOMMU_MAP_COPY; 744 745 /* The file shall have been opened with read permission. */ 746 if (!(file->f_mode & FMODE_READ)) 747 return -EACCES; 748 749 if (flags & MAP_SHARED) { 750 /* do checks for writing, appending and locking */ 751 if ((prot & PROT_WRITE) && 752 !(file->f_mode & FMODE_WRITE)) 753 return -EACCES; 754 755 if (IS_APPEND(file_inode(file)) && 756 (file->f_mode & FMODE_WRITE)) 757 return -EACCES; 758 759 if (!(capabilities & NOMMU_MAP_DIRECT)) 760 return -ENODEV; 761 762 /* we mustn't privatise shared mappings */ 763 capabilities &= ~NOMMU_MAP_COPY; 764 } else { 765 /* we're going to read the file into private memory we 766 * allocate */ 767 if (!(capabilities & NOMMU_MAP_COPY)) 768 return -ENODEV; 769 770 /* we don't permit a private writable mapping to be 771 * shared with the backing device */ 772 if (prot & PROT_WRITE) 773 capabilities &= ~NOMMU_MAP_DIRECT; 774 } 775 776 if (capabilities & NOMMU_MAP_DIRECT) { 777 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 778 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 779 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 780 ) { 781 capabilities &= ~NOMMU_MAP_DIRECT; 782 if (flags & MAP_SHARED) { 783 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 784 return -EINVAL; 785 } 786 } 787 } 788 789 /* handle executable mappings and implied executable 790 * mappings */ 791 if (path_noexec(&file->f_path)) { 792 if (prot & PROT_EXEC) 793 return -EPERM; 794 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 795 /* handle implication of PROT_EXEC by PROT_READ */ 796 if (current->personality & READ_IMPLIES_EXEC) { 797 if (capabilities & NOMMU_MAP_EXEC) 798 prot |= PROT_EXEC; 799 } 800 } else if ((prot & PROT_READ) && 801 (prot & PROT_EXEC) && 802 !(capabilities & NOMMU_MAP_EXEC) 803 ) { 804 /* backing file is not executable, try to copy */ 805 capabilities &= ~NOMMU_MAP_DIRECT; 806 } 807 } else { 808 /* anonymous mappings are always memory backed and can be 809 * privately mapped 810 */ 811 capabilities = NOMMU_MAP_COPY; 812 813 /* handle PROT_EXEC implication by PROT_READ */ 814 if ((prot & PROT_READ) && 815 (current->personality & READ_IMPLIES_EXEC)) 816 prot |= PROT_EXEC; 817 } 818 819 /* allow the security API to have its say */ 820 ret = security_mmap_addr(addr); 821 if (ret < 0) 822 return ret; 823 824 /* looks okay */ 825 *_capabilities = capabilities; 826 return 0; 827 } 828 829 /* 830 * we've determined that we can make the mapping, now translate what we 831 * now know into VMA flags 832 */ 833 static unsigned long determine_vm_flags(struct file *file, 834 unsigned long prot, 835 unsigned long flags, 836 unsigned long capabilities) 837 { 838 unsigned long vm_flags; 839 840 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags); 841 842 if (!file) { 843 /* 844 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because 845 * there is no fork(). 846 */ 847 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 848 } else if (flags & MAP_PRIVATE) { 849 /* MAP_PRIVATE file mapping */ 850 if (capabilities & NOMMU_MAP_DIRECT) 851 vm_flags |= (capabilities & NOMMU_VMFLAGS); 852 else 853 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 854 855 if (!(prot & PROT_WRITE) && !current->ptrace) 856 /* 857 * R/O private file mapping which cannot be used to 858 * modify memory, especially also not via active ptrace 859 * (e.g., set breakpoints) or later by upgrading 860 * permissions (no mprotect()). We can try overlaying 861 * the file mapping, which will work e.g., on chardevs, 862 * ramfs/tmpfs/shmfs and romfs/cramf. 863 */ 864 vm_flags |= VM_MAYOVERLAY; 865 } else { 866 /* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */ 867 vm_flags |= VM_SHARED | VM_MAYSHARE | 868 (capabilities & NOMMU_VMFLAGS); 869 } 870 871 return vm_flags; 872 } 873 874 /* 875 * set up a shared mapping on a file (the driver or filesystem provides and 876 * pins the storage) 877 */ 878 static int do_mmap_shared_file(struct vm_area_struct *vma) 879 { 880 int ret; 881 882 ret = call_mmap(vma->vm_file, vma); 883 if (ret == 0) { 884 vma->vm_region->vm_top = vma->vm_region->vm_end; 885 return 0; 886 } 887 if (ret != -ENOSYS) 888 return ret; 889 890 /* getting -ENOSYS indicates that direct mmap isn't possible (as 891 * opposed to tried but failed) so we can only give a suitable error as 892 * it's not possible to make a private copy if MAP_SHARED was given */ 893 return -ENODEV; 894 } 895 896 /* 897 * set up a private mapping or an anonymous shared mapping 898 */ 899 static int do_mmap_private(struct vm_area_struct *vma, 900 struct vm_region *region, 901 unsigned long len, 902 unsigned long capabilities) 903 { 904 unsigned long total, point; 905 void *base; 906 int ret, order; 907 908 /* 909 * Invoke the file's mapping function so that it can keep track of 910 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if 911 * it may attempt to share, which will make is_nommu_shared_mapping() 912 * happy. 913 */ 914 if (capabilities & NOMMU_MAP_DIRECT) { 915 ret = call_mmap(vma->vm_file, vma); 916 /* shouldn't return success if we're not sharing */ 917 if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags))) 918 ret = -ENOSYS; 919 if (ret == 0) { 920 vma->vm_region->vm_top = vma->vm_region->vm_end; 921 return 0; 922 } 923 if (ret != -ENOSYS) 924 return ret; 925 926 /* getting an ENOSYS error indicates that direct mmap isn't 927 * possible (as opposed to tried but failed) so we'll try to 928 * make a private copy of the data and map that instead */ 929 } 930 931 932 /* allocate some memory to hold the mapping 933 * - note that this may not return a page-aligned address if the object 934 * we're allocating is smaller than a page 935 */ 936 order = get_order(len); 937 total = 1 << order; 938 point = len >> PAGE_SHIFT; 939 940 /* we don't want to allocate a power-of-2 sized page set */ 941 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 942 total = point; 943 944 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 945 if (!base) 946 goto enomem; 947 948 atomic_long_add(total, &mmap_pages_allocated); 949 950 vm_flags_set(vma, VM_MAPPED_COPY); 951 region->vm_flags = vma->vm_flags; 952 region->vm_start = (unsigned long) base; 953 region->vm_end = region->vm_start + len; 954 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 955 956 vma->vm_start = region->vm_start; 957 vma->vm_end = region->vm_start + len; 958 959 if (vma->vm_file) { 960 /* read the contents of a file into the copy */ 961 loff_t fpos; 962 963 fpos = vma->vm_pgoff; 964 fpos <<= PAGE_SHIFT; 965 966 ret = kernel_read(vma->vm_file, base, len, &fpos); 967 if (ret < 0) 968 goto error_free; 969 970 /* clear the last little bit */ 971 if (ret < len) 972 memset(base + ret, 0, len - ret); 973 974 } else { 975 vma_set_anonymous(vma); 976 } 977 978 return 0; 979 980 error_free: 981 free_page_series(region->vm_start, region->vm_top); 982 region->vm_start = vma->vm_start = 0; 983 region->vm_end = vma->vm_end = 0; 984 region->vm_top = 0; 985 return ret; 986 987 enomem: 988 pr_err("Allocation of length %lu from process %d (%s) failed\n", 989 len, current->pid, current->comm); 990 show_free_areas(0, NULL); 991 return -ENOMEM; 992 } 993 994 /* 995 * handle mapping creation for uClinux 996 */ 997 unsigned long do_mmap(struct file *file, 998 unsigned long addr, 999 unsigned long len, 1000 unsigned long prot, 1001 unsigned long flags, 1002 unsigned long pgoff, 1003 unsigned long *populate, 1004 struct list_head *uf) 1005 { 1006 struct vm_area_struct *vma; 1007 struct vm_region *region; 1008 struct rb_node *rb; 1009 vm_flags_t vm_flags; 1010 unsigned long capabilities, result; 1011 int ret; 1012 VMA_ITERATOR(vmi, current->mm, 0); 1013 1014 *populate = 0; 1015 1016 /* decide whether we should attempt the mapping, and if so what sort of 1017 * mapping */ 1018 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1019 &capabilities); 1020 if (ret < 0) 1021 return ret; 1022 1023 /* we ignore the address hint */ 1024 addr = 0; 1025 len = PAGE_ALIGN(len); 1026 1027 /* we've determined that we can make the mapping, now translate what we 1028 * now know into VMA flags */ 1029 vm_flags = determine_vm_flags(file, prot, flags, capabilities); 1030 1031 1032 /* we're going to need to record the mapping */ 1033 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1034 if (!region) 1035 goto error_getting_region; 1036 1037 vma = vm_area_alloc(current->mm); 1038 if (!vma) 1039 goto error_getting_vma; 1040 1041 if (vma_iter_prealloc(&vmi)) 1042 goto error_vma_iter_prealloc; 1043 1044 region->vm_usage = 1; 1045 region->vm_flags = vm_flags; 1046 region->vm_pgoff = pgoff; 1047 1048 vm_flags_init(vma, vm_flags); 1049 vma->vm_pgoff = pgoff; 1050 1051 if (file) { 1052 region->vm_file = get_file(file); 1053 vma->vm_file = get_file(file); 1054 } 1055 1056 down_write(&nommu_region_sem); 1057 1058 /* if we want to share, we need to check for regions created by other 1059 * mmap() calls that overlap with our proposed mapping 1060 * - we can only share with a superset match on most regular files 1061 * - shared mappings on character devices and memory backed files are 1062 * permitted to overlap inexactly as far as we are concerned for in 1063 * these cases, sharing is handled in the driver or filesystem rather 1064 * than here 1065 */ 1066 if (is_nommu_shared_mapping(vm_flags)) { 1067 struct vm_region *pregion; 1068 unsigned long pglen, rpglen, pgend, rpgend, start; 1069 1070 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1071 pgend = pgoff + pglen; 1072 1073 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1074 pregion = rb_entry(rb, struct vm_region, vm_rb); 1075 1076 if (!is_nommu_shared_mapping(pregion->vm_flags)) 1077 continue; 1078 1079 /* search for overlapping mappings on the same file */ 1080 if (file_inode(pregion->vm_file) != 1081 file_inode(file)) 1082 continue; 1083 1084 if (pregion->vm_pgoff >= pgend) 1085 continue; 1086 1087 rpglen = pregion->vm_end - pregion->vm_start; 1088 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1089 rpgend = pregion->vm_pgoff + rpglen; 1090 if (pgoff >= rpgend) 1091 continue; 1092 1093 /* handle inexactly overlapping matches between 1094 * mappings */ 1095 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1096 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1097 /* new mapping is not a subset of the region */ 1098 if (!(capabilities & NOMMU_MAP_DIRECT)) 1099 goto sharing_violation; 1100 continue; 1101 } 1102 1103 /* we've found a region we can share */ 1104 pregion->vm_usage++; 1105 vma->vm_region = pregion; 1106 start = pregion->vm_start; 1107 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1108 vma->vm_start = start; 1109 vma->vm_end = start + len; 1110 1111 if (pregion->vm_flags & VM_MAPPED_COPY) 1112 vm_flags_set(vma, VM_MAPPED_COPY); 1113 else { 1114 ret = do_mmap_shared_file(vma); 1115 if (ret < 0) { 1116 vma->vm_region = NULL; 1117 vma->vm_start = 0; 1118 vma->vm_end = 0; 1119 pregion->vm_usage--; 1120 pregion = NULL; 1121 goto error_just_free; 1122 } 1123 } 1124 fput(region->vm_file); 1125 kmem_cache_free(vm_region_jar, region); 1126 region = pregion; 1127 result = start; 1128 goto share; 1129 } 1130 1131 /* obtain the address at which to make a shared mapping 1132 * - this is the hook for quasi-memory character devices to 1133 * tell us the location of a shared mapping 1134 */ 1135 if (capabilities & NOMMU_MAP_DIRECT) { 1136 addr = file->f_op->get_unmapped_area(file, addr, len, 1137 pgoff, flags); 1138 if (IS_ERR_VALUE(addr)) { 1139 ret = addr; 1140 if (ret != -ENOSYS) 1141 goto error_just_free; 1142 1143 /* the driver refused to tell us where to site 1144 * the mapping so we'll have to attempt to copy 1145 * it */ 1146 ret = -ENODEV; 1147 if (!(capabilities & NOMMU_MAP_COPY)) 1148 goto error_just_free; 1149 1150 capabilities &= ~NOMMU_MAP_DIRECT; 1151 } else { 1152 vma->vm_start = region->vm_start = addr; 1153 vma->vm_end = region->vm_end = addr + len; 1154 } 1155 } 1156 } 1157 1158 vma->vm_region = region; 1159 1160 /* set up the mapping 1161 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1162 */ 1163 if (file && vma->vm_flags & VM_SHARED) 1164 ret = do_mmap_shared_file(vma); 1165 else 1166 ret = do_mmap_private(vma, region, len, capabilities); 1167 if (ret < 0) 1168 goto error_just_free; 1169 add_nommu_region(region); 1170 1171 /* clear anonymous mappings that don't ask for uninitialized data */ 1172 if (!vma->vm_file && 1173 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) || 1174 !(flags & MAP_UNINITIALIZED))) 1175 memset((void *)region->vm_start, 0, 1176 region->vm_end - region->vm_start); 1177 1178 /* okay... we have a mapping; now we have to register it */ 1179 result = vma->vm_start; 1180 1181 current->mm->total_vm += len >> PAGE_SHIFT; 1182 1183 share: 1184 BUG_ON(!vma->vm_region); 1185 setup_vma_to_mm(vma, current->mm); 1186 current->mm->map_count++; 1187 /* add the VMA to the tree */ 1188 vma_iter_store(&vmi, vma); 1189 1190 /* we flush the region from the icache only when the first executable 1191 * mapping of it is made */ 1192 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1193 flush_icache_user_range(region->vm_start, region->vm_end); 1194 region->vm_icache_flushed = true; 1195 } 1196 1197 up_write(&nommu_region_sem); 1198 1199 return result; 1200 1201 error_just_free: 1202 up_write(&nommu_region_sem); 1203 error: 1204 vma_iter_free(&vmi); 1205 if (region->vm_file) 1206 fput(region->vm_file); 1207 kmem_cache_free(vm_region_jar, region); 1208 if (vma->vm_file) 1209 fput(vma->vm_file); 1210 vm_area_free(vma); 1211 return ret; 1212 1213 sharing_violation: 1214 up_write(&nommu_region_sem); 1215 pr_warn("Attempt to share mismatched mappings\n"); 1216 ret = -EINVAL; 1217 goto error; 1218 1219 error_getting_vma: 1220 kmem_cache_free(vm_region_jar, region); 1221 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1222 len, current->pid); 1223 show_free_areas(0, NULL); 1224 return -ENOMEM; 1225 1226 error_getting_region: 1227 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1228 len, current->pid); 1229 show_free_areas(0, NULL); 1230 return -ENOMEM; 1231 1232 error_vma_iter_prealloc: 1233 kmem_cache_free(vm_region_jar, region); 1234 vm_area_free(vma); 1235 pr_warn("Allocation of vma tree for process %d failed\n", current->pid); 1236 show_free_areas(0, NULL); 1237 return -ENOMEM; 1238 1239 } 1240 1241 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, 1242 unsigned long prot, unsigned long flags, 1243 unsigned long fd, unsigned long pgoff) 1244 { 1245 struct file *file = NULL; 1246 unsigned long retval = -EBADF; 1247 1248 audit_mmap_fd(fd, flags); 1249 if (!(flags & MAP_ANONYMOUS)) { 1250 file = fget(fd); 1251 if (!file) 1252 goto out; 1253 } 1254 1255 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1256 1257 if (file) 1258 fput(file); 1259 out: 1260 return retval; 1261 } 1262 1263 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1264 unsigned long, prot, unsigned long, flags, 1265 unsigned long, fd, unsigned long, pgoff) 1266 { 1267 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); 1268 } 1269 1270 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1271 struct mmap_arg_struct { 1272 unsigned long addr; 1273 unsigned long len; 1274 unsigned long prot; 1275 unsigned long flags; 1276 unsigned long fd; 1277 unsigned long offset; 1278 }; 1279 1280 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1281 { 1282 struct mmap_arg_struct a; 1283 1284 if (copy_from_user(&a, arg, sizeof(a))) 1285 return -EFAULT; 1286 if (offset_in_page(a.offset)) 1287 return -EINVAL; 1288 1289 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1290 a.offset >> PAGE_SHIFT); 1291 } 1292 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1293 1294 /* 1295 * split a vma into two pieces at address 'addr', a new vma is allocated either 1296 * for the first part or the tail. 1297 */ 1298 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 1299 unsigned long addr, int new_below) 1300 { 1301 struct vm_area_struct *new; 1302 struct vm_region *region; 1303 unsigned long npages; 1304 struct mm_struct *mm; 1305 1306 /* we're only permitted to split anonymous regions (these should have 1307 * only a single usage on the region) */ 1308 if (vma->vm_file) 1309 return -ENOMEM; 1310 1311 mm = vma->vm_mm; 1312 if (mm->map_count >= sysctl_max_map_count) 1313 return -ENOMEM; 1314 1315 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1316 if (!region) 1317 return -ENOMEM; 1318 1319 new = vm_area_dup(vma); 1320 if (!new) 1321 goto err_vma_dup; 1322 1323 if (vma_iter_prealloc(vmi)) { 1324 pr_warn("Allocation of vma tree for process %d failed\n", 1325 current->pid); 1326 goto err_vmi_preallocate; 1327 } 1328 1329 /* most fields are the same, copy all, and then fixup */ 1330 *region = *vma->vm_region; 1331 new->vm_region = region; 1332 1333 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1334 1335 if (new_below) { 1336 region->vm_top = region->vm_end = new->vm_end = addr; 1337 } else { 1338 region->vm_start = new->vm_start = addr; 1339 region->vm_pgoff = new->vm_pgoff += npages; 1340 } 1341 1342 if (new->vm_ops && new->vm_ops->open) 1343 new->vm_ops->open(new); 1344 1345 down_write(&nommu_region_sem); 1346 delete_nommu_region(vma->vm_region); 1347 if (new_below) { 1348 vma->vm_region->vm_start = vma->vm_start = addr; 1349 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1350 } else { 1351 vma->vm_region->vm_end = vma->vm_end = addr; 1352 vma->vm_region->vm_top = addr; 1353 } 1354 add_nommu_region(vma->vm_region); 1355 add_nommu_region(new->vm_region); 1356 up_write(&nommu_region_sem); 1357 1358 setup_vma_to_mm(vma, mm); 1359 setup_vma_to_mm(new, mm); 1360 vma_iter_store(vmi, new); 1361 mm->map_count++; 1362 return 0; 1363 1364 err_vmi_preallocate: 1365 vm_area_free(new); 1366 err_vma_dup: 1367 kmem_cache_free(vm_region_jar, region); 1368 return -ENOMEM; 1369 } 1370 1371 /* 1372 * shrink a VMA by removing the specified chunk from either the beginning or 1373 * the end 1374 */ 1375 static int vmi_shrink_vma(struct vma_iterator *vmi, 1376 struct vm_area_struct *vma, 1377 unsigned long from, unsigned long to) 1378 { 1379 struct vm_region *region; 1380 1381 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1382 * and list */ 1383 if (vma_iter_prealloc(vmi)) { 1384 pr_warn("Allocation of vma tree for process %d failed\n", 1385 current->pid); 1386 return -ENOMEM; 1387 } 1388 1389 if (from > vma->vm_start) { 1390 vma_iter_clear(vmi, from, vma->vm_end); 1391 vma->vm_end = from; 1392 } else { 1393 vma_iter_clear(vmi, vma->vm_start, to); 1394 vma->vm_start = to; 1395 } 1396 1397 /* cut the backing region down to size */ 1398 region = vma->vm_region; 1399 BUG_ON(region->vm_usage != 1); 1400 1401 down_write(&nommu_region_sem); 1402 delete_nommu_region(region); 1403 if (from > region->vm_start) { 1404 to = region->vm_top; 1405 region->vm_top = region->vm_end = from; 1406 } else { 1407 region->vm_start = to; 1408 } 1409 add_nommu_region(region); 1410 up_write(&nommu_region_sem); 1411 1412 free_page_series(from, to); 1413 return 0; 1414 } 1415 1416 /* 1417 * release a mapping 1418 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1419 * VMA, though it need not cover the whole VMA 1420 */ 1421 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf) 1422 { 1423 VMA_ITERATOR(vmi, mm, start); 1424 struct vm_area_struct *vma; 1425 unsigned long end; 1426 int ret = 0; 1427 1428 len = PAGE_ALIGN(len); 1429 if (len == 0) 1430 return -EINVAL; 1431 1432 end = start + len; 1433 1434 /* find the first potentially overlapping VMA */ 1435 vma = vma_find(&vmi, end); 1436 if (!vma) { 1437 static int limit; 1438 if (limit < 5) { 1439 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1440 current->pid, current->comm, 1441 start, start + len - 1); 1442 limit++; 1443 } 1444 return -EINVAL; 1445 } 1446 1447 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1448 if (vma->vm_file) { 1449 do { 1450 if (start > vma->vm_start) 1451 return -EINVAL; 1452 if (end == vma->vm_end) 1453 goto erase_whole_vma; 1454 vma = vma_find(&vmi, end); 1455 } while (vma); 1456 return -EINVAL; 1457 } else { 1458 /* the chunk must be a subset of the VMA found */ 1459 if (start == vma->vm_start && end == vma->vm_end) 1460 goto erase_whole_vma; 1461 if (start < vma->vm_start || end > vma->vm_end) 1462 return -EINVAL; 1463 if (offset_in_page(start)) 1464 return -EINVAL; 1465 if (end != vma->vm_end && offset_in_page(end)) 1466 return -EINVAL; 1467 if (start != vma->vm_start && end != vma->vm_end) { 1468 ret = split_vma(&vmi, vma, start, 1); 1469 if (ret < 0) 1470 return ret; 1471 } 1472 return vmi_shrink_vma(&vmi, vma, start, end); 1473 } 1474 1475 erase_whole_vma: 1476 if (delete_vma_from_mm(vma)) 1477 ret = -ENOMEM; 1478 else 1479 delete_vma(mm, vma); 1480 return ret; 1481 } 1482 1483 int vm_munmap(unsigned long addr, size_t len) 1484 { 1485 struct mm_struct *mm = current->mm; 1486 int ret; 1487 1488 mmap_write_lock(mm); 1489 ret = do_munmap(mm, addr, len, NULL); 1490 mmap_write_unlock(mm); 1491 return ret; 1492 } 1493 EXPORT_SYMBOL(vm_munmap); 1494 1495 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1496 { 1497 return vm_munmap(addr, len); 1498 } 1499 1500 /* 1501 * release all the mappings made in a process's VM space 1502 */ 1503 void exit_mmap(struct mm_struct *mm) 1504 { 1505 VMA_ITERATOR(vmi, mm, 0); 1506 struct vm_area_struct *vma; 1507 1508 if (!mm) 1509 return; 1510 1511 mm->total_vm = 0; 1512 1513 /* 1514 * Lock the mm to avoid assert complaining even though this is the only 1515 * user of the mm 1516 */ 1517 mmap_write_lock(mm); 1518 for_each_vma(vmi, vma) { 1519 cleanup_vma_from_mm(vma); 1520 delete_vma(mm, vma); 1521 cond_resched(); 1522 } 1523 __mt_destroy(&mm->mm_mt); 1524 mmap_write_unlock(mm); 1525 } 1526 1527 int vm_brk(unsigned long addr, unsigned long len) 1528 { 1529 return -ENOMEM; 1530 } 1531 1532 /* 1533 * expand (or shrink) an existing mapping, potentially moving it at the same 1534 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1535 * 1536 * under NOMMU conditions, we only permit changing a mapping's size, and only 1537 * as long as it stays within the region allocated by do_mmap_private() and the 1538 * block is not shareable 1539 * 1540 * MREMAP_FIXED is not supported under NOMMU conditions 1541 */ 1542 static unsigned long do_mremap(unsigned long addr, 1543 unsigned long old_len, unsigned long new_len, 1544 unsigned long flags, unsigned long new_addr) 1545 { 1546 struct vm_area_struct *vma; 1547 1548 /* insanity checks first */ 1549 old_len = PAGE_ALIGN(old_len); 1550 new_len = PAGE_ALIGN(new_len); 1551 if (old_len == 0 || new_len == 0) 1552 return (unsigned long) -EINVAL; 1553 1554 if (offset_in_page(addr)) 1555 return -EINVAL; 1556 1557 if (flags & MREMAP_FIXED && new_addr != addr) 1558 return (unsigned long) -EINVAL; 1559 1560 vma = find_vma_exact(current->mm, addr, old_len); 1561 if (!vma) 1562 return (unsigned long) -EINVAL; 1563 1564 if (vma->vm_end != vma->vm_start + old_len) 1565 return (unsigned long) -EFAULT; 1566 1567 if (is_nommu_shared_mapping(vma->vm_flags)) 1568 return (unsigned long) -EPERM; 1569 1570 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1571 return (unsigned long) -ENOMEM; 1572 1573 /* all checks complete - do it */ 1574 vma->vm_end = vma->vm_start + new_len; 1575 return vma->vm_start; 1576 } 1577 1578 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1579 unsigned long, new_len, unsigned long, flags, 1580 unsigned long, new_addr) 1581 { 1582 unsigned long ret; 1583 1584 mmap_write_lock(current->mm); 1585 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1586 mmap_write_unlock(current->mm); 1587 return ret; 1588 } 1589 1590 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1591 unsigned int foll_flags) 1592 { 1593 return NULL; 1594 } 1595 1596 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1597 unsigned long pfn, unsigned long size, pgprot_t prot) 1598 { 1599 if (addr != (pfn << PAGE_SHIFT)) 1600 return -EINVAL; 1601 1602 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 1603 return 0; 1604 } 1605 EXPORT_SYMBOL(remap_pfn_range); 1606 1607 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1608 { 1609 unsigned long pfn = start >> PAGE_SHIFT; 1610 unsigned long vm_len = vma->vm_end - vma->vm_start; 1611 1612 pfn += vma->vm_pgoff; 1613 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1614 } 1615 EXPORT_SYMBOL(vm_iomap_memory); 1616 1617 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1618 unsigned long pgoff) 1619 { 1620 unsigned int size = vma->vm_end - vma->vm_start; 1621 1622 if (!(vma->vm_flags & VM_USERMAP)) 1623 return -EINVAL; 1624 1625 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1626 vma->vm_end = vma->vm_start + size; 1627 1628 return 0; 1629 } 1630 EXPORT_SYMBOL(remap_vmalloc_range); 1631 1632 vm_fault_t filemap_fault(struct vm_fault *vmf) 1633 { 1634 BUG(); 1635 return 0; 1636 } 1637 EXPORT_SYMBOL(filemap_fault); 1638 1639 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 1640 pgoff_t start_pgoff, pgoff_t end_pgoff) 1641 { 1642 BUG(); 1643 return 0; 1644 } 1645 EXPORT_SYMBOL(filemap_map_pages); 1646 1647 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 1648 int len, unsigned int gup_flags) 1649 { 1650 struct vm_area_struct *vma; 1651 int write = gup_flags & FOLL_WRITE; 1652 1653 if (mmap_read_lock_killable(mm)) 1654 return 0; 1655 1656 /* the access must start within one of the target process's mappings */ 1657 vma = find_vma(mm, addr); 1658 if (vma) { 1659 /* don't overrun this mapping */ 1660 if (addr + len >= vma->vm_end) 1661 len = vma->vm_end - addr; 1662 1663 /* only read or write mappings where it is permitted */ 1664 if (write && vma->vm_flags & VM_MAYWRITE) 1665 copy_to_user_page(vma, NULL, addr, 1666 (void *) addr, buf, len); 1667 else if (!write && vma->vm_flags & VM_MAYREAD) 1668 copy_from_user_page(vma, NULL, addr, 1669 buf, (void *) addr, len); 1670 else 1671 len = 0; 1672 } else { 1673 len = 0; 1674 } 1675 1676 mmap_read_unlock(mm); 1677 1678 return len; 1679 } 1680 1681 /** 1682 * access_remote_vm - access another process' address space 1683 * @mm: the mm_struct of the target address space 1684 * @addr: start address to access 1685 * @buf: source or destination buffer 1686 * @len: number of bytes to transfer 1687 * @gup_flags: flags modifying lookup behaviour 1688 * 1689 * The caller must hold a reference on @mm. 1690 */ 1691 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1692 void *buf, int len, unsigned int gup_flags) 1693 { 1694 return __access_remote_vm(mm, addr, buf, len, gup_flags); 1695 } 1696 1697 /* 1698 * Access another process' address space. 1699 * - source/target buffer must be kernel space 1700 */ 1701 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1702 unsigned int gup_flags) 1703 { 1704 struct mm_struct *mm; 1705 1706 if (addr + len < addr) 1707 return 0; 1708 1709 mm = get_task_mm(tsk); 1710 if (!mm) 1711 return 0; 1712 1713 len = __access_remote_vm(mm, addr, buf, len, gup_flags); 1714 1715 mmput(mm); 1716 return len; 1717 } 1718 EXPORT_SYMBOL_GPL(access_process_vm); 1719 1720 /** 1721 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1722 * @inode: The inode to check 1723 * @size: The current filesize of the inode 1724 * @newsize: The proposed filesize of the inode 1725 * 1726 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1727 * make sure that any outstanding VMAs aren't broken and then shrink the 1728 * vm_regions that extend beyond so that do_mmap() doesn't 1729 * automatically grant mappings that are too large. 1730 */ 1731 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1732 size_t newsize) 1733 { 1734 struct vm_area_struct *vma; 1735 struct vm_region *region; 1736 pgoff_t low, high; 1737 size_t r_size, r_top; 1738 1739 low = newsize >> PAGE_SHIFT; 1740 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1741 1742 down_write(&nommu_region_sem); 1743 i_mmap_lock_read(inode->i_mapping); 1744 1745 /* search for VMAs that fall within the dead zone */ 1746 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1747 /* found one - only interested if it's shared out of the page 1748 * cache */ 1749 if (vma->vm_flags & VM_SHARED) { 1750 i_mmap_unlock_read(inode->i_mapping); 1751 up_write(&nommu_region_sem); 1752 return -ETXTBSY; /* not quite true, but near enough */ 1753 } 1754 } 1755 1756 /* reduce any regions that overlap the dead zone - if in existence, 1757 * these will be pointed to by VMAs that don't overlap the dead zone 1758 * 1759 * we don't check for any regions that start beyond the EOF as there 1760 * shouldn't be any 1761 */ 1762 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1763 if (!(vma->vm_flags & VM_SHARED)) 1764 continue; 1765 1766 region = vma->vm_region; 1767 r_size = region->vm_top - region->vm_start; 1768 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1769 1770 if (r_top > newsize) { 1771 region->vm_top -= r_top - newsize; 1772 if (region->vm_end > region->vm_top) 1773 region->vm_end = region->vm_top; 1774 } 1775 } 1776 1777 i_mmap_unlock_read(inode->i_mapping); 1778 up_write(&nommu_region_sem); 1779 return 0; 1780 } 1781 1782 /* 1783 * Initialise sysctl_user_reserve_kbytes. 1784 * 1785 * This is intended to prevent a user from starting a single memory hogging 1786 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1787 * mode. 1788 * 1789 * The default value is min(3% of free memory, 128MB) 1790 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1791 */ 1792 static int __meminit init_user_reserve(void) 1793 { 1794 unsigned long free_kbytes; 1795 1796 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1797 1798 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1799 return 0; 1800 } 1801 subsys_initcall(init_user_reserve); 1802 1803 /* 1804 * Initialise sysctl_admin_reserve_kbytes. 1805 * 1806 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1807 * to log in and kill a memory hogging process. 1808 * 1809 * Systems with more than 256MB will reserve 8MB, enough to recover 1810 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1811 * only reserve 3% of free pages by default. 1812 */ 1813 static int __meminit init_admin_reserve(void) 1814 { 1815 unsigned long free_kbytes; 1816 1817 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1818 1819 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1820 return 0; 1821 } 1822 subsys_initcall(init_admin_reserve); 1823