xref: /openbmc/linux/mm/nommu.c (revision cce2d453)
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2005 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007      Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 
33 #include <asm/uaccess.h>
34 #include <asm/tlb.h>
35 #include <asm/tlbflush.h>
36 
37 void *high_memory;
38 struct page *mem_map;
39 unsigned long max_mapnr;
40 unsigned long num_physpages;
41 unsigned long askedalloc, realalloc;
42 atomic_long_t vm_committed_space = ATOMIC_LONG_INIT(0);
43 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
44 int sysctl_overcommit_ratio = 50; /* default is 50% */
45 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
46 int heap_stack_gap = 0;
47 
48 EXPORT_SYMBOL(mem_map);
49 EXPORT_SYMBOL(num_physpages);
50 
51 /* list of shareable VMAs */
52 struct rb_root nommu_vma_tree = RB_ROOT;
53 DECLARE_RWSEM(nommu_vma_sem);
54 
55 struct vm_operations_struct generic_file_vm_ops = {
56 };
57 
58 /*
59  * Handle all mappings that got truncated by a "truncate()"
60  * system call.
61  *
62  * NOTE! We have to be ready to update the memory sharing
63  * between the file and the memory map for a potential last
64  * incomplete page.  Ugly, but necessary.
65  */
66 int vmtruncate(struct inode *inode, loff_t offset)
67 {
68 	struct address_space *mapping = inode->i_mapping;
69 	unsigned long limit;
70 
71 	if (inode->i_size < offset)
72 		goto do_expand;
73 	i_size_write(inode, offset);
74 
75 	truncate_inode_pages(mapping, offset);
76 	goto out_truncate;
77 
78 do_expand:
79 	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
80 	if (limit != RLIM_INFINITY && offset > limit)
81 		goto out_sig;
82 	if (offset > inode->i_sb->s_maxbytes)
83 		goto out;
84 	i_size_write(inode, offset);
85 
86 out_truncate:
87 	if (inode->i_op && inode->i_op->truncate)
88 		inode->i_op->truncate(inode);
89 	return 0;
90 out_sig:
91 	send_sig(SIGXFSZ, current, 0);
92 out:
93 	return -EFBIG;
94 }
95 
96 EXPORT_SYMBOL(vmtruncate);
97 
98 /*
99  * Return the total memory allocated for this pointer, not
100  * just what the caller asked for.
101  *
102  * Doesn't have to be accurate, i.e. may have races.
103  */
104 unsigned int kobjsize(const void *objp)
105 {
106 	struct page *page;
107 
108 	/*
109 	 * If the object we have should not have ksize performed on it,
110 	 * return size of 0
111 	 */
112 	if (!objp || !virt_addr_valid(objp))
113 		return 0;
114 
115 	page = virt_to_head_page(objp);
116 
117 	/*
118 	 * If the allocator sets PageSlab, we know the pointer came from
119 	 * kmalloc().
120 	 */
121 	if (PageSlab(page))
122 		return ksize(objp);
123 
124 	/*
125 	 * The ksize() function is only guaranteed to work for pointers
126 	 * returned by kmalloc(). So handle arbitrary pointers here.
127 	 */
128 	return PAGE_SIZE << compound_order(page);
129 }
130 
131 /*
132  * get a list of pages in an address range belonging to the specified process
133  * and indicate the VMA that covers each page
134  * - this is potentially dodgy as we may end incrementing the page count of a
135  *   slab page or a secondary page from a compound page
136  * - don't permit access to VMAs that don't support it, such as I/O mappings
137  */
138 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
139 	unsigned long start, int len, int write, int force,
140 	struct page **pages, struct vm_area_struct **vmas)
141 {
142 	struct vm_area_struct *vma;
143 	unsigned long vm_flags;
144 	int i;
145 
146 	/* calculate required read or write permissions.
147 	 * - if 'force' is set, we only require the "MAY" flags.
148 	 */
149 	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
150 	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
151 
152 	for (i = 0; i < len; i++) {
153 		vma = find_vma(mm, start);
154 		if (!vma)
155 			goto finish_or_fault;
156 
157 		/* protect what we can, including chardevs */
158 		if (vma->vm_flags & (VM_IO | VM_PFNMAP) ||
159 		    !(vm_flags & vma->vm_flags))
160 			goto finish_or_fault;
161 
162 		if (pages) {
163 			pages[i] = virt_to_page(start);
164 			if (pages[i])
165 				page_cache_get(pages[i]);
166 		}
167 		if (vmas)
168 			vmas[i] = vma;
169 		start += PAGE_SIZE;
170 	}
171 
172 	return i;
173 
174 finish_or_fault:
175 	return i ? : -EFAULT;
176 }
177 EXPORT_SYMBOL(get_user_pages);
178 
179 DEFINE_RWLOCK(vmlist_lock);
180 struct vm_struct *vmlist;
181 
182 void vfree(const void *addr)
183 {
184 	kfree(addr);
185 }
186 EXPORT_SYMBOL(vfree);
187 
188 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
189 {
190 	/*
191 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
192 	 * returns only a logical address.
193 	 */
194 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
195 }
196 EXPORT_SYMBOL(__vmalloc);
197 
198 void *vmalloc_user(unsigned long size)
199 {
200 	void *ret;
201 
202 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
203 			PAGE_KERNEL);
204 	if (ret) {
205 		struct vm_area_struct *vma;
206 
207 		down_write(&current->mm->mmap_sem);
208 		vma = find_vma(current->mm, (unsigned long)ret);
209 		if (vma)
210 			vma->vm_flags |= VM_USERMAP;
211 		up_write(&current->mm->mmap_sem);
212 	}
213 
214 	return ret;
215 }
216 EXPORT_SYMBOL(vmalloc_user);
217 
218 struct page *vmalloc_to_page(const void *addr)
219 {
220 	return virt_to_page(addr);
221 }
222 EXPORT_SYMBOL(vmalloc_to_page);
223 
224 unsigned long vmalloc_to_pfn(const void *addr)
225 {
226 	return page_to_pfn(virt_to_page(addr));
227 }
228 EXPORT_SYMBOL(vmalloc_to_pfn);
229 
230 long vread(char *buf, char *addr, unsigned long count)
231 {
232 	memcpy(buf, addr, count);
233 	return count;
234 }
235 
236 long vwrite(char *buf, char *addr, unsigned long count)
237 {
238 	/* Don't allow overflow */
239 	if ((unsigned long) addr + count < count)
240 		count = -(unsigned long) addr;
241 
242 	memcpy(addr, buf, count);
243 	return(count);
244 }
245 
246 /*
247  *	vmalloc  -  allocate virtually continguos memory
248  *
249  *	@size:		allocation size
250  *
251  *	Allocate enough pages to cover @size from the page level
252  *	allocator and map them into continguos kernel virtual space.
253  *
254  *	For tight control over page level allocator and protection flags
255  *	use __vmalloc() instead.
256  */
257 void *vmalloc(unsigned long size)
258 {
259        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
260 }
261 EXPORT_SYMBOL(vmalloc);
262 
263 void *vmalloc_node(unsigned long size, int node)
264 {
265 	return vmalloc(size);
266 }
267 EXPORT_SYMBOL(vmalloc_node);
268 
269 #ifndef PAGE_KERNEL_EXEC
270 # define PAGE_KERNEL_EXEC PAGE_KERNEL
271 #endif
272 
273 /**
274  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
275  *	@size:		allocation size
276  *
277  *	Kernel-internal function to allocate enough pages to cover @size
278  *	the page level allocator and map them into contiguous and
279  *	executable kernel virtual space.
280  *
281  *	For tight control over page level allocator and protection flags
282  *	use __vmalloc() instead.
283  */
284 
285 void *vmalloc_exec(unsigned long size)
286 {
287 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
288 }
289 
290 /**
291  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
292  *	@size:		allocation size
293  *
294  *	Allocate enough 32bit PA addressable pages to cover @size from the
295  *	page level allocator and map them into continguos kernel virtual space.
296  */
297 void *vmalloc_32(unsigned long size)
298 {
299 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
300 }
301 EXPORT_SYMBOL(vmalloc_32);
302 
303 /**
304  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
305  *	@size:		allocation size
306  *
307  * The resulting memory area is 32bit addressable and zeroed so it can be
308  * mapped to userspace without leaking data.
309  *
310  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
311  * remap_vmalloc_range() are permissible.
312  */
313 void *vmalloc_32_user(unsigned long size)
314 {
315 	/*
316 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
317 	 * but for now this can simply use vmalloc_user() directly.
318 	 */
319 	return vmalloc_user(size);
320 }
321 EXPORT_SYMBOL(vmalloc_32_user);
322 
323 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
324 {
325 	BUG();
326 	return NULL;
327 }
328 EXPORT_SYMBOL(vmap);
329 
330 void vunmap(const void *addr)
331 {
332 	BUG();
333 }
334 EXPORT_SYMBOL(vunmap);
335 
336 /*
337  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
338  * have one.
339  */
340 void  __attribute__((weak)) vmalloc_sync_all(void)
341 {
342 }
343 
344 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
345 		   struct page *page)
346 {
347 	return -EINVAL;
348 }
349 EXPORT_SYMBOL(vm_insert_page);
350 
351 /*
352  *  sys_brk() for the most part doesn't need the global kernel
353  *  lock, except when an application is doing something nasty
354  *  like trying to un-brk an area that has already been mapped
355  *  to a regular file.  in this case, the unmapping will need
356  *  to invoke file system routines that need the global lock.
357  */
358 asmlinkage unsigned long sys_brk(unsigned long brk)
359 {
360 	struct mm_struct *mm = current->mm;
361 
362 	if (brk < mm->start_brk || brk > mm->context.end_brk)
363 		return mm->brk;
364 
365 	if (mm->brk == brk)
366 		return mm->brk;
367 
368 	/*
369 	 * Always allow shrinking brk
370 	 */
371 	if (brk <= mm->brk) {
372 		mm->brk = brk;
373 		return brk;
374 	}
375 
376 	/*
377 	 * Ok, looks good - let it rip.
378 	 */
379 	return mm->brk = brk;
380 }
381 
382 #ifdef DEBUG
383 static void show_process_blocks(void)
384 {
385 	struct vm_list_struct *vml;
386 
387 	printk("Process blocks %d:", current->pid);
388 
389 	for (vml = &current->mm->context.vmlist; vml; vml = vml->next) {
390 		printk(" %p: %p", vml, vml->vma);
391 		if (vml->vma)
392 			printk(" (%d @%lx #%d)",
393 			       kobjsize((void *) vml->vma->vm_start),
394 			       vml->vma->vm_start,
395 			       atomic_read(&vml->vma->vm_usage));
396 		printk(vml->next ? " ->" : ".\n");
397 	}
398 }
399 #endif /* DEBUG */
400 
401 /*
402  * add a VMA into a process's mm_struct in the appropriate place in the list
403  * - should be called with mm->mmap_sem held writelocked
404  */
405 static void add_vma_to_mm(struct mm_struct *mm, struct vm_list_struct *vml)
406 {
407 	struct vm_list_struct **ppv;
408 
409 	for (ppv = &current->mm->context.vmlist; *ppv; ppv = &(*ppv)->next)
410 		if ((*ppv)->vma->vm_start > vml->vma->vm_start)
411 			break;
412 
413 	vml->next = *ppv;
414 	*ppv = vml;
415 }
416 
417 /*
418  * look up the first VMA in which addr resides, NULL if none
419  * - should be called with mm->mmap_sem at least held readlocked
420  */
421 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
422 {
423 	struct vm_list_struct *loop, *vml;
424 
425 	/* search the vm_start ordered list */
426 	vml = NULL;
427 	for (loop = mm->context.vmlist; loop; loop = loop->next) {
428 		if (loop->vma->vm_start > addr)
429 			break;
430 		vml = loop;
431 	}
432 
433 	if (vml && vml->vma->vm_end > addr)
434 		return vml->vma;
435 
436 	return NULL;
437 }
438 EXPORT_SYMBOL(find_vma);
439 
440 /*
441  * find a VMA
442  * - we don't extend stack VMAs under NOMMU conditions
443  */
444 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
445 {
446 	return find_vma(mm, addr);
447 }
448 
449 int expand_stack(struct vm_area_struct *vma, unsigned long address)
450 {
451 	return -ENOMEM;
452 }
453 
454 /*
455  * look up the first VMA exactly that exactly matches addr
456  * - should be called with mm->mmap_sem at least held readlocked
457  */
458 static inline struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
459 						    unsigned long addr)
460 {
461 	struct vm_list_struct *vml;
462 
463 	/* search the vm_start ordered list */
464 	for (vml = mm->context.vmlist; vml; vml = vml->next) {
465 		if (vml->vma->vm_start == addr)
466 			return vml->vma;
467 		if (vml->vma->vm_start > addr)
468 			break;
469 	}
470 
471 	return NULL;
472 }
473 
474 /*
475  * find a VMA in the global tree
476  */
477 static inline struct vm_area_struct *find_nommu_vma(unsigned long start)
478 {
479 	struct vm_area_struct *vma;
480 	struct rb_node *n = nommu_vma_tree.rb_node;
481 
482 	while (n) {
483 		vma = rb_entry(n, struct vm_area_struct, vm_rb);
484 
485 		if (start < vma->vm_start)
486 			n = n->rb_left;
487 		else if (start > vma->vm_start)
488 			n = n->rb_right;
489 		else
490 			return vma;
491 	}
492 
493 	return NULL;
494 }
495 
496 /*
497  * add a VMA in the global tree
498  */
499 static void add_nommu_vma(struct vm_area_struct *vma)
500 {
501 	struct vm_area_struct *pvma;
502 	struct address_space *mapping;
503 	struct rb_node **p = &nommu_vma_tree.rb_node;
504 	struct rb_node *parent = NULL;
505 
506 	/* add the VMA to the mapping */
507 	if (vma->vm_file) {
508 		mapping = vma->vm_file->f_mapping;
509 
510 		flush_dcache_mmap_lock(mapping);
511 		vma_prio_tree_insert(vma, &mapping->i_mmap);
512 		flush_dcache_mmap_unlock(mapping);
513 	}
514 
515 	/* add the VMA to the master list */
516 	while (*p) {
517 		parent = *p;
518 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
519 
520 		if (vma->vm_start < pvma->vm_start) {
521 			p = &(*p)->rb_left;
522 		}
523 		else if (vma->vm_start > pvma->vm_start) {
524 			p = &(*p)->rb_right;
525 		}
526 		else {
527 			/* mappings are at the same address - this can only
528 			 * happen for shared-mem chardevs and shared file
529 			 * mappings backed by ramfs/tmpfs */
530 			BUG_ON(!(pvma->vm_flags & VM_SHARED));
531 
532 			if (vma < pvma)
533 				p = &(*p)->rb_left;
534 			else if (vma > pvma)
535 				p = &(*p)->rb_right;
536 			else
537 				BUG();
538 		}
539 	}
540 
541 	rb_link_node(&vma->vm_rb, parent, p);
542 	rb_insert_color(&vma->vm_rb, &nommu_vma_tree);
543 }
544 
545 /*
546  * delete a VMA from the global list
547  */
548 static void delete_nommu_vma(struct vm_area_struct *vma)
549 {
550 	struct address_space *mapping;
551 
552 	/* remove the VMA from the mapping */
553 	if (vma->vm_file) {
554 		mapping = vma->vm_file->f_mapping;
555 
556 		flush_dcache_mmap_lock(mapping);
557 		vma_prio_tree_remove(vma, &mapping->i_mmap);
558 		flush_dcache_mmap_unlock(mapping);
559 	}
560 
561 	/* remove from the master list */
562 	rb_erase(&vma->vm_rb, &nommu_vma_tree);
563 }
564 
565 /*
566  * determine whether a mapping should be permitted and, if so, what sort of
567  * mapping we're capable of supporting
568  */
569 static int validate_mmap_request(struct file *file,
570 				 unsigned long addr,
571 				 unsigned long len,
572 				 unsigned long prot,
573 				 unsigned long flags,
574 				 unsigned long pgoff,
575 				 unsigned long *_capabilities)
576 {
577 	unsigned long capabilities;
578 	unsigned long reqprot = prot;
579 	int ret;
580 
581 	/* do the simple checks first */
582 	if (flags & MAP_FIXED || addr) {
583 		printk(KERN_DEBUG
584 		       "%d: Can't do fixed-address/overlay mmap of RAM\n",
585 		       current->pid);
586 		return -EINVAL;
587 	}
588 
589 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
590 	    (flags & MAP_TYPE) != MAP_SHARED)
591 		return -EINVAL;
592 
593 	if (!len)
594 		return -EINVAL;
595 
596 	/* Careful about overflows.. */
597 	len = PAGE_ALIGN(len);
598 	if (!len || len > TASK_SIZE)
599 		return -ENOMEM;
600 
601 	/* offset overflow? */
602 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
603 		return -EOVERFLOW;
604 
605 	if (file) {
606 		/* validate file mapping requests */
607 		struct address_space *mapping;
608 
609 		/* files must support mmap */
610 		if (!file->f_op || !file->f_op->mmap)
611 			return -ENODEV;
612 
613 		/* work out if what we've got could possibly be shared
614 		 * - we support chardevs that provide their own "memory"
615 		 * - we support files/blockdevs that are memory backed
616 		 */
617 		mapping = file->f_mapping;
618 		if (!mapping)
619 			mapping = file->f_path.dentry->d_inode->i_mapping;
620 
621 		capabilities = 0;
622 		if (mapping && mapping->backing_dev_info)
623 			capabilities = mapping->backing_dev_info->capabilities;
624 
625 		if (!capabilities) {
626 			/* no explicit capabilities set, so assume some
627 			 * defaults */
628 			switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
629 			case S_IFREG:
630 			case S_IFBLK:
631 				capabilities = BDI_CAP_MAP_COPY;
632 				break;
633 
634 			case S_IFCHR:
635 				capabilities =
636 					BDI_CAP_MAP_DIRECT |
637 					BDI_CAP_READ_MAP |
638 					BDI_CAP_WRITE_MAP;
639 				break;
640 
641 			default:
642 				return -EINVAL;
643 			}
644 		}
645 
646 		/* eliminate any capabilities that we can't support on this
647 		 * device */
648 		if (!file->f_op->get_unmapped_area)
649 			capabilities &= ~BDI_CAP_MAP_DIRECT;
650 		if (!file->f_op->read)
651 			capabilities &= ~BDI_CAP_MAP_COPY;
652 
653 		if (flags & MAP_SHARED) {
654 			/* do checks for writing, appending and locking */
655 			if ((prot & PROT_WRITE) &&
656 			    !(file->f_mode & FMODE_WRITE))
657 				return -EACCES;
658 
659 			if (IS_APPEND(file->f_path.dentry->d_inode) &&
660 			    (file->f_mode & FMODE_WRITE))
661 				return -EACCES;
662 
663 			if (locks_verify_locked(file->f_path.dentry->d_inode))
664 				return -EAGAIN;
665 
666 			if (!(capabilities & BDI_CAP_MAP_DIRECT))
667 				return -ENODEV;
668 
669 			if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
670 			    ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
671 			    ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
672 			    ) {
673 				printk("MAP_SHARED not completely supported on !MMU\n");
674 				return -EINVAL;
675 			}
676 
677 			/* we mustn't privatise shared mappings */
678 			capabilities &= ~BDI_CAP_MAP_COPY;
679 		}
680 		else {
681 			/* we're going to read the file into private memory we
682 			 * allocate */
683 			if (!(capabilities & BDI_CAP_MAP_COPY))
684 				return -ENODEV;
685 
686 			/* we don't permit a private writable mapping to be
687 			 * shared with the backing device */
688 			if (prot & PROT_WRITE)
689 				capabilities &= ~BDI_CAP_MAP_DIRECT;
690 		}
691 
692 		/* handle executable mappings and implied executable
693 		 * mappings */
694 		if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
695 			if (prot & PROT_EXEC)
696 				return -EPERM;
697 		}
698 		else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
699 			/* handle implication of PROT_EXEC by PROT_READ */
700 			if (current->personality & READ_IMPLIES_EXEC) {
701 				if (capabilities & BDI_CAP_EXEC_MAP)
702 					prot |= PROT_EXEC;
703 			}
704 		}
705 		else if ((prot & PROT_READ) &&
706 			 (prot & PROT_EXEC) &&
707 			 !(capabilities & BDI_CAP_EXEC_MAP)
708 			 ) {
709 			/* backing file is not executable, try to copy */
710 			capabilities &= ~BDI_CAP_MAP_DIRECT;
711 		}
712 	}
713 	else {
714 		/* anonymous mappings are always memory backed and can be
715 		 * privately mapped
716 		 */
717 		capabilities = BDI_CAP_MAP_COPY;
718 
719 		/* handle PROT_EXEC implication by PROT_READ */
720 		if ((prot & PROT_READ) &&
721 		    (current->personality & READ_IMPLIES_EXEC))
722 			prot |= PROT_EXEC;
723 	}
724 
725 	/* allow the security API to have its say */
726 	ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
727 	if (ret < 0)
728 		return ret;
729 
730 	/* looks okay */
731 	*_capabilities = capabilities;
732 	return 0;
733 }
734 
735 /*
736  * we've determined that we can make the mapping, now translate what we
737  * now know into VMA flags
738  */
739 static unsigned long determine_vm_flags(struct file *file,
740 					unsigned long prot,
741 					unsigned long flags,
742 					unsigned long capabilities)
743 {
744 	unsigned long vm_flags;
745 
746 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
747 	vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
748 	/* vm_flags |= mm->def_flags; */
749 
750 	if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
751 		/* attempt to share read-only copies of mapped file chunks */
752 		if (file && !(prot & PROT_WRITE))
753 			vm_flags |= VM_MAYSHARE;
754 	}
755 	else {
756 		/* overlay a shareable mapping on the backing device or inode
757 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
758 		 * romfs/cramfs */
759 		if (flags & MAP_SHARED)
760 			vm_flags |= VM_MAYSHARE | VM_SHARED;
761 		else if ((((vm_flags & capabilities) ^ vm_flags) & BDI_CAP_VMFLAGS) == 0)
762 			vm_flags |= VM_MAYSHARE;
763 	}
764 
765 	/* refuse to let anyone share private mappings with this process if
766 	 * it's being traced - otherwise breakpoints set in it may interfere
767 	 * with another untraced process
768 	 */
769 	if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
770 		vm_flags &= ~VM_MAYSHARE;
771 
772 	return vm_flags;
773 }
774 
775 /*
776  * set up a shared mapping on a file
777  */
778 static int do_mmap_shared_file(struct vm_area_struct *vma, unsigned long len)
779 {
780 	int ret;
781 
782 	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
783 	if (ret != -ENOSYS)
784 		return ret;
785 
786 	/* getting an ENOSYS error indicates that direct mmap isn't
787 	 * possible (as opposed to tried but failed) so we'll fall
788 	 * through to making a private copy of the data and mapping
789 	 * that if we can */
790 	return -ENODEV;
791 }
792 
793 /*
794  * set up a private mapping or an anonymous shared mapping
795  */
796 static int do_mmap_private(struct vm_area_struct *vma, unsigned long len)
797 {
798 	void *base;
799 	int ret;
800 
801 	/* invoke the file's mapping function so that it can keep track of
802 	 * shared mappings on devices or memory
803 	 * - VM_MAYSHARE will be set if it may attempt to share
804 	 */
805 	if (vma->vm_file) {
806 		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
807 		if (ret != -ENOSYS) {
808 			/* shouldn't return success if we're not sharing */
809 			BUG_ON(ret == 0 && !(vma->vm_flags & VM_MAYSHARE));
810 			return ret; /* success or a real error */
811 		}
812 
813 		/* getting an ENOSYS error indicates that direct mmap isn't
814 		 * possible (as opposed to tried but failed) so we'll try to
815 		 * make a private copy of the data and map that instead */
816 	}
817 
818 	/* allocate some memory to hold the mapping
819 	 * - note that this may not return a page-aligned address if the object
820 	 *   we're allocating is smaller than a page
821 	 */
822 	base = kmalloc(len, GFP_KERNEL|__GFP_COMP);
823 	if (!base)
824 		goto enomem;
825 
826 	vma->vm_start = (unsigned long) base;
827 	vma->vm_end = vma->vm_start + len;
828 	vma->vm_flags |= VM_MAPPED_COPY;
829 
830 #ifdef WARN_ON_SLACK
831 	if (len + WARN_ON_SLACK <= kobjsize(result))
832 		printk("Allocation of %lu bytes from process %d has %lu bytes of slack\n",
833 		       len, current->pid, kobjsize(result) - len);
834 #endif
835 
836 	if (vma->vm_file) {
837 		/* read the contents of a file into the copy */
838 		mm_segment_t old_fs;
839 		loff_t fpos;
840 
841 		fpos = vma->vm_pgoff;
842 		fpos <<= PAGE_SHIFT;
843 
844 		old_fs = get_fs();
845 		set_fs(KERNEL_DS);
846 		ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
847 		set_fs(old_fs);
848 
849 		if (ret < 0)
850 			goto error_free;
851 
852 		/* clear the last little bit */
853 		if (ret < len)
854 			memset(base + ret, 0, len - ret);
855 
856 	} else {
857 		/* if it's an anonymous mapping, then just clear it */
858 		memset(base, 0, len);
859 	}
860 
861 	return 0;
862 
863 error_free:
864 	kfree(base);
865 	vma->vm_start = 0;
866 	return ret;
867 
868 enomem:
869 	printk("Allocation of length %lu from process %d failed\n",
870 	       len, current->pid);
871 	show_free_areas();
872 	return -ENOMEM;
873 }
874 
875 /*
876  * handle mapping creation for uClinux
877  */
878 unsigned long do_mmap_pgoff(struct file *file,
879 			    unsigned long addr,
880 			    unsigned long len,
881 			    unsigned long prot,
882 			    unsigned long flags,
883 			    unsigned long pgoff)
884 {
885 	struct vm_list_struct *vml = NULL;
886 	struct vm_area_struct *vma = NULL;
887 	struct rb_node *rb;
888 	unsigned long capabilities, vm_flags;
889 	void *result;
890 	int ret;
891 
892 	if (!(flags & MAP_FIXED))
893 		addr = round_hint_to_min(addr);
894 
895 	/* decide whether we should attempt the mapping, and if so what sort of
896 	 * mapping */
897 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
898 				    &capabilities);
899 	if (ret < 0)
900 		return ret;
901 
902 	/* we've determined that we can make the mapping, now translate what we
903 	 * now know into VMA flags */
904 	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
905 
906 	/* we're going to need to record the mapping if it works */
907 	vml = kzalloc(sizeof(struct vm_list_struct), GFP_KERNEL);
908 	if (!vml)
909 		goto error_getting_vml;
910 
911 	down_write(&nommu_vma_sem);
912 
913 	/* if we want to share, we need to check for VMAs created by other
914 	 * mmap() calls that overlap with our proposed mapping
915 	 * - we can only share with an exact match on most regular files
916 	 * - shared mappings on character devices and memory backed files are
917 	 *   permitted to overlap inexactly as far as we are concerned for in
918 	 *   these cases, sharing is handled in the driver or filesystem rather
919 	 *   than here
920 	 */
921 	if (vm_flags & VM_MAYSHARE) {
922 		unsigned long pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
923 		unsigned long vmpglen;
924 
925 		/* suppress VMA sharing for shared regions */
926 		if (vm_flags & VM_SHARED &&
927 		    capabilities & BDI_CAP_MAP_DIRECT)
928 			goto dont_share_VMAs;
929 
930 		for (rb = rb_first(&nommu_vma_tree); rb; rb = rb_next(rb)) {
931 			vma = rb_entry(rb, struct vm_area_struct, vm_rb);
932 
933 			if (!(vma->vm_flags & VM_MAYSHARE))
934 				continue;
935 
936 			/* search for overlapping mappings on the same file */
937 			if (vma->vm_file->f_path.dentry->d_inode != file->f_path.dentry->d_inode)
938 				continue;
939 
940 			if (vma->vm_pgoff >= pgoff + pglen)
941 				continue;
942 
943 			vmpglen = vma->vm_end - vma->vm_start + PAGE_SIZE - 1;
944 			vmpglen >>= PAGE_SHIFT;
945 			if (pgoff >= vma->vm_pgoff + vmpglen)
946 				continue;
947 
948 			/* handle inexactly overlapping matches between mappings */
949 			if (vma->vm_pgoff != pgoff || vmpglen != pglen) {
950 				if (!(capabilities & BDI_CAP_MAP_DIRECT))
951 					goto sharing_violation;
952 				continue;
953 			}
954 
955 			/* we've found a VMA we can share */
956 			atomic_inc(&vma->vm_usage);
957 
958 			vml->vma = vma;
959 			result = (void *) vma->vm_start;
960 			goto shared;
961 		}
962 
963 	dont_share_VMAs:
964 		vma = NULL;
965 
966 		/* obtain the address at which to make a shared mapping
967 		 * - this is the hook for quasi-memory character devices to
968 		 *   tell us the location of a shared mapping
969 		 */
970 		if (file && file->f_op->get_unmapped_area) {
971 			addr = file->f_op->get_unmapped_area(file, addr, len,
972 							     pgoff, flags);
973 			if (IS_ERR((void *) addr)) {
974 				ret = addr;
975 				if (ret != (unsigned long) -ENOSYS)
976 					goto error;
977 
978 				/* the driver refused to tell us where to site
979 				 * the mapping so we'll have to attempt to copy
980 				 * it */
981 				ret = (unsigned long) -ENODEV;
982 				if (!(capabilities & BDI_CAP_MAP_COPY))
983 					goto error;
984 
985 				capabilities &= ~BDI_CAP_MAP_DIRECT;
986 			}
987 		}
988 	}
989 
990 	/* we're going to need a VMA struct as well */
991 	vma = kzalloc(sizeof(struct vm_area_struct), GFP_KERNEL);
992 	if (!vma)
993 		goto error_getting_vma;
994 
995 	INIT_LIST_HEAD(&vma->anon_vma_node);
996 	atomic_set(&vma->vm_usage, 1);
997 	if (file) {
998 		get_file(file);
999 		if (vm_flags & VM_EXECUTABLE) {
1000 			added_exe_file_vma(current->mm);
1001 			vma->vm_mm = current->mm;
1002 		}
1003 	}
1004 	vma->vm_file	= file;
1005 	vma->vm_flags	= vm_flags;
1006 	vma->vm_start	= addr;
1007 	vma->vm_end	= addr + len;
1008 	vma->vm_pgoff	= pgoff;
1009 
1010 	vml->vma = vma;
1011 
1012 	/* set up the mapping */
1013 	if (file && vma->vm_flags & VM_SHARED)
1014 		ret = do_mmap_shared_file(vma, len);
1015 	else
1016 		ret = do_mmap_private(vma, len);
1017 	if (ret < 0)
1018 		goto error;
1019 
1020 	/* okay... we have a mapping; now we have to register it */
1021 	result = (void *) vma->vm_start;
1022 
1023 	if (vma->vm_flags & VM_MAPPED_COPY) {
1024 		realalloc += kobjsize(result);
1025 		askedalloc += len;
1026 	}
1027 
1028 	realalloc += kobjsize(vma);
1029 	askedalloc += sizeof(*vma);
1030 
1031 	current->mm->total_vm += len >> PAGE_SHIFT;
1032 
1033 	add_nommu_vma(vma);
1034 
1035  shared:
1036 	realalloc += kobjsize(vml);
1037 	askedalloc += sizeof(*vml);
1038 
1039 	add_vma_to_mm(current->mm, vml);
1040 
1041 	up_write(&nommu_vma_sem);
1042 
1043 	if (prot & PROT_EXEC)
1044 		flush_icache_range((unsigned long) result,
1045 				   (unsigned long) result + len);
1046 
1047 #ifdef DEBUG
1048 	printk("do_mmap:\n");
1049 	show_process_blocks();
1050 #endif
1051 
1052 	return (unsigned long) result;
1053 
1054  error:
1055 	up_write(&nommu_vma_sem);
1056 	kfree(vml);
1057 	if (vma) {
1058 		if (vma->vm_file) {
1059 			fput(vma->vm_file);
1060 			if (vma->vm_flags & VM_EXECUTABLE)
1061 				removed_exe_file_vma(vma->vm_mm);
1062 		}
1063 		kfree(vma);
1064 	}
1065 	return ret;
1066 
1067  sharing_violation:
1068 	up_write(&nommu_vma_sem);
1069 	printk("Attempt to share mismatched mappings\n");
1070 	kfree(vml);
1071 	return -EINVAL;
1072 
1073  error_getting_vma:
1074 	up_write(&nommu_vma_sem);
1075 	kfree(vml);
1076 	printk("Allocation of vma for %lu byte allocation from process %d failed\n",
1077 	       len, current->pid);
1078 	show_free_areas();
1079 	return -ENOMEM;
1080 
1081  error_getting_vml:
1082 	printk("Allocation of vml for %lu byte allocation from process %d failed\n",
1083 	       len, current->pid);
1084 	show_free_areas();
1085 	return -ENOMEM;
1086 }
1087 EXPORT_SYMBOL(do_mmap_pgoff);
1088 
1089 /*
1090  * handle mapping disposal for uClinux
1091  */
1092 static void put_vma(struct mm_struct *mm, struct vm_area_struct *vma)
1093 {
1094 	if (vma) {
1095 		down_write(&nommu_vma_sem);
1096 
1097 		if (atomic_dec_and_test(&vma->vm_usage)) {
1098 			delete_nommu_vma(vma);
1099 
1100 			if (vma->vm_ops && vma->vm_ops->close)
1101 				vma->vm_ops->close(vma);
1102 
1103 			/* IO memory and memory shared directly out of the pagecache from
1104 			 * ramfs/tmpfs mustn't be released here */
1105 			if (vma->vm_flags & VM_MAPPED_COPY) {
1106 				realalloc -= kobjsize((void *) vma->vm_start);
1107 				askedalloc -= vma->vm_end - vma->vm_start;
1108 				kfree((void *) vma->vm_start);
1109 			}
1110 
1111 			realalloc -= kobjsize(vma);
1112 			askedalloc -= sizeof(*vma);
1113 
1114 			if (vma->vm_file) {
1115 				fput(vma->vm_file);
1116 				if (vma->vm_flags & VM_EXECUTABLE)
1117 					removed_exe_file_vma(mm);
1118 			}
1119 			kfree(vma);
1120 		}
1121 
1122 		up_write(&nommu_vma_sem);
1123 	}
1124 }
1125 
1126 /*
1127  * release a mapping
1128  * - under NOMMU conditions the parameters must match exactly to the mapping to
1129  *   be removed
1130  */
1131 int do_munmap(struct mm_struct *mm, unsigned long addr, size_t len)
1132 {
1133 	struct vm_list_struct *vml, **parent;
1134 	unsigned long end = addr + len;
1135 
1136 #ifdef DEBUG
1137 	printk("do_munmap:\n");
1138 #endif
1139 
1140 	for (parent = &mm->context.vmlist; *parent; parent = &(*parent)->next) {
1141 		if ((*parent)->vma->vm_start > addr)
1142 			break;
1143 		if ((*parent)->vma->vm_start == addr &&
1144 		    ((len == 0) || ((*parent)->vma->vm_end == end)))
1145 			goto found;
1146 	}
1147 
1148 	printk("munmap of non-mmaped memory by process %d (%s): %p\n",
1149 	       current->pid, current->comm, (void *) addr);
1150 	return -EINVAL;
1151 
1152  found:
1153 	vml = *parent;
1154 
1155 	put_vma(mm, vml->vma);
1156 
1157 	*parent = vml->next;
1158 	realalloc -= kobjsize(vml);
1159 	askedalloc -= sizeof(*vml);
1160 	kfree(vml);
1161 
1162 	update_hiwater_vm(mm);
1163 	mm->total_vm -= len >> PAGE_SHIFT;
1164 
1165 #ifdef DEBUG
1166 	show_process_blocks();
1167 #endif
1168 
1169 	return 0;
1170 }
1171 EXPORT_SYMBOL(do_munmap);
1172 
1173 asmlinkage long sys_munmap(unsigned long addr, size_t len)
1174 {
1175 	int ret;
1176 	struct mm_struct *mm = current->mm;
1177 
1178 	down_write(&mm->mmap_sem);
1179 	ret = do_munmap(mm, addr, len);
1180 	up_write(&mm->mmap_sem);
1181 	return ret;
1182 }
1183 
1184 /*
1185  * Release all mappings
1186  */
1187 void exit_mmap(struct mm_struct * mm)
1188 {
1189 	struct vm_list_struct *tmp;
1190 
1191 	if (mm) {
1192 #ifdef DEBUG
1193 		printk("Exit_mmap:\n");
1194 #endif
1195 
1196 		mm->total_vm = 0;
1197 
1198 		while ((tmp = mm->context.vmlist)) {
1199 			mm->context.vmlist = tmp->next;
1200 			put_vma(mm, tmp->vma);
1201 
1202 			realalloc -= kobjsize(tmp);
1203 			askedalloc -= sizeof(*tmp);
1204 			kfree(tmp);
1205 		}
1206 
1207 #ifdef DEBUG
1208 		show_process_blocks();
1209 #endif
1210 	}
1211 }
1212 
1213 unsigned long do_brk(unsigned long addr, unsigned long len)
1214 {
1215 	return -ENOMEM;
1216 }
1217 
1218 /*
1219  * expand (or shrink) an existing mapping, potentially moving it at the same
1220  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1221  *
1222  * under NOMMU conditions, we only permit changing a mapping's size, and only
1223  * as long as it stays within the hole allocated by the kmalloc() call in
1224  * do_mmap_pgoff() and the block is not shareable
1225  *
1226  * MREMAP_FIXED is not supported under NOMMU conditions
1227  */
1228 unsigned long do_mremap(unsigned long addr,
1229 			unsigned long old_len, unsigned long new_len,
1230 			unsigned long flags, unsigned long new_addr)
1231 {
1232 	struct vm_area_struct *vma;
1233 
1234 	/* insanity checks first */
1235 	if (new_len == 0)
1236 		return (unsigned long) -EINVAL;
1237 
1238 	if (flags & MREMAP_FIXED && new_addr != addr)
1239 		return (unsigned long) -EINVAL;
1240 
1241 	vma = find_vma_exact(current->mm, addr);
1242 	if (!vma)
1243 		return (unsigned long) -EINVAL;
1244 
1245 	if (vma->vm_end != vma->vm_start + old_len)
1246 		return (unsigned long) -EFAULT;
1247 
1248 	if (vma->vm_flags & VM_MAYSHARE)
1249 		return (unsigned long) -EPERM;
1250 
1251 	if (new_len > kobjsize((void *) addr))
1252 		return (unsigned long) -ENOMEM;
1253 
1254 	/* all checks complete - do it */
1255 	vma->vm_end = vma->vm_start + new_len;
1256 
1257 	askedalloc -= old_len;
1258 	askedalloc += new_len;
1259 
1260 	return vma->vm_start;
1261 }
1262 EXPORT_SYMBOL(do_mremap);
1263 
1264 asmlinkage unsigned long sys_mremap(unsigned long addr,
1265 	unsigned long old_len, unsigned long new_len,
1266 	unsigned long flags, unsigned long new_addr)
1267 {
1268 	unsigned long ret;
1269 
1270 	down_write(&current->mm->mmap_sem);
1271 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1272 	up_write(&current->mm->mmap_sem);
1273 	return ret;
1274 }
1275 
1276 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1277 			unsigned int foll_flags)
1278 {
1279 	return NULL;
1280 }
1281 
1282 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1283 		unsigned long to, unsigned long size, pgprot_t prot)
1284 {
1285 	vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1286 	return 0;
1287 }
1288 EXPORT_SYMBOL(remap_pfn_range);
1289 
1290 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1291 			unsigned long pgoff)
1292 {
1293 	unsigned int size = vma->vm_end - vma->vm_start;
1294 
1295 	if (!(vma->vm_flags & VM_USERMAP))
1296 		return -EINVAL;
1297 
1298 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1299 	vma->vm_end = vma->vm_start + size;
1300 
1301 	return 0;
1302 }
1303 EXPORT_SYMBOL(remap_vmalloc_range);
1304 
1305 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1306 {
1307 }
1308 
1309 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1310 	unsigned long len, unsigned long pgoff, unsigned long flags)
1311 {
1312 	return -ENOMEM;
1313 }
1314 
1315 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1316 {
1317 }
1318 
1319 void unmap_mapping_range(struct address_space *mapping,
1320 			 loff_t const holebegin, loff_t const holelen,
1321 			 int even_cows)
1322 {
1323 }
1324 EXPORT_SYMBOL(unmap_mapping_range);
1325 
1326 /*
1327  * ask for an unmapped area at which to create a mapping on a file
1328  */
1329 unsigned long get_unmapped_area(struct file *file, unsigned long addr,
1330 				unsigned long len, unsigned long pgoff,
1331 				unsigned long flags)
1332 {
1333 	unsigned long (*get_area)(struct file *, unsigned long, unsigned long,
1334 				  unsigned long, unsigned long);
1335 
1336 	get_area = current->mm->get_unmapped_area;
1337 	if (file && file->f_op && file->f_op->get_unmapped_area)
1338 		get_area = file->f_op->get_unmapped_area;
1339 
1340 	if (!get_area)
1341 		return -ENOSYS;
1342 
1343 	return get_area(file, addr, len, pgoff, flags);
1344 }
1345 EXPORT_SYMBOL(get_unmapped_area);
1346 
1347 /*
1348  * Check that a process has enough memory to allocate a new virtual
1349  * mapping. 0 means there is enough memory for the allocation to
1350  * succeed and -ENOMEM implies there is not.
1351  *
1352  * We currently support three overcommit policies, which are set via the
1353  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1354  *
1355  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1356  * Additional code 2002 Jul 20 by Robert Love.
1357  *
1358  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1359  *
1360  * Note this is a helper function intended to be used by LSMs which
1361  * wish to use this logic.
1362  */
1363 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1364 {
1365 	unsigned long free, allowed;
1366 
1367 	vm_acct_memory(pages);
1368 
1369 	/*
1370 	 * Sometimes we want to use more memory than we have
1371 	 */
1372 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1373 		return 0;
1374 
1375 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1376 		unsigned long n;
1377 
1378 		free = global_page_state(NR_FILE_PAGES);
1379 		free += nr_swap_pages;
1380 
1381 		/*
1382 		 * Any slabs which are created with the
1383 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1384 		 * which are reclaimable, under pressure.  The dentry
1385 		 * cache and most inode caches should fall into this
1386 		 */
1387 		free += global_page_state(NR_SLAB_RECLAIMABLE);
1388 
1389 		/*
1390 		 * Leave the last 3% for root
1391 		 */
1392 		if (!cap_sys_admin)
1393 			free -= free / 32;
1394 
1395 		if (free > pages)
1396 			return 0;
1397 
1398 		/*
1399 		 * nr_free_pages() is very expensive on large systems,
1400 		 * only call if we're about to fail.
1401 		 */
1402 		n = nr_free_pages();
1403 
1404 		/*
1405 		 * Leave reserved pages. The pages are not for anonymous pages.
1406 		 */
1407 		if (n <= totalreserve_pages)
1408 			goto error;
1409 		else
1410 			n -= totalreserve_pages;
1411 
1412 		/*
1413 		 * Leave the last 3% for root
1414 		 */
1415 		if (!cap_sys_admin)
1416 			n -= n / 32;
1417 		free += n;
1418 
1419 		if (free > pages)
1420 			return 0;
1421 
1422 		goto error;
1423 	}
1424 
1425 	allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1426 	/*
1427 	 * Leave the last 3% for root
1428 	 */
1429 	if (!cap_sys_admin)
1430 		allowed -= allowed / 32;
1431 	allowed += total_swap_pages;
1432 
1433 	/* Don't let a single process grow too big:
1434 	   leave 3% of the size of this process for other processes */
1435 	allowed -= current->mm->total_vm / 32;
1436 
1437 	/*
1438 	 * cast `allowed' as a signed long because vm_committed_space
1439 	 * sometimes has a negative value
1440 	 */
1441 	if (atomic_long_read(&vm_committed_space) < (long)allowed)
1442 		return 0;
1443 error:
1444 	vm_unacct_memory(pages);
1445 
1446 	return -ENOMEM;
1447 }
1448 
1449 int in_gate_area_no_task(unsigned long addr)
1450 {
1451 	return 0;
1452 }
1453 
1454 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1455 {
1456 	BUG();
1457 	return 0;
1458 }
1459 EXPORT_SYMBOL(filemap_fault);
1460 
1461 /*
1462  * Access another process' address space.
1463  * - source/target buffer must be kernel space
1464  */
1465 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1466 {
1467 	struct vm_area_struct *vma;
1468 	struct mm_struct *mm;
1469 
1470 	if (addr + len < addr)
1471 		return 0;
1472 
1473 	mm = get_task_mm(tsk);
1474 	if (!mm)
1475 		return 0;
1476 
1477 	down_read(&mm->mmap_sem);
1478 
1479 	/* the access must start within one of the target process's mappings */
1480 	vma = find_vma(mm, addr);
1481 	if (vma) {
1482 		/* don't overrun this mapping */
1483 		if (addr + len >= vma->vm_end)
1484 			len = vma->vm_end - addr;
1485 
1486 		/* only read or write mappings where it is permitted */
1487 		if (write && vma->vm_flags & VM_MAYWRITE)
1488 			len -= copy_to_user((void *) addr, buf, len);
1489 		else if (!write && vma->vm_flags & VM_MAYREAD)
1490 			len -= copy_from_user(buf, (void *) addr, len);
1491 		else
1492 			len = 0;
1493 	} else {
1494 		len = 0;
1495 	}
1496 
1497 	up_read(&mm->mmap_sem);
1498 	mmput(mm);
1499 	return len;
1500 }
1501