1 /* 2 * linux/mm/nommu.c 3 * 4 * Replacement code for mm functions to support CPU's that don't 5 * have any form of memory management unit (thus no virtual memory). 6 * 7 * See Documentation/nommu-mmap.txt 8 * 9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 14 */ 15 16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 17 18 #include <linux/export.h> 19 #include <linux/mm.h> 20 #include <linux/vmacache.h> 21 #include <linux/mman.h> 22 #include <linux/swap.h> 23 #include <linux/file.h> 24 #include <linux/highmem.h> 25 #include <linux/pagemap.h> 26 #include <linux/slab.h> 27 #include <linux/vmalloc.h> 28 #include <linux/blkdev.h> 29 #include <linux/backing-dev.h> 30 #include <linux/compiler.h> 31 #include <linux/mount.h> 32 #include <linux/personality.h> 33 #include <linux/security.h> 34 #include <linux/syscalls.h> 35 #include <linux/audit.h> 36 #include <linux/printk.h> 37 38 #include <asm/uaccess.h> 39 #include <asm/tlb.h> 40 #include <asm/tlbflush.h> 41 #include <asm/mmu_context.h> 42 #include "internal.h" 43 44 void *high_memory; 45 EXPORT_SYMBOL(high_memory); 46 struct page *mem_map; 47 unsigned long max_mapnr; 48 EXPORT_SYMBOL(max_mapnr); 49 unsigned long highest_memmap_pfn; 50 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 51 int heap_stack_gap = 0; 52 53 atomic_long_t mmap_pages_allocated; 54 55 EXPORT_SYMBOL(mem_map); 56 57 /* list of mapped, potentially shareable regions */ 58 static struct kmem_cache *vm_region_jar; 59 struct rb_root nommu_region_tree = RB_ROOT; 60 DECLARE_RWSEM(nommu_region_sem); 61 62 const struct vm_operations_struct generic_file_vm_ops = { 63 }; 64 65 /* 66 * Return the total memory allocated for this pointer, not 67 * just what the caller asked for. 68 * 69 * Doesn't have to be accurate, i.e. may have races. 70 */ 71 unsigned int kobjsize(const void *objp) 72 { 73 struct page *page; 74 75 /* 76 * If the object we have should not have ksize performed on it, 77 * return size of 0 78 */ 79 if (!objp || !virt_addr_valid(objp)) 80 return 0; 81 82 page = virt_to_head_page(objp); 83 84 /* 85 * If the allocator sets PageSlab, we know the pointer came from 86 * kmalloc(). 87 */ 88 if (PageSlab(page)) 89 return ksize(objp); 90 91 /* 92 * If it's not a compound page, see if we have a matching VMA 93 * region. This test is intentionally done in reverse order, 94 * so if there's no VMA, we still fall through and hand back 95 * PAGE_SIZE for 0-order pages. 96 */ 97 if (!PageCompound(page)) { 98 struct vm_area_struct *vma; 99 100 vma = find_vma(current->mm, (unsigned long)objp); 101 if (vma) 102 return vma->vm_end - vma->vm_start; 103 } 104 105 /* 106 * The ksize() function is only guaranteed to work for pointers 107 * returned by kmalloc(). So handle arbitrary pointers here. 108 */ 109 return PAGE_SIZE << compound_order(page); 110 } 111 112 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 113 unsigned long start, unsigned long nr_pages, 114 unsigned int foll_flags, struct page **pages, 115 struct vm_area_struct **vmas, int *nonblocking) 116 { 117 struct vm_area_struct *vma; 118 unsigned long vm_flags; 119 int i; 120 121 /* calculate required read or write permissions. 122 * If FOLL_FORCE is set, we only require the "MAY" flags. 123 */ 124 vm_flags = (foll_flags & FOLL_WRITE) ? 125 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 126 vm_flags &= (foll_flags & FOLL_FORCE) ? 127 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 128 129 for (i = 0; i < nr_pages; i++) { 130 vma = find_vma(mm, start); 131 if (!vma) 132 goto finish_or_fault; 133 134 /* protect what we can, including chardevs */ 135 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 136 !(vm_flags & vma->vm_flags)) 137 goto finish_or_fault; 138 139 if (pages) { 140 pages[i] = virt_to_page(start); 141 if (pages[i]) 142 get_page(pages[i]); 143 } 144 if (vmas) 145 vmas[i] = vma; 146 start = (start + PAGE_SIZE) & PAGE_MASK; 147 } 148 149 return i; 150 151 finish_or_fault: 152 return i ? : -EFAULT; 153 } 154 155 /* 156 * get a list of pages in an address range belonging to the specified process 157 * and indicate the VMA that covers each page 158 * - this is potentially dodgy as we may end incrementing the page count of a 159 * slab page or a secondary page from a compound page 160 * - don't permit access to VMAs that don't support it, such as I/O mappings 161 */ 162 long get_user_pages(unsigned long start, unsigned long nr_pages, 163 unsigned int gup_flags, struct page **pages, 164 struct vm_area_struct **vmas) 165 { 166 return __get_user_pages(current, current->mm, start, nr_pages, 167 gup_flags, pages, vmas, NULL); 168 } 169 EXPORT_SYMBOL(get_user_pages); 170 171 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 172 unsigned int gup_flags, struct page **pages, 173 int *locked) 174 { 175 return get_user_pages(start, nr_pages, gup_flags, pages, NULL); 176 } 177 EXPORT_SYMBOL(get_user_pages_locked); 178 179 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 180 unsigned long start, unsigned long nr_pages, 181 struct page **pages, unsigned int gup_flags) 182 { 183 long ret; 184 down_read(&mm->mmap_sem); 185 ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages, 186 NULL, NULL); 187 up_read(&mm->mmap_sem); 188 return ret; 189 } 190 EXPORT_SYMBOL(__get_user_pages_unlocked); 191 192 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 193 struct page **pages, unsigned int gup_flags) 194 { 195 return __get_user_pages_unlocked(current, current->mm, start, nr_pages, 196 pages, gup_flags); 197 } 198 EXPORT_SYMBOL(get_user_pages_unlocked); 199 200 /** 201 * follow_pfn - look up PFN at a user virtual address 202 * @vma: memory mapping 203 * @address: user virtual address 204 * @pfn: location to store found PFN 205 * 206 * Only IO mappings and raw PFN mappings are allowed. 207 * 208 * Returns zero and the pfn at @pfn on success, -ve otherwise. 209 */ 210 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 211 unsigned long *pfn) 212 { 213 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 214 return -EINVAL; 215 216 *pfn = address >> PAGE_SHIFT; 217 return 0; 218 } 219 EXPORT_SYMBOL(follow_pfn); 220 221 LIST_HEAD(vmap_area_list); 222 223 void vfree(const void *addr) 224 { 225 kfree(addr); 226 } 227 EXPORT_SYMBOL(vfree); 228 229 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 230 { 231 /* 232 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 233 * returns only a logical address. 234 */ 235 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 236 } 237 EXPORT_SYMBOL(__vmalloc); 238 239 void *vmalloc_user(unsigned long size) 240 { 241 void *ret; 242 243 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 244 PAGE_KERNEL); 245 if (ret) { 246 struct vm_area_struct *vma; 247 248 down_write(¤t->mm->mmap_sem); 249 vma = find_vma(current->mm, (unsigned long)ret); 250 if (vma) 251 vma->vm_flags |= VM_USERMAP; 252 up_write(¤t->mm->mmap_sem); 253 } 254 255 return ret; 256 } 257 EXPORT_SYMBOL(vmalloc_user); 258 259 struct page *vmalloc_to_page(const void *addr) 260 { 261 return virt_to_page(addr); 262 } 263 EXPORT_SYMBOL(vmalloc_to_page); 264 265 unsigned long vmalloc_to_pfn(const void *addr) 266 { 267 return page_to_pfn(virt_to_page(addr)); 268 } 269 EXPORT_SYMBOL(vmalloc_to_pfn); 270 271 long vread(char *buf, char *addr, unsigned long count) 272 { 273 /* Don't allow overflow */ 274 if ((unsigned long) buf + count < count) 275 count = -(unsigned long) buf; 276 277 memcpy(buf, addr, count); 278 return count; 279 } 280 281 long vwrite(char *buf, char *addr, unsigned long count) 282 { 283 /* Don't allow overflow */ 284 if ((unsigned long) addr + count < count) 285 count = -(unsigned long) addr; 286 287 memcpy(addr, buf, count); 288 return count; 289 } 290 291 /* 292 * vmalloc - allocate virtually contiguous memory 293 * 294 * @size: allocation size 295 * 296 * Allocate enough pages to cover @size from the page level 297 * allocator and map them into contiguous kernel virtual space. 298 * 299 * For tight control over page level allocator and protection flags 300 * use __vmalloc() instead. 301 */ 302 void *vmalloc(unsigned long size) 303 { 304 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 305 } 306 EXPORT_SYMBOL(vmalloc); 307 308 /* 309 * vzalloc - allocate virtually contiguous memory with zero fill 310 * 311 * @size: allocation size 312 * 313 * Allocate enough pages to cover @size from the page level 314 * allocator and map them into contiguous kernel virtual space. 315 * The memory allocated is set to zero. 316 * 317 * For tight control over page level allocator and protection flags 318 * use __vmalloc() instead. 319 */ 320 void *vzalloc(unsigned long size) 321 { 322 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 323 PAGE_KERNEL); 324 } 325 EXPORT_SYMBOL(vzalloc); 326 327 /** 328 * vmalloc_node - allocate memory on a specific node 329 * @size: allocation size 330 * @node: numa node 331 * 332 * Allocate enough pages to cover @size from the page level 333 * allocator and map them into contiguous kernel virtual space. 334 * 335 * For tight control over page level allocator and protection flags 336 * use __vmalloc() instead. 337 */ 338 void *vmalloc_node(unsigned long size, int node) 339 { 340 return vmalloc(size); 341 } 342 EXPORT_SYMBOL(vmalloc_node); 343 344 /** 345 * vzalloc_node - allocate memory on a specific node with zero fill 346 * @size: allocation size 347 * @node: numa node 348 * 349 * Allocate enough pages to cover @size from the page level 350 * allocator and map them into contiguous kernel virtual space. 351 * The memory allocated is set to zero. 352 * 353 * For tight control over page level allocator and protection flags 354 * use __vmalloc() instead. 355 */ 356 void *vzalloc_node(unsigned long size, int node) 357 { 358 return vzalloc(size); 359 } 360 EXPORT_SYMBOL(vzalloc_node); 361 362 #ifndef PAGE_KERNEL_EXEC 363 # define PAGE_KERNEL_EXEC PAGE_KERNEL 364 #endif 365 366 /** 367 * vmalloc_exec - allocate virtually contiguous, executable memory 368 * @size: allocation size 369 * 370 * Kernel-internal function to allocate enough pages to cover @size 371 * the page level allocator and map them into contiguous and 372 * executable kernel virtual space. 373 * 374 * For tight control over page level allocator and protection flags 375 * use __vmalloc() instead. 376 */ 377 378 void *vmalloc_exec(unsigned long size) 379 { 380 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 381 } 382 383 /** 384 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 385 * @size: allocation size 386 * 387 * Allocate enough 32bit PA addressable pages to cover @size from the 388 * page level allocator and map them into contiguous kernel virtual space. 389 */ 390 void *vmalloc_32(unsigned long size) 391 { 392 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 393 } 394 EXPORT_SYMBOL(vmalloc_32); 395 396 /** 397 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 398 * @size: allocation size 399 * 400 * The resulting memory area is 32bit addressable and zeroed so it can be 401 * mapped to userspace without leaking data. 402 * 403 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 404 * remap_vmalloc_range() are permissible. 405 */ 406 void *vmalloc_32_user(unsigned long size) 407 { 408 /* 409 * We'll have to sort out the ZONE_DMA bits for 64-bit, 410 * but for now this can simply use vmalloc_user() directly. 411 */ 412 return vmalloc_user(size); 413 } 414 EXPORT_SYMBOL(vmalloc_32_user); 415 416 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 417 { 418 BUG(); 419 return NULL; 420 } 421 EXPORT_SYMBOL(vmap); 422 423 void vunmap(const void *addr) 424 { 425 BUG(); 426 } 427 EXPORT_SYMBOL(vunmap); 428 429 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 430 { 431 BUG(); 432 return NULL; 433 } 434 EXPORT_SYMBOL(vm_map_ram); 435 436 void vm_unmap_ram(const void *mem, unsigned int count) 437 { 438 BUG(); 439 } 440 EXPORT_SYMBOL(vm_unmap_ram); 441 442 void vm_unmap_aliases(void) 443 { 444 } 445 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 446 447 /* 448 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 449 * have one. 450 */ 451 void __weak vmalloc_sync_all(void) 452 { 453 } 454 455 /** 456 * alloc_vm_area - allocate a range of kernel address space 457 * @size: size of the area 458 * 459 * Returns: NULL on failure, vm_struct on success 460 * 461 * This function reserves a range of kernel address space, and 462 * allocates pagetables to map that range. No actual mappings 463 * are created. If the kernel address space is not shared 464 * between processes, it syncs the pagetable across all 465 * processes. 466 */ 467 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 468 { 469 BUG(); 470 return NULL; 471 } 472 EXPORT_SYMBOL_GPL(alloc_vm_area); 473 474 void free_vm_area(struct vm_struct *area) 475 { 476 BUG(); 477 } 478 EXPORT_SYMBOL_GPL(free_vm_area); 479 480 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 481 struct page *page) 482 { 483 return -EINVAL; 484 } 485 EXPORT_SYMBOL(vm_insert_page); 486 487 /* 488 * sys_brk() for the most part doesn't need the global kernel 489 * lock, except when an application is doing something nasty 490 * like trying to un-brk an area that has already been mapped 491 * to a regular file. in this case, the unmapping will need 492 * to invoke file system routines that need the global lock. 493 */ 494 SYSCALL_DEFINE1(brk, unsigned long, brk) 495 { 496 struct mm_struct *mm = current->mm; 497 498 if (brk < mm->start_brk || brk > mm->context.end_brk) 499 return mm->brk; 500 501 if (mm->brk == brk) 502 return mm->brk; 503 504 /* 505 * Always allow shrinking brk 506 */ 507 if (brk <= mm->brk) { 508 mm->brk = brk; 509 return brk; 510 } 511 512 /* 513 * Ok, looks good - let it rip. 514 */ 515 flush_icache_range(mm->brk, brk); 516 return mm->brk = brk; 517 } 518 519 /* 520 * initialise the VMA and region record slabs 521 */ 522 void __init mmap_init(void) 523 { 524 int ret; 525 526 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 527 VM_BUG_ON(ret); 528 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 529 } 530 531 /* 532 * validate the region tree 533 * - the caller must hold the region lock 534 */ 535 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 536 static noinline void validate_nommu_regions(void) 537 { 538 struct vm_region *region, *last; 539 struct rb_node *p, *lastp; 540 541 lastp = rb_first(&nommu_region_tree); 542 if (!lastp) 543 return; 544 545 last = rb_entry(lastp, struct vm_region, vm_rb); 546 BUG_ON(last->vm_end <= last->vm_start); 547 BUG_ON(last->vm_top < last->vm_end); 548 549 while ((p = rb_next(lastp))) { 550 region = rb_entry(p, struct vm_region, vm_rb); 551 last = rb_entry(lastp, struct vm_region, vm_rb); 552 553 BUG_ON(region->vm_end <= region->vm_start); 554 BUG_ON(region->vm_top < region->vm_end); 555 BUG_ON(region->vm_start < last->vm_top); 556 557 lastp = p; 558 } 559 } 560 #else 561 static void validate_nommu_regions(void) 562 { 563 } 564 #endif 565 566 /* 567 * add a region into the global tree 568 */ 569 static void add_nommu_region(struct vm_region *region) 570 { 571 struct vm_region *pregion; 572 struct rb_node **p, *parent; 573 574 validate_nommu_regions(); 575 576 parent = NULL; 577 p = &nommu_region_tree.rb_node; 578 while (*p) { 579 parent = *p; 580 pregion = rb_entry(parent, struct vm_region, vm_rb); 581 if (region->vm_start < pregion->vm_start) 582 p = &(*p)->rb_left; 583 else if (region->vm_start > pregion->vm_start) 584 p = &(*p)->rb_right; 585 else if (pregion == region) 586 return; 587 else 588 BUG(); 589 } 590 591 rb_link_node(®ion->vm_rb, parent, p); 592 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 593 594 validate_nommu_regions(); 595 } 596 597 /* 598 * delete a region from the global tree 599 */ 600 static void delete_nommu_region(struct vm_region *region) 601 { 602 BUG_ON(!nommu_region_tree.rb_node); 603 604 validate_nommu_regions(); 605 rb_erase(®ion->vm_rb, &nommu_region_tree); 606 validate_nommu_regions(); 607 } 608 609 /* 610 * free a contiguous series of pages 611 */ 612 static void free_page_series(unsigned long from, unsigned long to) 613 { 614 for (; from < to; from += PAGE_SIZE) { 615 struct page *page = virt_to_page(from); 616 617 atomic_long_dec(&mmap_pages_allocated); 618 put_page(page); 619 } 620 } 621 622 /* 623 * release a reference to a region 624 * - the caller must hold the region semaphore for writing, which this releases 625 * - the region may not have been added to the tree yet, in which case vm_top 626 * will equal vm_start 627 */ 628 static void __put_nommu_region(struct vm_region *region) 629 __releases(nommu_region_sem) 630 { 631 BUG_ON(!nommu_region_tree.rb_node); 632 633 if (--region->vm_usage == 0) { 634 if (region->vm_top > region->vm_start) 635 delete_nommu_region(region); 636 up_write(&nommu_region_sem); 637 638 if (region->vm_file) 639 fput(region->vm_file); 640 641 /* IO memory and memory shared directly out of the pagecache 642 * from ramfs/tmpfs mustn't be released here */ 643 if (region->vm_flags & VM_MAPPED_COPY) 644 free_page_series(region->vm_start, region->vm_top); 645 kmem_cache_free(vm_region_jar, region); 646 } else { 647 up_write(&nommu_region_sem); 648 } 649 } 650 651 /* 652 * release a reference to a region 653 */ 654 static void put_nommu_region(struct vm_region *region) 655 { 656 down_write(&nommu_region_sem); 657 __put_nommu_region(region); 658 } 659 660 /* 661 * update protection on a vma 662 */ 663 static void protect_vma(struct vm_area_struct *vma, unsigned long flags) 664 { 665 #ifdef CONFIG_MPU 666 struct mm_struct *mm = vma->vm_mm; 667 long start = vma->vm_start & PAGE_MASK; 668 while (start < vma->vm_end) { 669 protect_page(mm, start, flags); 670 start += PAGE_SIZE; 671 } 672 update_protections(mm); 673 #endif 674 } 675 676 /* 677 * add a VMA into a process's mm_struct in the appropriate place in the list 678 * and tree and add to the address space's page tree also if not an anonymous 679 * page 680 * - should be called with mm->mmap_sem held writelocked 681 */ 682 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 683 { 684 struct vm_area_struct *pvma, *prev; 685 struct address_space *mapping; 686 struct rb_node **p, *parent, *rb_prev; 687 688 BUG_ON(!vma->vm_region); 689 690 mm->map_count++; 691 vma->vm_mm = mm; 692 693 protect_vma(vma, vma->vm_flags); 694 695 /* add the VMA to the mapping */ 696 if (vma->vm_file) { 697 mapping = vma->vm_file->f_mapping; 698 699 i_mmap_lock_write(mapping); 700 flush_dcache_mmap_lock(mapping); 701 vma_interval_tree_insert(vma, &mapping->i_mmap); 702 flush_dcache_mmap_unlock(mapping); 703 i_mmap_unlock_write(mapping); 704 } 705 706 /* add the VMA to the tree */ 707 parent = rb_prev = NULL; 708 p = &mm->mm_rb.rb_node; 709 while (*p) { 710 parent = *p; 711 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 712 713 /* sort by: start addr, end addr, VMA struct addr in that order 714 * (the latter is necessary as we may get identical VMAs) */ 715 if (vma->vm_start < pvma->vm_start) 716 p = &(*p)->rb_left; 717 else if (vma->vm_start > pvma->vm_start) { 718 rb_prev = parent; 719 p = &(*p)->rb_right; 720 } else if (vma->vm_end < pvma->vm_end) 721 p = &(*p)->rb_left; 722 else if (vma->vm_end > pvma->vm_end) { 723 rb_prev = parent; 724 p = &(*p)->rb_right; 725 } else if (vma < pvma) 726 p = &(*p)->rb_left; 727 else if (vma > pvma) { 728 rb_prev = parent; 729 p = &(*p)->rb_right; 730 } else 731 BUG(); 732 } 733 734 rb_link_node(&vma->vm_rb, parent, p); 735 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 736 737 /* add VMA to the VMA list also */ 738 prev = NULL; 739 if (rb_prev) 740 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 741 742 __vma_link_list(mm, vma, prev, parent); 743 } 744 745 /* 746 * delete a VMA from its owning mm_struct and address space 747 */ 748 static void delete_vma_from_mm(struct vm_area_struct *vma) 749 { 750 int i; 751 struct address_space *mapping; 752 struct mm_struct *mm = vma->vm_mm; 753 struct task_struct *curr = current; 754 755 protect_vma(vma, 0); 756 757 mm->map_count--; 758 for (i = 0; i < VMACACHE_SIZE; i++) { 759 /* if the vma is cached, invalidate the entire cache */ 760 if (curr->vmacache[i] == vma) { 761 vmacache_invalidate(mm); 762 break; 763 } 764 } 765 766 /* remove the VMA from the mapping */ 767 if (vma->vm_file) { 768 mapping = vma->vm_file->f_mapping; 769 770 i_mmap_lock_write(mapping); 771 flush_dcache_mmap_lock(mapping); 772 vma_interval_tree_remove(vma, &mapping->i_mmap); 773 flush_dcache_mmap_unlock(mapping); 774 i_mmap_unlock_write(mapping); 775 } 776 777 /* remove from the MM's tree and list */ 778 rb_erase(&vma->vm_rb, &mm->mm_rb); 779 780 if (vma->vm_prev) 781 vma->vm_prev->vm_next = vma->vm_next; 782 else 783 mm->mmap = vma->vm_next; 784 785 if (vma->vm_next) 786 vma->vm_next->vm_prev = vma->vm_prev; 787 } 788 789 /* 790 * destroy a VMA record 791 */ 792 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 793 { 794 if (vma->vm_ops && vma->vm_ops->close) 795 vma->vm_ops->close(vma); 796 if (vma->vm_file) 797 fput(vma->vm_file); 798 put_nommu_region(vma->vm_region); 799 kmem_cache_free(vm_area_cachep, vma); 800 } 801 802 /* 803 * look up the first VMA in which addr resides, NULL if none 804 * - should be called with mm->mmap_sem at least held readlocked 805 */ 806 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 807 { 808 struct vm_area_struct *vma; 809 810 /* check the cache first */ 811 vma = vmacache_find(mm, addr); 812 if (likely(vma)) 813 return vma; 814 815 /* trawl the list (there may be multiple mappings in which addr 816 * resides) */ 817 for (vma = mm->mmap; vma; vma = vma->vm_next) { 818 if (vma->vm_start > addr) 819 return NULL; 820 if (vma->vm_end > addr) { 821 vmacache_update(addr, vma); 822 return vma; 823 } 824 } 825 826 return NULL; 827 } 828 EXPORT_SYMBOL(find_vma); 829 830 /* 831 * find a VMA 832 * - we don't extend stack VMAs under NOMMU conditions 833 */ 834 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 835 { 836 return find_vma(mm, addr); 837 } 838 839 /* 840 * expand a stack to a given address 841 * - not supported under NOMMU conditions 842 */ 843 int expand_stack(struct vm_area_struct *vma, unsigned long address) 844 { 845 return -ENOMEM; 846 } 847 848 /* 849 * look up the first VMA exactly that exactly matches addr 850 * - should be called with mm->mmap_sem at least held readlocked 851 */ 852 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 853 unsigned long addr, 854 unsigned long len) 855 { 856 struct vm_area_struct *vma; 857 unsigned long end = addr + len; 858 859 /* check the cache first */ 860 vma = vmacache_find_exact(mm, addr, end); 861 if (vma) 862 return vma; 863 864 /* trawl the list (there may be multiple mappings in which addr 865 * resides) */ 866 for (vma = mm->mmap; vma; vma = vma->vm_next) { 867 if (vma->vm_start < addr) 868 continue; 869 if (vma->vm_start > addr) 870 return NULL; 871 if (vma->vm_end == end) { 872 vmacache_update(addr, vma); 873 return vma; 874 } 875 } 876 877 return NULL; 878 } 879 880 /* 881 * determine whether a mapping should be permitted and, if so, what sort of 882 * mapping we're capable of supporting 883 */ 884 static int validate_mmap_request(struct file *file, 885 unsigned long addr, 886 unsigned long len, 887 unsigned long prot, 888 unsigned long flags, 889 unsigned long pgoff, 890 unsigned long *_capabilities) 891 { 892 unsigned long capabilities, rlen; 893 int ret; 894 895 /* do the simple checks first */ 896 if (flags & MAP_FIXED) 897 return -EINVAL; 898 899 if ((flags & MAP_TYPE) != MAP_PRIVATE && 900 (flags & MAP_TYPE) != MAP_SHARED) 901 return -EINVAL; 902 903 if (!len) 904 return -EINVAL; 905 906 /* Careful about overflows.. */ 907 rlen = PAGE_ALIGN(len); 908 if (!rlen || rlen > TASK_SIZE) 909 return -ENOMEM; 910 911 /* offset overflow? */ 912 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 913 return -EOVERFLOW; 914 915 if (file) { 916 /* files must support mmap */ 917 if (!file->f_op->mmap) 918 return -ENODEV; 919 920 /* work out if what we've got could possibly be shared 921 * - we support chardevs that provide their own "memory" 922 * - we support files/blockdevs that are memory backed 923 */ 924 if (file->f_op->mmap_capabilities) { 925 capabilities = file->f_op->mmap_capabilities(file); 926 } else { 927 /* no explicit capabilities set, so assume some 928 * defaults */ 929 switch (file_inode(file)->i_mode & S_IFMT) { 930 case S_IFREG: 931 case S_IFBLK: 932 capabilities = NOMMU_MAP_COPY; 933 break; 934 935 case S_IFCHR: 936 capabilities = 937 NOMMU_MAP_DIRECT | 938 NOMMU_MAP_READ | 939 NOMMU_MAP_WRITE; 940 break; 941 942 default: 943 return -EINVAL; 944 } 945 } 946 947 /* eliminate any capabilities that we can't support on this 948 * device */ 949 if (!file->f_op->get_unmapped_area) 950 capabilities &= ~NOMMU_MAP_DIRECT; 951 if (!(file->f_mode & FMODE_CAN_READ)) 952 capabilities &= ~NOMMU_MAP_COPY; 953 954 /* The file shall have been opened with read permission. */ 955 if (!(file->f_mode & FMODE_READ)) 956 return -EACCES; 957 958 if (flags & MAP_SHARED) { 959 /* do checks for writing, appending and locking */ 960 if ((prot & PROT_WRITE) && 961 !(file->f_mode & FMODE_WRITE)) 962 return -EACCES; 963 964 if (IS_APPEND(file_inode(file)) && 965 (file->f_mode & FMODE_WRITE)) 966 return -EACCES; 967 968 if (locks_verify_locked(file)) 969 return -EAGAIN; 970 971 if (!(capabilities & NOMMU_MAP_DIRECT)) 972 return -ENODEV; 973 974 /* we mustn't privatise shared mappings */ 975 capabilities &= ~NOMMU_MAP_COPY; 976 } else { 977 /* we're going to read the file into private memory we 978 * allocate */ 979 if (!(capabilities & NOMMU_MAP_COPY)) 980 return -ENODEV; 981 982 /* we don't permit a private writable mapping to be 983 * shared with the backing device */ 984 if (prot & PROT_WRITE) 985 capabilities &= ~NOMMU_MAP_DIRECT; 986 } 987 988 if (capabilities & NOMMU_MAP_DIRECT) { 989 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 990 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 991 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 992 ) { 993 capabilities &= ~NOMMU_MAP_DIRECT; 994 if (flags & MAP_SHARED) { 995 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 996 return -EINVAL; 997 } 998 } 999 } 1000 1001 /* handle executable mappings and implied executable 1002 * mappings */ 1003 if (path_noexec(&file->f_path)) { 1004 if (prot & PROT_EXEC) 1005 return -EPERM; 1006 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 1007 /* handle implication of PROT_EXEC by PROT_READ */ 1008 if (current->personality & READ_IMPLIES_EXEC) { 1009 if (capabilities & NOMMU_MAP_EXEC) 1010 prot |= PROT_EXEC; 1011 } 1012 } else if ((prot & PROT_READ) && 1013 (prot & PROT_EXEC) && 1014 !(capabilities & NOMMU_MAP_EXEC) 1015 ) { 1016 /* backing file is not executable, try to copy */ 1017 capabilities &= ~NOMMU_MAP_DIRECT; 1018 } 1019 } else { 1020 /* anonymous mappings are always memory backed and can be 1021 * privately mapped 1022 */ 1023 capabilities = NOMMU_MAP_COPY; 1024 1025 /* handle PROT_EXEC implication by PROT_READ */ 1026 if ((prot & PROT_READ) && 1027 (current->personality & READ_IMPLIES_EXEC)) 1028 prot |= PROT_EXEC; 1029 } 1030 1031 /* allow the security API to have its say */ 1032 ret = security_mmap_addr(addr); 1033 if (ret < 0) 1034 return ret; 1035 1036 /* looks okay */ 1037 *_capabilities = capabilities; 1038 return 0; 1039 } 1040 1041 /* 1042 * we've determined that we can make the mapping, now translate what we 1043 * now know into VMA flags 1044 */ 1045 static unsigned long determine_vm_flags(struct file *file, 1046 unsigned long prot, 1047 unsigned long flags, 1048 unsigned long capabilities) 1049 { 1050 unsigned long vm_flags; 1051 1052 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags); 1053 /* vm_flags |= mm->def_flags; */ 1054 1055 if (!(capabilities & NOMMU_MAP_DIRECT)) { 1056 /* attempt to share read-only copies of mapped file chunks */ 1057 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1058 if (file && !(prot & PROT_WRITE)) 1059 vm_flags |= VM_MAYSHARE; 1060 } else { 1061 /* overlay a shareable mapping on the backing device or inode 1062 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 1063 * romfs/cramfs */ 1064 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS); 1065 if (flags & MAP_SHARED) 1066 vm_flags |= VM_SHARED; 1067 } 1068 1069 /* refuse to let anyone share private mappings with this process if 1070 * it's being traced - otherwise breakpoints set in it may interfere 1071 * with another untraced process 1072 */ 1073 if ((flags & MAP_PRIVATE) && current->ptrace) 1074 vm_flags &= ~VM_MAYSHARE; 1075 1076 return vm_flags; 1077 } 1078 1079 /* 1080 * set up a shared mapping on a file (the driver or filesystem provides and 1081 * pins the storage) 1082 */ 1083 static int do_mmap_shared_file(struct vm_area_struct *vma) 1084 { 1085 int ret; 1086 1087 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1088 if (ret == 0) { 1089 vma->vm_region->vm_top = vma->vm_region->vm_end; 1090 return 0; 1091 } 1092 if (ret != -ENOSYS) 1093 return ret; 1094 1095 /* getting -ENOSYS indicates that direct mmap isn't possible (as 1096 * opposed to tried but failed) so we can only give a suitable error as 1097 * it's not possible to make a private copy if MAP_SHARED was given */ 1098 return -ENODEV; 1099 } 1100 1101 /* 1102 * set up a private mapping or an anonymous shared mapping 1103 */ 1104 static int do_mmap_private(struct vm_area_struct *vma, 1105 struct vm_region *region, 1106 unsigned long len, 1107 unsigned long capabilities) 1108 { 1109 unsigned long total, point; 1110 void *base; 1111 int ret, order; 1112 1113 /* invoke the file's mapping function so that it can keep track of 1114 * shared mappings on devices or memory 1115 * - VM_MAYSHARE will be set if it may attempt to share 1116 */ 1117 if (capabilities & NOMMU_MAP_DIRECT) { 1118 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1119 if (ret == 0) { 1120 /* shouldn't return success if we're not sharing */ 1121 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 1122 vma->vm_region->vm_top = vma->vm_region->vm_end; 1123 return 0; 1124 } 1125 if (ret != -ENOSYS) 1126 return ret; 1127 1128 /* getting an ENOSYS error indicates that direct mmap isn't 1129 * possible (as opposed to tried but failed) so we'll try to 1130 * make a private copy of the data and map that instead */ 1131 } 1132 1133 1134 /* allocate some memory to hold the mapping 1135 * - note that this may not return a page-aligned address if the object 1136 * we're allocating is smaller than a page 1137 */ 1138 order = get_order(len); 1139 total = 1 << order; 1140 point = len >> PAGE_SHIFT; 1141 1142 /* we don't want to allocate a power-of-2 sized page set */ 1143 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 1144 total = point; 1145 1146 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 1147 if (!base) 1148 goto enomem; 1149 1150 atomic_long_add(total, &mmap_pages_allocated); 1151 1152 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1153 region->vm_start = (unsigned long) base; 1154 region->vm_end = region->vm_start + len; 1155 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1156 1157 vma->vm_start = region->vm_start; 1158 vma->vm_end = region->vm_start + len; 1159 1160 if (vma->vm_file) { 1161 /* read the contents of a file into the copy */ 1162 mm_segment_t old_fs; 1163 loff_t fpos; 1164 1165 fpos = vma->vm_pgoff; 1166 fpos <<= PAGE_SHIFT; 1167 1168 old_fs = get_fs(); 1169 set_fs(KERNEL_DS); 1170 ret = __vfs_read(vma->vm_file, base, len, &fpos); 1171 set_fs(old_fs); 1172 1173 if (ret < 0) 1174 goto error_free; 1175 1176 /* clear the last little bit */ 1177 if (ret < len) 1178 memset(base + ret, 0, len - ret); 1179 1180 } 1181 1182 return 0; 1183 1184 error_free: 1185 free_page_series(region->vm_start, region->vm_top); 1186 region->vm_start = vma->vm_start = 0; 1187 region->vm_end = vma->vm_end = 0; 1188 region->vm_top = 0; 1189 return ret; 1190 1191 enomem: 1192 pr_err("Allocation of length %lu from process %d (%s) failed\n", 1193 len, current->pid, current->comm); 1194 show_free_areas(0); 1195 return -ENOMEM; 1196 } 1197 1198 /* 1199 * handle mapping creation for uClinux 1200 */ 1201 unsigned long do_mmap(struct file *file, 1202 unsigned long addr, 1203 unsigned long len, 1204 unsigned long prot, 1205 unsigned long flags, 1206 vm_flags_t vm_flags, 1207 unsigned long pgoff, 1208 unsigned long *populate) 1209 { 1210 struct vm_area_struct *vma; 1211 struct vm_region *region; 1212 struct rb_node *rb; 1213 unsigned long capabilities, result; 1214 int ret; 1215 1216 *populate = 0; 1217 1218 /* decide whether we should attempt the mapping, and if so what sort of 1219 * mapping */ 1220 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1221 &capabilities); 1222 if (ret < 0) 1223 return ret; 1224 1225 /* we ignore the address hint */ 1226 addr = 0; 1227 len = PAGE_ALIGN(len); 1228 1229 /* we've determined that we can make the mapping, now translate what we 1230 * now know into VMA flags */ 1231 vm_flags |= determine_vm_flags(file, prot, flags, capabilities); 1232 1233 /* we're going to need to record the mapping */ 1234 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1235 if (!region) 1236 goto error_getting_region; 1237 1238 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1239 if (!vma) 1240 goto error_getting_vma; 1241 1242 region->vm_usage = 1; 1243 region->vm_flags = vm_flags; 1244 region->vm_pgoff = pgoff; 1245 1246 INIT_LIST_HEAD(&vma->anon_vma_chain); 1247 vma->vm_flags = vm_flags; 1248 vma->vm_pgoff = pgoff; 1249 1250 if (file) { 1251 region->vm_file = get_file(file); 1252 vma->vm_file = get_file(file); 1253 } 1254 1255 down_write(&nommu_region_sem); 1256 1257 /* if we want to share, we need to check for regions created by other 1258 * mmap() calls that overlap with our proposed mapping 1259 * - we can only share with a superset match on most regular files 1260 * - shared mappings on character devices and memory backed files are 1261 * permitted to overlap inexactly as far as we are concerned for in 1262 * these cases, sharing is handled in the driver or filesystem rather 1263 * than here 1264 */ 1265 if (vm_flags & VM_MAYSHARE) { 1266 struct vm_region *pregion; 1267 unsigned long pglen, rpglen, pgend, rpgend, start; 1268 1269 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1270 pgend = pgoff + pglen; 1271 1272 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1273 pregion = rb_entry(rb, struct vm_region, vm_rb); 1274 1275 if (!(pregion->vm_flags & VM_MAYSHARE)) 1276 continue; 1277 1278 /* search for overlapping mappings on the same file */ 1279 if (file_inode(pregion->vm_file) != 1280 file_inode(file)) 1281 continue; 1282 1283 if (pregion->vm_pgoff >= pgend) 1284 continue; 1285 1286 rpglen = pregion->vm_end - pregion->vm_start; 1287 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1288 rpgend = pregion->vm_pgoff + rpglen; 1289 if (pgoff >= rpgend) 1290 continue; 1291 1292 /* handle inexactly overlapping matches between 1293 * mappings */ 1294 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1295 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1296 /* new mapping is not a subset of the region */ 1297 if (!(capabilities & NOMMU_MAP_DIRECT)) 1298 goto sharing_violation; 1299 continue; 1300 } 1301 1302 /* we've found a region we can share */ 1303 pregion->vm_usage++; 1304 vma->vm_region = pregion; 1305 start = pregion->vm_start; 1306 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1307 vma->vm_start = start; 1308 vma->vm_end = start + len; 1309 1310 if (pregion->vm_flags & VM_MAPPED_COPY) 1311 vma->vm_flags |= VM_MAPPED_COPY; 1312 else { 1313 ret = do_mmap_shared_file(vma); 1314 if (ret < 0) { 1315 vma->vm_region = NULL; 1316 vma->vm_start = 0; 1317 vma->vm_end = 0; 1318 pregion->vm_usage--; 1319 pregion = NULL; 1320 goto error_just_free; 1321 } 1322 } 1323 fput(region->vm_file); 1324 kmem_cache_free(vm_region_jar, region); 1325 region = pregion; 1326 result = start; 1327 goto share; 1328 } 1329 1330 /* obtain the address at which to make a shared mapping 1331 * - this is the hook for quasi-memory character devices to 1332 * tell us the location of a shared mapping 1333 */ 1334 if (capabilities & NOMMU_MAP_DIRECT) { 1335 addr = file->f_op->get_unmapped_area(file, addr, len, 1336 pgoff, flags); 1337 if (IS_ERR_VALUE(addr)) { 1338 ret = addr; 1339 if (ret != -ENOSYS) 1340 goto error_just_free; 1341 1342 /* the driver refused to tell us where to site 1343 * the mapping so we'll have to attempt to copy 1344 * it */ 1345 ret = -ENODEV; 1346 if (!(capabilities & NOMMU_MAP_COPY)) 1347 goto error_just_free; 1348 1349 capabilities &= ~NOMMU_MAP_DIRECT; 1350 } else { 1351 vma->vm_start = region->vm_start = addr; 1352 vma->vm_end = region->vm_end = addr + len; 1353 } 1354 } 1355 } 1356 1357 vma->vm_region = region; 1358 1359 /* set up the mapping 1360 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1361 */ 1362 if (file && vma->vm_flags & VM_SHARED) 1363 ret = do_mmap_shared_file(vma); 1364 else 1365 ret = do_mmap_private(vma, region, len, capabilities); 1366 if (ret < 0) 1367 goto error_just_free; 1368 add_nommu_region(region); 1369 1370 /* clear anonymous mappings that don't ask for uninitialized data */ 1371 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED)) 1372 memset((void *)region->vm_start, 0, 1373 region->vm_end - region->vm_start); 1374 1375 /* okay... we have a mapping; now we have to register it */ 1376 result = vma->vm_start; 1377 1378 current->mm->total_vm += len >> PAGE_SHIFT; 1379 1380 share: 1381 add_vma_to_mm(current->mm, vma); 1382 1383 /* we flush the region from the icache only when the first executable 1384 * mapping of it is made */ 1385 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1386 flush_icache_range(region->vm_start, region->vm_end); 1387 region->vm_icache_flushed = true; 1388 } 1389 1390 up_write(&nommu_region_sem); 1391 1392 return result; 1393 1394 error_just_free: 1395 up_write(&nommu_region_sem); 1396 error: 1397 if (region->vm_file) 1398 fput(region->vm_file); 1399 kmem_cache_free(vm_region_jar, region); 1400 if (vma->vm_file) 1401 fput(vma->vm_file); 1402 kmem_cache_free(vm_area_cachep, vma); 1403 return ret; 1404 1405 sharing_violation: 1406 up_write(&nommu_region_sem); 1407 pr_warn("Attempt to share mismatched mappings\n"); 1408 ret = -EINVAL; 1409 goto error; 1410 1411 error_getting_vma: 1412 kmem_cache_free(vm_region_jar, region); 1413 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1414 len, current->pid); 1415 show_free_areas(0); 1416 return -ENOMEM; 1417 1418 error_getting_region: 1419 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1420 len, current->pid); 1421 show_free_areas(0); 1422 return -ENOMEM; 1423 } 1424 1425 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1426 unsigned long, prot, unsigned long, flags, 1427 unsigned long, fd, unsigned long, pgoff) 1428 { 1429 struct file *file = NULL; 1430 unsigned long retval = -EBADF; 1431 1432 audit_mmap_fd(fd, flags); 1433 if (!(flags & MAP_ANONYMOUS)) { 1434 file = fget(fd); 1435 if (!file) 1436 goto out; 1437 } 1438 1439 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1440 1441 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1442 1443 if (file) 1444 fput(file); 1445 out: 1446 return retval; 1447 } 1448 1449 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1450 struct mmap_arg_struct { 1451 unsigned long addr; 1452 unsigned long len; 1453 unsigned long prot; 1454 unsigned long flags; 1455 unsigned long fd; 1456 unsigned long offset; 1457 }; 1458 1459 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1460 { 1461 struct mmap_arg_struct a; 1462 1463 if (copy_from_user(&a, arg, sizeof(a))) 1464 return -EFAULT; 1465 if (offset_in_page(a.offset)) 1466 return -EINVAL; 1467 1468 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1469 a.offset >> PAGE_SHIFT); 1470 } 1471 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1472 1473 /* 1474 * split a vma into two pieces at address 'addr', a new vma is allocated either 1475 * for the first part or the tail. 1476 */ 1477 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1478 unsigned long addr, int new_below) 1479 { 1480 struct vm_area_struct *new; 1481 struct vm_region *region; 1482 unsigned long npages; 1483 1484 /* we're only permitted to split anonymous regions (these should have 1485 * only a single usage on the region) */ 1486 if (vma->vm_file) 1487 return -ENOMEM; 1488 1489 if (mm->map_count >= sysctl_max_map_count) 1490 return -ENOMEM; 1491 1492 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1493 if (!region) 1494 return -ENOMEM; 1495 1496 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1497 if (!new) { 1498 kmem_cache_free(vm_region_jar, region); 1499 return -ENOMEM; 1500 } 1501 1502 /* most fields are the same, copy all, and then fixup */ 1503 *new = *vma; 1504 *region = *vma->vm_region; 1505 new->vm_region = region; 1506 1507 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1508 1509 if (new_below) { 1510 region->vm_top = region->vm_end = new->vm_end = addr; 1511 } else { 1512 region->vm_start = new->vm_start = addr; 1513 region->vm_pgoff = new->vm_pgoff += npages; 1514 } 1515 1516 if (new->vm_ops && new->vm_ops->open) 1517 new->vm_ops->open(new); 1518 1519 delete_vma_from_mm(vma); 1520 down_write(&nommu_region_sem); 1521 delete_nommu_region(vma->vm_region); 1522 if (new_below) { 1523 vma->vm_region->vm_start = vma->vm_start = addr; 1524 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1525 } else { 1526 vma->vm_region->vm_end = vma->vm_end = addr; 1527 vma->vm_region->vm_top = addr; 1528 } 1529 add_nommu_region(vma->vm_region); 1530 add_nommu_region(new->vm_region); 1531 up_write(&nommu_region_sem); 1532 add_vma_to_mm(mm, vma); 1533 add_vma_to_mm(mm, new); 1534 return 0; 1535 } 1536 1537 /* 1538 * shrink a VMA by removing the specified chunk from either the beginning or 1539 * the end 1540 */ 1541 static int shrink_vma(struct mm_struct *mm, 1542 struct vm_area_struct *vma, 1543 unsigned long from, unsigned long to) 1544 { 1545 struct vm_region *region; 1546 1547 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1548 * and list */ 1549 delete_vma_from_mm(vma); 1550 if (from > vma->vm_start) 1551 vma->vm_end = from; 1552 else 1553 vma->vm_start = to; 1554 add_vma_to_mm(mm, vma); 1555 1556 /* cut the backing region down to size */ 1557 region = vma->vm_region; 1558 BUG_ON(region->vm_usage != 1); 1559 1560 down_write(&nommu_region_sem); 1561 delete_nommu_region(region); 1562 if (from > region->vm_start) { 1563 to = region->vm_top; 1564 region->vm_top = region->vm_end = from; 1565 } else { 1566 region->vm_start = to; 1567 } 1568 add_nommu_region(region); 1569 up_write(&nommu_region_sem); 1570 1571 free_page_series(from, to); 1572 return 0; 1573 } 1574 1575 /* 1576 * release a mapping 1577 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1578 * VMA, though it need not cover the whole VMA 1579 */ 1580 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 1581 { 1582 struct vm_area_struct *vma; 1583 unsigned long end; 1584 int ret; 1585 1586 len = PAGE_ALIGN(len); 1587 if (len == 0) 1588 return -EINVAL; 1589 1590 end = start + len; 1591 1592 /* find the first potentially overlapping VMA */ 1593 vma = find_vma(mm, start); 1594 if (!vma) { 1595 static int limit; 1596 if (limit < 5) { 1597 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1598 current->pid, current->comm, 1599 start, start + len - 1); 1600 limit++; 1601 } 1602 return -EINVAL; 1603 } 1604 1605 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1606 if (vma->vm_file) { 1607 do { 1608 if (start > vma->vm_start) 1609 return -EINVAL; 1610 if (end == vma->vm_end) 1611 goto erase_whole_vma; 1612 vma = vma->vm_next; 1613 } while (vma); 1614 return -EINVAL; 1615 } else { 1616 /* the chunk must be a subset of the VMA found */ 1617 if (start == vma->vm_start && end == vma->vm_end) 1618 goto erase_whole_vma; 1619 if (start < vma->vm_start || end > vma->vm_end) 1620 return -EINVAL; 1621 if (offset_in_page(start)) 1622 return -EINVAL; 1623 if (end != vma->vm_end && offset_in_page(end)) 1624 return -EINVAL; 1625 if (start != vma->vm_start && end != vma->vm_end) { 1626 ret = split_vma(mm, vma, start, 1); 1627 if (ret < 0) 1628 return ret; 1629 } 1630 return shrink_vma(mm, vma, start, end); 1631 } 1632 1633 erase_whole_vma: 1634 delete_vma_from_mm(vma); 1635 delete_vma(mm, vma); 1636 return 0; 1637 } 1638 EXPORT_SYMBOL(do_munmap); 1639 1640 int vm_munmap(unsigned long addr, size_t len) 1641 { 1642 struct mm_struct *mm = current->mm; 1643 int ret; 1644 1645 down_write(&mm->mmap_sem); 1646 ret = do_munmap(mm, addr, len); 1647 up_write(&mm->mmap_sem); 1648 return ret; 1649 } 1650 EXPORT_SYMBOL(vm_munmap); 1651 1652 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1653 { 1654 return vm_munmap(addr, len); 1655 } 1656 1657 /* 1658 * release all the mappings made in a process's VM space 1659 */ 1660 void exit_mmap(struct mm_struct *mm) 1661 { 1662 struct vm_area_struct *vma; 1663 1664 if (!mm) 1665 return; 1666 1667 mm->total_vm = 0; 1668 1669 while ((vma = mm->mmap)) { 1670 mm->mmap = vma->vm_next; 1671 delete_vma_from_mm(vma); 1672 delete_vma(mm, vma); 1673 cond_resched(); 1674 } 1675 } 1676 1677 int vm_brk(unsigned long addr, unsigned long len) 1678 { 1679 return -ENOMEM; 1680 } 1681 1682 /* 1683 * expand (or shrink) an existing mapping, potentially moving it at the same 1684 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1685 * 1686 * under NOMMU conditions, we only permit changing a mapping's size, and only 1687 * as long as it stays within the region allocated by do_mmap_private() and the 1688 * block is not shareable 1689 * 1690 * MREMAP_FIXED is not supported under NOMMU conditions 1691 */ 1692 static unsigned long do_mremap(unsigned long addr, 1693 unsigned long old_len, unsigned long new_len, 1694 unsigned long flags, unsigned long new_addr) 1695 { 1696 struct vm_area_struct *vma; 1697 1698 /* insanity checks first */ 1699 old_len = PAGE_ALIGN(old_len); 1700 new_len = PAGE_ALIGN(new_len); 1701 if (old_len == 0 || new_len == 0) 1702 return (unsigned long) -EINVAL; 1703 1704 if (offset_in_page(addr)) 1705 return -EINVAL; 1706 1707 if (flags & MREMAP_FIXED && new_addr != addr) 1708 return (unsigned long) -EINVAL; 1709 1710 vma = find_vma_exact(current->mm, addr, old_len); 1711 if (!vma) 1712 return (unsigned long) -EINVAL; 1713 1714 if (vma->vm_end != vma->vm_start + old_len) 1715 return (unsigned long) -EFAULT; 1716 1717 if (vma->vm_flags & VM_MAYSHARE) 1718 return (unsigned long) -EPERM; 1719 1720 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1721 return (unsigned long) -ENOMEM; 1722 1723 /* all checks complete - do it */ 1724 vma->vm_end = vma->vm_start + new_len; 1725 return vma->vm_start; 1726 } 1727 1728 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1729 unsigned long, new_len, unsigned long, flags, 1730 unsigned long, new_addr) 1731 { 1732 unsigned long ret; 1733 1734 down_write(¤t->mm->mmap_sem); 1735 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1736 up_write(¤t->mm->mmap_sem); 1737 return ret; 1738 } 1739 1740 struct page *follow_page_mask(struct vm_area_struct *vma, 1741 unsigned long address, unsigned int flags, 1742 unsigned int *page_mask) 1743 { 1744 *page_mask = 0; 1745 return NULL; 1746 } 1747 1748 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1749 unsigned long pfn, unsigned long size, pgprot_t prot) 1750 { 1751 if (addr != (pfn << PAGE_SHIFT)) 1752 return -EINVAL; 1753 1754 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1755 return 0; 1756 } 1757 EXPORT_SYMBOL(remap_pfn_range); 1758 1759 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1760 { 1761 unsigned long pfn = start >> PAGE_SHIFT; 1762 unsigned long vm_len = vma->vm_end - vma->vm_start; 1763 1764 pfn += vma->vm_pgoff; 1765 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1766 } 1767 EXPORT_SYMBOL(vm_iomap_memory); 1768 1769 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1770 unsigned long pgoff) 1771 { 1772 unsigned int size = vma->vm_end - vma->vm_start; 1773 1774 if (!(vma->vm_flags & VM_USERMAP)) 1775 return -EINVAL; 1776 1777 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1778 vma->vm_end = vma->vm_start + size; 1779 1780 return 0; 1781 } 1782 EXPORT_SYMBOL(remap_vmalloc_range); 1783 1784 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, 1785 unsigned long len, unsigned long pgoff, unsigned long flags) 1786 { 1787 return -ENOMEM; 1788 } 1789 1790 void unmap_mapping_range(struct address_space *mapping, 1791 loff_t const holebegin, loff_t const holelen, 1792 int even_cows) 1793 { 1794 } 1795 EXPORT_SYMBOL(unmap_mapping_range); 1796 1797 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1798 { 1799 BUG(); 1800 return 0; 1801 } 1802 EXPORT_SYMBOL(filemap_fault); 1803 1804 void filemap_map_pages(struct fault_env *fe, 1805 pgoff_t start_pgoff, pgoff_t end_pgoff) 1806 { 1807 BUG(); 1808 } 1809 EXPORT_SYMBOL(filemap_map_pages); 1810 1811 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1812 unsigned long addr, void *buf, int len, unsigned int gup_flags) 1813 { 1814 struct vm_area_struct *vma; 1815 int write = gup_flags & FOLL_WRITE; 1816 1817 down_read(&mm->mmap_sem); 1818 1819 /* the access must start within one of the target process's mappings */ 1820 vma = find_vma(mm, addr); 1821 if (vma) { 1822 /* don't overrun this mapping */ 1823 if (addr + len >= vma->vm_end) 1824 len = vma->vm_end - addr; 1825 1826 /* only read or write mappings where it is permitted */ 1827 if (write && vma->vm_flags & VM_MAYWRITE) 1828 copy_to_user_page(vma, NULL, addr, 1829 (void *) addr, buf, len); 1830 else if (!write && vma->vm_flags & VM_MAYREAD) 1831 copy_from_user_page(vma, NULL, addr, 1832 buf, (void *) addr, len); 1833 else 1834 len = 0; 1835 } else { 1836 len = 0; 1837 } 1838 1839 up_read(&mm->mmap_sem); 1840 1841 return len; 1842 } 1843 1844 /** 1845 * @access_remote_vm - access another process' address space 1846 * @mm: the mm_struct of the target address space 1847 * @addr: start address to access 1848 * @buf: source or destination buffer 1849 * @len: number of bytes to transfer 1850 * @gup_flags: flags modifying lookup behaviour 1851 * 1852 * The caller must hold a reference on @mm. 1853 */ 1854 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1855 void *buf, int len, unsigned int gup_flags) 1856 { 1857 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 1858 } 1859 1860 /* 1861 * Access another process' address space. 1862 * - source/target buffer must be kernel space 1863 */ 1864 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1865 unsigned int gup_flags) 1866 { 1867 struct mm_struct *mm; 1868 1869 if (addr + len < addr) 1870 return 0; 1871 1872 mm = get_task_mm(tsk); 1873 if (!mm) 1874 return 0; 1875 1876 len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 1877 1878 mmput(mm); 1879 return len; 1880 } 1881 1882 /** 1883 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1884 * @inode: The inode to check 1885 * @size: The current filesize of the inode 1886 * @newsize: The proposed filesize of the inode 1887 * 1888 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1889 * make sure that that any outstanding VMAs aren't broken and then shrink the 1890 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't 1891 * automatically grant mappings that are too large. 1892 */ 1893 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1894 size_t newsize) 1895 { 1896 struct vm_area_struct *vma; 1897 struct vm_region *region; 1898 pgoff_t low, high; 1899 size_t r_size, r_top; 1900 1901 low = newsize >> PAGE_SHIFT; 1902 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1903 1904 down_write(&nommu_region_sem); 1905 i_mmap_lock_read(inode->i_mapping); 1906 1907 /* search for VMAs that fall within the dead zone */ 1908 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1909 /* found one - only interested if it's shared out of the page 1910 * cache */ 1911 if (vma->vm_flags & VM_SHARED) { 1912 i_mmap_unlock_read(inode->i_mapping); 1913 up_write(&nommu_region_sem); 1914 return -ETXTBSY; /* not quite true, but near enough */ 1915 } 1916 } 1917 1918 /* reduce any regions that overlap the dead zone - if in existence, 1919 * these will be pointed to by VMAs that don't overlap the dead zone 1920 * 1921 * we don't check for any regions that start beyond the EOF as there 1922 * shouldn't be any 1923 */ 1924 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1925 if (!(vma->vm_flags & VM_SHARED)) 1926 continue; 1927 1928 region = vma->vm_region; 1929 r_size = region->vm_top - region->vm_start; 1930 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1931 1932 if (r_top > newsize) { 1933 region->vm_top -= r_top - newsize; 1934 if (region->vm_end > region->vm_top) 1935 region->vm_end = region->vm_top; 1936 } 1937 } 1938 1939 i_mmap_unlock_read(inode->i_mapping); 1940 up_write(&nommu_region_sem); 1941 return 0; 1942 } 1943 1944 /* 1945 * Initialise sysctl_user_reserve_kbytes. 1946 * 1947 * This is intended to prevent a user from starting a single memory hogging 1948 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1949 * mode. 1950 * 1951 * The default value is min(3% of free memory, 128MB) 1952 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1953 */ 1954 static int __meminit init_user_reserve(void) 1955 { 1956 unsigned long free_kbytes; 1957 1958 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1959 1960 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1961 return 0; 1962 } 1963 subsys_initcall(init_user_reserve); 1964 1965 /* 1966 * Initialise sysctl_admin_reserve_kbytes. 1967 * 1968 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1969 * to log in and kill a memory hogging process. 1970 * 1971 * Systems with more than 256MB will reserve 8MB, enough to recover 1972 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1973 * only reserve 3% of free pages by default. 1974 */ 1975 static int __meminit init_admin_reserve(void) 1976 { 1977 unsigned long free_kbytes; 1978 1979 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1980 1981 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1982 return 0; 1983 } 1984 subsys_initcall(init_admin_reserve); 1985