1 /* 2 * linux/mm/nommu.c 3 * 4 * Replacement code for mm functions to support CPU's that don't 5 * have any form of memory management unit (thus no virtual memory). 6 * 7 * See Documentation/nommu-mmap.txt 8 * 9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 14 */ 15 16 #include <linux/export.h> 17 #include <linux/mm.h> 18 #include <linux/mman.h> 19 #include <linux/swap.h> 20 #include <linux/file.h> 21 #include <linux/highmem.h> 22 #include <linux/pagemap.h> 23 #include <linux/slab.h> 24 #include <linux/vmalloc.h> 25 #include <linux/blkdev.h> 26 #include <linux/backing-dev.h> 27 #include <linux/mount.h> 28 #include <linux/personality.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/audit.h> 32 #include <linux/sched/sysctl.h> 33 34 #include <asm/uaccess.h> 35 #include <asm/tlb.h> 36 #include <asm/tlbflush.h> 37 #include <asm/mmu_context.h> 38 #include "internal.h" 39 40 #if 0 41 #define kenter(FMT, ...) \ 42 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) 43 #define kleave(FMT, ...) \ 44 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) 45 #define kdebug(FMT, ...) \ 46 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__) 47 #else 48 #define kenter(FMT, ...) \ 49 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) 50 #define kleave(FMT, ...) \ 51 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) 52 #define kdebug(FMT, ...) \ 53 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__) 54 #endif 55 56 void *high_memory; 57 struct page *mem_map; 58 unsigned long max_mapnr; 59 unsigned long highest_memmap_pfn; 60 struct percpu_counter vm_committed_as; 61 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 62 int sysctl_overcommit_ratio = 50; /* default is 50% */ 63 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT; 64 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 65 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 66 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 67 int heap_stack_gap = 0; 68 69 atomic_long_t mmap_pages_allocated; 70 71 /* 72 * The global memory commitment made in the system can be a metric 73 * that can be used to drive ballooning decisions when Linux is hosted 74 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 75 * balancing memory across competing virtual machines that are hosted. 76 * Several metrics drive this policy engine including the guest reported 77 * memory commitment. 78 */ 79 unsigned long vm_memory_committed(void) 80 { 81 return percpu_counter_read_positive(&vm_committed_as); 82 } 83 84 EXPORT_SYMBOL_GPL(vm_memory_committed); 85 86 EXPORT_SYMBOL(mem_map); 87 88 /* list of mapped, potentially shareable regions */ 89 static struct kmem_cache *vm_region_jar; 90 struct rb_root nommu_region_tree = RB_ROOT; 91 DECLARE_RWSEM(nommu_region_sem); 92 93 const struct vm_operations_struct generic_file_vm_ops = { 94 }; 95 96 /* 97 * Return the total memory allocated for this pointer, not 98 * just what the caller asked for. 99 * 100 * Doesn't have to be accurate, i.e. may have races. 101 */ 102 unsigned int kobjsize(const void *objp) 103 { 104 struct page *page; 105 106 /* 107 * If the object we have should not have ksize performed on it, 108 * return size of 0 109 */ 110 if (!objp || !virt_addr_valid(objp)) 111 return 0; 112 113 page = virt_to_head_page(objp); 114 115 /* 116 * If the allocator sets PageSlab, we know the pointer came from 117 * kmalloc(). 118 */ 119 if (PageSlab(page)) 120 return ksize(objp); 121 122 /* 123 * If it's not a compound page, see if we have a matching VMA 124 * region. This test is intentionally done in reverse order, 125 * so if there's no VMA, we still fall through and hand back 126 * PAGE_SIZE for 0-order pages. 127 */ 128 if (!PageCompound(page)) { 129 struct vm_area_struct *vma; 130 131 vma = find_vma(current->mm, (unsigned long)objp); 132 if (vma) 133 return vma->vm_end - vma->vm_start; 134 } 135 136 /* 137 * The ksize() function is only guaranteed to work for pointers 138 * returned by kmalloc(). So handle arbitrary pointers here. 139 */ 140 return PAGE_SIZE << compound_order(page); 141 } 142 143 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 144 unsigned long start, unsigned long nr_pages, 145 unsigned int foll_flags, struct page **pages, 146 struct vm_area_struct **vmas, int *nonblocking) 147 { 148 struct vm_area_struct *vma; 149 unsigned long vm_flags; 150 int i; 151 152 /* calculate required read or write permissions. 153 * If FOLL_FORCE is set, we only require the "MAY" flags. 154 */ 155 vm_flags = (foll_flags & FOLL_WRITE) ? 156 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 157 vm_flags &= (foll_flags & FOLL_FORCE) ? 158 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 159 160 for (i = 0; i < nr_pages; i++) { 161 vma = find_vma(mm, start); 162 if (!vma) 163 goto finish_or_fault; 164 165 /* protect what we can, including chardevs */ 166 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 167 !(vm_flags & vma->vm_flags)) 168 goto finish_or_fault; 169 170 if (pages) { 171 pages[i] = virt_to_page(start); 172 if (pages[i]) 173 page_cache_get(pages[i]); 174 } 175 if (vmas) 176 vmas[i] = vma; 177 start = (start + PAGE_SIZE) & PAGE_MASK; 178 } 179 180 return i; 181 182 finish_or_fault: 183 return i ? : -EFAULT; 184 } 185 186 /* 187 * get a list of pages in an address range belonging to the specified process 188 * and indicate the VMA that covers each page 189 * - this is potentially dodgy as we may end incrementing the page count of a 190 * slab page or a secondary page from a compound page 191 * - don't permit access to VMAs that don't support it, such as I/O mappings 192 */ 193 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 194 unsigned long start, unsigned long nr_pages, 195 int write, int force, struct page **pages, 196 struct vm_area_struct **vmas) 197 { 198 int flags = 0; 199 200 if (write) 201 flags |= FOLL_WRITE; 202 if (force) 203 flags |= FOLL_FORCE; 204 205 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, 206 NULL); 207 } 208 EXPORT_SYMBOL(get_user_pages); 209 210 /** 211 * follow_pfn - look up PFN at a user virtual address 212 * @vma: memory mapping 213 * @address: user virtual address 214 * @pfn: location to store found PFN 215 * 216 * Only IO mappings and raw PFN mappings are allowed. 217 * 218 * Returns zero and the pfn at @pfn on success, -ve otherwise. 219 */ 220 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 221 unsigned long *pfn) 222 { 223 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 224 return -EINVAL; 225 226 *pfn = address >> PAGE_SHIFT; 227 return 0; 228 } 229 EXPORT_SYMBOL(follow_pfn); 230 231 LIST_HEAD(vmap_area_list); 232 233 void vfree(const void *addr) 234 { 235 kfree(addr); 236 } 237 EXPORT_SYMBOL(vfree); 238 239 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 240 { 241 /* 242 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 243 * returns only a logical address. 244 */ 245 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 246 } 247 EXPORT_SYMBOL(__vmalloc); 248 249 void *vmalloc_user(unsigned long size) 250 { 251 void *ret; 252 253 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 254 PAGE_KERNEL); 255 if (ret) { 256 struct vm_area_struct *vma; 257 258 down_write(¤t->mm->mmap_sem); 259 vma = find_vma(current->mm, (unsigned long)ret); 260 if (vma) 261 vma->vm_flags |= VM_USERMAP; 262 up_write(¤t->mm->mmap_sem); 263 } 264 265 return ret; 266 } 267 EXPORT_SYMBOL(vmalloc_user); 268 269 struct page *vmalloc_to_page(const void *addr) 270 { 271 return virt_to_page(addr); 272 } 273 EXPORT_SYMBOL(vmalloc_to_page); 274 275 unsigned long vmalloc_to_pfn(const void *addr) 276 { 277 return page_to_pfn(virt_to_page(addr)); 278 } 279 EXPORT_SYMBOL(vmalloc_to_pfn); 280 281 long vread(char *buf, char *addr, unsigned long count) 282 { 283 /* Don't allow overflow */ 284 if ((unsigned long) buf + count < count) 285 count = -(unsigned long) buf; 286 287 memcpy(buf, addr, count); 288 return count; 289 } 290 291 long vwrite(char *buf, char *addr, unsigned long count) 292 { 293 /* Don't allow overflow */ 294 if ((unsigned long) addr + count < count) 295 count = -(unsigned long) addr; 296 297 memcpy(addr, buf, count); 298 return(count); 299 } 300 301 /* 302 * vmalloc - allocate virtually continguos memory 303 * 304 * @size: allocation size 305 * 306 * Allocate enough pages to cover @size from the page level 307 * allocator and map them into continguos kernel virtual space. 308 * 309 * For tight control over page level allocator and protection flags 310 * use __vmalloc() instead. 311 */ 312 void *vmalloc(unsigned long size) 313 { 314 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 315 } 316 EXPORT_SYMBOL(vmalloc); 317 318 /* 319 * vzalloc - allocate virtually continguos memory with zero fill 320 * 321 * @size: allocation size 322 * 323 * Allocate enough pages to cover @size from the page level 324 * allocator and map them into continguos kernel virtual space. 325 * The memory allocated is set to zero. 326 * 327 * For tight control over page level allocator and protection flags 328 * use __vmalloc() instead. 329 */ 330 void *vzalloc(unsigned long size) 331 { 332 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 333 PAGE_KERNEL); 334 } 335 EXPORT_SYMBOL(vzalloc); 336 337 /** 338 * vmalloc_node - allocate memory on a specific node 339 * @size: allocation size 340 * @node: numa node 341 * 342 * Allocate enough pages to cover @size from the page level 343 * allocator and map them into contiguous kernel virtual space. 344 * 345 * For tight control over page level allocator and protection flags 346 * use __vmalloc() instead. 347 */ 348 void *vmalloc_node(unsigned long size, int node) 349 { 350 return vmalloc(size); 351 } 352 EXPORT_SYMBOL(vmalloc_node); 353 354 /** 355 * vzalloc_node - allocate memory on a specific node with zero fill 356 * @size: allocation size 357 * @node: numa node 358 * 359 * Allocate enough pages to cover @size from the page level 360 * allocator and map them into contiguous kernel virtual space. 361 * The memory allocated is set to zero. 362 * 363 * For tight control over page level allocator and protection flags 364 * use __vmalloc() instead. 365 */ 366 void *vzalloc_node(unsigned long size, int node) 367 { 368 return vzalloc(size); 369 } 370 EXPORT_SYMBOL(vzalloc_node); 371 372 #ifndef PAGE_KERNEL_EXEC 373 # define PAGE_KERNEL_EXEC PAGE_KERNEL 374 #endif 375 376 /** 377 * vmalloc_exec - allocate virtually contiguous, executable memory 378 * @size: allocation size 379 * 380 * Kernel-internal function to allocate enough pages to cover @size 381 * the page level allocator and map them into contiguous and 382 * executable kernel virtual space. 383 * 384 * For tight control over page level allocator and protection flags 385 * use __vmalloc() instead. 386 */ 387 388 void *vmalloc_exec(unsigned long size) 389 { 390 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 391 } 392 393 /** 394 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 395 * @size: allocation size 396 * 397 * Allocate enough 32bit PA addressable pages to cover @size from the 398 * page level allocator and map them into continguos kernel virtual space. 399 */ 400 void *vmalloc_32(unsigned long size) 401 { 402 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 403 } 404 EXPORT_SYMBOL(vmalloc_32); 405 406 /** 407 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 408 * @size: allocation size 409 * 410 * The resulting memory area is 32bit addressable and zeroed so it can be 411 * mapped to userspace without leaking data. 412 * 413 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 414 * remap_vmalloc_range() are permissible. 415 */ 416 void *vmalloc_32_user(unsigned long size) 417 { 418 /* 419 * We'll have to sort out the ZONE_DMA bits for 64-bit, 420 * but for now this can simply use vmalloc_user() directly. 421 */ 422 return vmalloc_user(size); 423 } 424 EXPORT_SYMBOL(vmalloc_32_user); 425 426 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 427 { 428 BUG(); 429 return NULL; 430 } 431 EXPORT_SYMBOL(vmap); 432 433 void vunmap(const void *addr) 434 { 435 BUG(); 436 } 437 EXPORT_SYMBOL(vunmap); 438 439 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 440 { 441 BUG(); 442 return NULL; 443 } 444 EXPORT_SYMBOL(vm_map_ram); 445 446 void vm_unmap_ram(const void *mem, unsigned int count) 447 { 448 BUG(); 449 } 450 EXPORT_SYMBOL(vm_unmap_ram); 451 452 void vm_unmap_aliases(void) 453 { 454 } 455 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 456 457 /* 458 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 459 * have one. 460 */ 461 void __attribute__((weak)) vmalloc_sync_all(void) 462 { 463 } 464 465 /** 466 * alloc_vm_area - allocate a range of kernel address space 467 * @size: size of the area 468 * 469 * Returns: NULL on failure, vm_struct on success 470 * 471 * This function reserves a range of kernel address space, and 472 * allocates pagetables to map that range. No actual mappings 473 * are created. If the kernel address space is not shared 474 * between processes, it syncs the pagetable across all 475 * processes. 476 */ 477 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 478 { 479 BUG(); 480 return NULL; 481 } 482 EXPORT_SYMBOL_GPL(alloc_vm_area); 483 484 void free_vm_area(struct vm_struct *area) 485 { 486 BUG(); 487 } 488 EXPORT_SYMBOL_GPL(free_vm_area); 489 490 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 491 struct page *page) 492 { 493 return -EINVAL; 494 } 495 EXPORT_SYMBOL(vm_insert_page); 496 497 /* 498 * sys_brk() for the most part doesn't need the global kernel 499 * lock, except when an application is doing something nasty 500 * like trying to un-brk an area that has already been mapped 501 * to a regular file. in this case, the unmapping will need 502 * to invoke file system routines that need the global lock. 503 */ 504 SYSCALL_DEFINE1(brk, unsigned long, brk) 505 { 506 struct mm_struct *mm = current->mm; 507 508 if (brk < mm->start_brk || brk > mm->context.end_brk) 509 return mm->brk; 510 511 if (mm->brk == brk) 512 return mm->brk; 513 514 /* 515 * Always allow shrinking brk 516 */ 517 if (brk <= mm->brk) { 518 mm->brk = brk; 519 return brk; 520 } 521 522 /* 523 * Ok, looks good - let it rip. 524 */ 525 flush_icache_range(mm->brk, brk); 526 return mm->brk = brk; 527 } 528 529 /* 530 * initialise the VMA and region record slabs 531 */ 532 void __init mmap_init(void) 533 { 534 int ret; 535 536 ret = percpu_counter_init(&vm_committed_as, 0); 537 VM_BUG_ON(ret); 538 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC); 539 } 540 541 /* 542 * validate the region tree 543 * - the caller must hold the region lock 544 */ 545 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 546 static noinline void validate_nommu_regions(void) 547 { 548 struct vm_region *region, *last; 549 struct rb_node *p, *lastp; 550 551 lastp = rb_first(&nommu_region_tree); 552 if (!lastp) 553 return; 554 555 last = rb_entry(lastp, struct vm_region, vm_rb); 556 BUG_ON(unlikely(last->vm_end <= last->vm_start)); 557 BUG_ON(unlikely(last->vm_top < last->vm_end)); 558 559 while ((p = rb_next(lastp))) { 560 region = rb_entry(p, struct vm_region, vm_rb); 561 last = rb_entry(lastp, struct vm_region, vm_rb); 562 563 BUG_ON(unlikely(region->vm_end <= region->vm_start)); 564 BUG_ON(unlikely(region->vm_top < region->vm_end)); 565 BUG_ON(unlikely(region->vm_start < last->vm_top)); 566 567 lastp = p; 568 } 569 } 570 #else 571 static void validate_nommu_regions(void) 572 { 573 } 574 #endif 575 576 /* 577 * add a region into the global tree 578 */ 579 static void add_nommu_region(struct vm_region *region) 580 { 581 struct vm_region *pregion; 582 struct rb_node **p, *parent; 583 584 validate_nommu_regions(); 585 586 parent = NULL; 587 p = &nommu_region_tree.rb_node; 588 while (*p) { 589 parent = *p; 590 pregion = rb_entry(parent, struct vm_region, vm_rb); 591 if (region->vm_start < pregion->vm_start) 592 p = &(*p)->rb_left; 593 else if (region->vm_start > pregion->vm_start) 594 p = &(*p)->rb_right; 595 else if (pregion == region) 596 return; 597 else 598 BUG(); 599 } 600 601 rb_link_node(®ion->vm_rb, parent, p); 602 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 603 604 validate_nommu_regions(); 605 } 606 607 /* 608 * delete a region from the global tree 609 */ 610 static void delete_nommu_region(struct vm_region *region) 611 { 612 BUG_ON(!nommu_region_tree.rb_node); 613 614 validate_nommu_regions(); 615 rb_erase(®ion->vm_rb, &nommu_region_tree); 616 validate_nommu_regions(); 617 } 618 619 /* 620 * free a contiguous series of pages 621 */ 622 static void free_page_series(unsigned long from, unsigned long to) 623 { 624 for (; from < to; from += PAGE_SIZE) { 625 struct page *page = virt_to_page(from); 626 627 kdebug("- free %lx", from); 628 atomic_long_dec(&mmap_pages_allocated); 629 if (page_count(page) != 1) 630 kdebug("free page %p: refcount not one: %d", 631 page, page_count(page)); 632 put_page(page); 633 } 634 } 635 636 /* 637 * release a reference to a region 638 * - the caller must hold the region semaphore for writing, which this releases 639 * - the region may not have been added to the tree yet, in which case vm_top 640 * will equal vm_start 641 */ 642 static void __put_nommu_region(struct vm_region *region) 643 __releases(nommu_region_sem) 644 { 645 kenter("%p{%d}", region, region->vm_usage); 646 647 BUG_ON(!nommu_region_tree.rb_node); 648 649 if (--region->vm_usage == 0) { 650 if (region->vm_top > region->vm_start) 651 delete_nommu_region(region); 652 up_write(&nommu_region_sem); 653 654 if (region->vm_file) 655 fput(region->vm_file); 656 657 /* IO memory and memory shared directly out of the pagecache 658 * from ramfs/tmpfs mustn't be released here */ 659 if (region->vm_flags & VM_MAPPED_COPY) { 660 kdebug("free series"); 661 free_page_series(region->vm_start, region->vm_top); 662 } 663 kmem_cache_free(vm_region_jar, region); 664 } else { 665 up_write(&nommu_region_sem); 666 } 667 } 668 669 /* 670 * release a reference to a region 671 */ 672 static void put_nommu_region(struct vm_region *region) 673 { 674 down_write(&nommu_region_sem); 675 __put_nommu_region(region); 676 } 677 678 /* 679 * update protection on a vma 680 */ 681 static void protect_vma(struct vm_area_struct *vma, unsigned long flags) 682 { 683 #ifdef CONFIG_MPU 684 struct mm_struct *mm = vma->vm_mm; 685 long start = vma->vm_start & PAGE_MASK; 686 while (start < vma->vm_end) { 687 protect_page(mm, start, flags); 688 start += PAGE_SIZE; 689 } 690 update_protections(mm); 691 #endif 692 } 693 694 /* 695 * add a VMA into a process's mm_struct in the appropriate place in the list 696 * and tree and add to the address space's page tree also if not an anonymous 697 * page 698 * - should be called with mm->mmap_sem held writelocked 699 */ 700 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 701 { 702 struct vm_area_struct *pvma, *prev; 703 struct address_space *mapping; 704 struct rb_node **p, *parent, *rb_prev; 705 706 kenter(",%p", vma); 707 708 BUG_ON(!vma->vm_region); 709 710 mm->map_count++; 711 vma->vm_mm = mm; 712 713 protect_vma(vma, vma->vm_flags); 714 715 /* add the VMA to the mapping */ 716 if (vma->vm_file) { 717 mapping = vma->vm_file->f_mapping; 718 719 mutex_lock(&mapping->i_mmap_mutex); 720 flush_dcache_mmap_lock(mapping); 721 vma_interval_tree_insert(vma, &mapping->i_mmap); 722 flush_dcache_mmap_unlock(mapping); 723 mutex_unlock(&mapping->i_mmap_mutex); 724 } 725 726 /* add the VMA to the tree */ 727 parent = rb_prev = NULL; 728 p = &mm->mm_rb.rb_node; 729 while (*p) { 730 parent = *p; 731 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 732 733 /* sort by: start addr, end addr, VMA struct addr in that order 734 * (the latter is necessary as we may get identical VMAs) */ 735 if (vma->vm_start < pvma->vm_start) 736 p = &(*p)->rb_left; 737 else if (vma->vm_start > pvma->vm_start) { 738 rb_prev = parent; 739 p = &(*p)->rb_right; 740 } else if (vma->vm_end < pvma->vm_end) 741 p = &(*p)->rb_left; 742 else if (vma->vm_end > pvma->vm_end) { 743 rb_prev = parent; 744 p = &(*p)->rb_right; 745 } else if (vma < pvma) 746 p = &(*p)->rb_left; 747 else if (vma > pvma) { 748 rb_prev = parent; 749 p = &(*p)->rb_right; 750 } else 751 BUG(); 752 } 753 754 rb_link_node(&vma->vm_rb, parent, p); 755 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 756 757 /* add VMA to the VMA list also */ 758 prev = NULL; 759 if (rb_prev) 760 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 761 762 __vma_link_list(mm, vma, prev, parent); 763 } 764 765 /* 766 * delete a VMA from its owning mm_struct and address space 767 */ 768 static void delete_vma_from_mm(struct vm_area_struct *vma) 769 { 770 struct address_space *mapping; 771 struct mm_struct *mm = vma->vm_mm; 772 773 kenter("%p", vma); 774 775 protect_vma(vma, 0); 776 777 mm->map_count--; 778 if (mm->mmap_cache == vma) 779 mm->mmap_cache = NULL; 780 781 /* remove the VMA from the mapping */ 782 if (vma->vm_file) { 783 mapping = vma->vm_file->f_mapping; 784 785 mutex_lock(&mapping->i_mmap_mutex); 786 flush_dcache_mmap_lock(mapping); 787 vma_interval_tree_remove(vma, &mapping->i_mmap); 788 flush_dcache_mmap_unlock(mapping); 789 mutex_unlock(&mapping->i_mmap_mutex); 790 } 791 792 /* remove from the MM's tree and list */ 793 rb_erase(&vma->vm_rb, &mm->mm_rb); 794 795 if (vma->vm_prev) 796 vma->vm_prev->vm_next = vma->vm_next; 797 else 798 mm->mmap = vma->vm_next; 799 800 if (vma->vm_next) 801 vma->vm_next->vm_prev = vma->vm_prev; 802 } 803 804 /* 805 * destroy a VMA record 806 */ 807 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 808 { 809 kenter("%p", vma); 810 if (vma->vm_ops && vma->vm_ops->close) 811 vma->vm_ops->close(vma); 812 if (vma->vm_file) 813 fput(vma->vm_file); 814 put_nommu_region(vma->vm_region); 815 kmem_cache_free(vm_area_cachep, vma); 816 } 817 818 /* 819 * look up the first VMA in which addr resides, NULL if none 820 * - should be called with mm->mmap_sem at least held readlocked 821 */ 822 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 823 { 824 struct vm_area_struct *vma; 825 826 /* check the cache first */ 827 vma = ACCESS_ONCE(mm->mmap_cache); 828 if (vma && vma->vm_start <= addr && vma->vm_end > addr) 829 return vma; 830 831 /* trawl the list (there may be multiple mappings in which addr 832 * resides) */ 833 for (vma = mm->mmap; vma; vma = vma->vm_next) { 834 if (vma->vm_start > addr) 835 return NULL; 836 if (vma->vm_end > addr) { 837 mm->mmap_cache = vma; 838 return vma; 839 } 840 } 841 842 return NULL; 843 } 844 EXPORT_SYMBOL(find_vma); 845 846 /* 847 * find a VMA 848 * - we don't extend stack VMAs under NOMMU conditions 849 */ 850 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 851 { 852 return find_vma(mm, addr); 853 } 854 855 /* 856 * expand a stack to a given address 857 * - not supported under NOMMU conditions 858 */ 859 int expand_stack(struct vm_area_struct *vma, unsigned long address) 860 { 861 return -ENOMEM; 862 } 863 864 /* 865 * look up the first VMA exactly that exactly matches addr 866 * - should be called with mm->mmap_sem at least held readlocked 867 */ 868 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 869 unsigned long addr, 870 unsigned long len) 871 { 872 struct vm_area_struct *vma; 873 unsigned long end = addr + len; 874 875 /* check the cache first */ 876 vma = mm->mmap_cache; 877 if (vma && vma->vm_start == addr && vma->vm_end == end) 878 return vma; 879 880 /* trawl the list (there may be multiple mappings in which addr 881 * resides) */ 882 for (vma = mm->mmap; vma; vma = vma->vm_next) { 883 if (vma->vm_start < addr) 884 continue; 885 if (vma->vm_start > addr) 886 return NULL; 887 if (vma->vm_end == end) { 888 mm->mmap_cache = vma; 889 return vma; 890 } 891 } 892 893 return NULL; 894 } 895 896 /* 897 * determine whether a mapping should be permitted and, if so, what sort of 898 * mapping we're capable of supporting 899 */ 900 static int validate_mmap_request(struct file *file, 901 unsigned long addr, 902 unsigned long len, 903 unsigned long prot, 904 unsigned long flags, 905 unsigned long pgoff, 906 unsigned long *_capabilities) 907 { 908 unsigned long capabilities, rlen; 909 int ret; 910 911 /* do the simple checks first */ 912 if (flags & MAP_FIXED) { 913 printk(KERN_DEBUG 914 "%d: Can't do fixed-address/overlay mmap of RAM\n", 915 current->pid); 916 return -EINVAL; 917 } 918 919 if ((flags & MAP_TYPE) != MAP_PRIVATE && 920 (flags & MAP_TYPE) != MAP_SHARED) 921 return -EINVAL; 922 923 if (!len) 924 return -EINVAL; 925 926 /* Careful about overflows.. */ 927 rlen = PAGE_ALIGN(len); 928 if (!rlen || rlen > TASK_SIZE) 929 return -ENOMEM; 930 931 /* offset overflow? */ 932 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 933 return -EOVERFLOW; 934 935 if (file) { 936 /* validate file mapping requests */ 937 struct address_space *mapping; 938 939 /* files must support mmap */ 940 if (!file->f_op->mmap) 941 return -ENODEV; 942 943 /* work out if what we've got could possibly be shared 944 * - we support chardevs that provide their own "memory" 945 * - we support files/blockdevs that are memory backed 946 */ 947 mapping = file->f_mapping; 948 if (!mapping) 949 mapping = file_inode(file)->i_mapping; 950 951 capabilities = 0; 952 if (mapping && mapping->backing_dev_info) 953 capabilities = mapping->backing_dev_info->capabilities; 954 955 if (!capabilities) { 956 /* no explicit capabilities set, so assume some 957 * defaults */ 958 switch (file_inode(file)->i_mode & S_IFMT) { 959 case S_IFREG: 960 case S_IFBLK: 961 capabilities = BDI_CAP_MAP_COPY; 962 break; 963 964 case S_IFCHR: 965 capabilities = 966 BDI_CAP_MAP_DIRECT | 967 BDI_CAP_READ_MAP | 968 BDI_CAP_WRITE_MAP; 969 break; 970 971 default: 972 return -EINVAL; 973 } 974 } 975 976 /* eliminate any capabilities that we can't support on this 977 * device */ 978 if (!file->f_op->get_unmapped_area) 979 capabilities &= ~BDI_CAP_MAP_DIRECT; 980 if (!file->f_op->read) 981 capabilities &= ~BDI_CAP_MAP_COPY; 982 983 /* The file shall have been opened with read permission. */ 984 if (!(file->f_mode & FMODE_READ)) 985 return -EACCES; 986 987 if (flags & MAP_SHARED) { 988 /* do checks for writing, appending and locking */ 989 if ((prot & PROT_WRITE) && 990 !(file->f_mode & FMODE_WRITE)) 991 return -EACCES; 992 993 if (IS_APPEND(file_inode(file)) && 994 (file->f_mode & FMODE_WRITE)) 995 return -EACCES; 996 997 if (locks_verify_locked(file_inode(file))) 998 return -EAGAIN; 999 1000 if (!(capabilities & BDI_CAP_MAP_DIRECT)) 1001 return -ENODEV; 1002 1003 /* we mustn't privatise shared mappings */ 1004 capabilities &= ~BDI_CAP_MAP_COPY; 1005 } 1006 else { 1007 /* we're going to read the file into private memory we 1008 * allocate */ 1009 if (!(capabilities & BDI_CAP_MAP_COPY)) 1010 return -ENODEV; 1011 1012 /* we don't permit a private writable mapping to be 1013 * shared with the backing device */ 1014 if (prot & PROT_WRITE) 1015 capabilities &= ~BDI_CAP_MAP_DIRECT; 1016 } 1017 1018 if (capabilities & BDI_CAP_MAP_DIRECT) { 1019 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) || 1020 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) || 1021 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP)) 1022 ) { 1023 capabilities &= ~BDI_CAP_MAP_DIRECT; 1024 if (flags & MAP_SHARED) { 1025 printk(KERN_WARNING 1026 "MAP_SHARED not completely supported on !MMU\n"); 1027 return -EINVAL; 1028 } 1029 } 1030 } 1031 1032 /* handle executable mappings and implied executable 1033 * mappings */ 1034 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1035 if (prot & PROT_EXEC) 1036 return -EPERM; 1037 } 1038 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 1039 /* handle implication of PROT_EXEC by PROT_READ */ 1040 if (current->personality & READ_IMPLIES_EXEC) { 1041 if (capabilities & BDI_CAP_EXEC_MAP) 1042 prot |= PROT_EXEC; 1043 } 1044 } 1045 else if ((prot & PROT_READ) && 1046 (prot & PROT_EXEC) && 1047 !(capabilities & BDI_CAP_EXEC_MAP) 1048 ) { 1049 /* backing file is not executable, try to copy */ 1050 capabilities &= ~BDI_CAP_MAP_DIRECT; 1051 } 1052 } 1053 else { 1054 /* anonymous mappings are always memory backed and can be 1055 * privately mapped 1056 */ 1057 capabilities = BDI_CAP_MAP_COPY; 1058 1059 /* handle PROT_EXEC implication by PROT_READ */ 1060 if ((prot & PROT_READ) && 1061 (current->personality & READ_IMPLIES_EXEC)) 1062 prot |= PROT_EXEC; 1063 } 1064 1065 /* allow the security API to have its say */ 1066 ret = security_mmap_addr(addr); 1067 if (ret < 0) 1068 return ret; 1069 1070 /* looks okay */ 1071 *_capabilities = capabilities; 1072 return 0; 1073 } 1074 1075 /* 1076 * we've determined that we can make the mapping, now translate what we 1077 * now know into VMA flags 1078 */ 1079 static unsigned long determine_vm_flags(struct file *file, 1080 unsigned long prot, 1081 unsigned long flags, 1082 unsigned long capabilities) 1083 { 1084 unsigned long vm_flags; 1085 1086 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags); 1087 /* vm_flags |= mm->def_flags; */ 1088 1089 if (!(capabilities & BDI_CAP_MAP_DIRECT)) { 1090 /* attempt to share read-only copies of mapped file chunks */ 1091 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1092 if (file && !(prot & PROT_WRITE)) 1093 vm_flags |= VM_MAYSHARE; 1094 } else { 1095 /* overlay a shareable mapping on the backing device or inode 1096 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 1097 * romfs/cramfs */ 1098 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS); 1099 if (flags & MAP_SHARED) 1100 vm_flags |= VM_SHARED; 1101 } 1102 1103 /* refuse to let anyone share private mappings with this process if 1104 * it's being traced - otherwise breakpoints set in it may interfere 1105 * with another untraced process 1106 */ 1107 if ((flags & MAP_PRIVATE) && current->ptrace) 1108 vm_flags &= ~VM_MAYSHARE; 1109 1110 return vm_flags; 1111 } 1112 1113 /* 1114 * set up a shared mapping on a file (the driver or filesystem provides and 1115 * pins the storage) 1116 */ 1117 static int do_mmap_shared_file(struct vm_area_struct *vma) 1118 { 1119 int ret; 1120 1121 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1122 if (ret == 0) { 1123 vma->vm_region->vm_top = vma->vm_region->vm_end; 1124 return 0; 1125 } 1126 if (ret != -ENOSYS) 1127 return ret; 1128 1129 /* getting -ENOSYS indicates that direct mmap isn't possible (as 1130 * opposed to tried but failed) so we can only give a suitable error as 1131 * it's not possible to make a private copy if MAP_SHARED was given */ 1132 return -ENODEV; 1133 } 1134 1135 /* 1136 * set up a private mapping or an anonymous shared mapping 1137 */ 1138 static int do_mmap_private(struct vm_area_struct *vma, 1139 struct vm_region *region, 1140 unsigned long len, 1141 unsigned long capabilities) 1142 { 1143 struct page *pages; 1144 unsigned long total, point, n; 1145 void *base; 1146 int ret, order; 1147 1148 /* invoke the file's mapping function so that it can keep track of 1149 * shared mappings on devices or memory 1150 * - VM_MAYSHARE will be set if it may attempt to share 1151 */ 1152 if (capabilities & BDI_CAP_MAP_DIRECT) { 1153 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); 1154 if (ret == 0) { 1155 /* shouldn't return success if we're not sharing */ 1156 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 1157 vma->vm_region->vm_top = vma->vm_region->vm_end; 1158 return 0; 1159 } 1160 if (ret != -ENOSYS) 1161 return ret; 1162 1163 /* getting an ENOSYS error indicates that direct mmap isn't 1164 * possible (as opposed to tried but failed) so we'll try to 1165 * make a private copy of the data and map that instead */ 1166 } 1167 1168 1169 /* allocate some memory to hold the mapping 1170 * - note that this may not return a page-aligned address if the object 1171 * we're allocating is smaller than a page 1172 */ 1173 order = get_order(len); 1174 kdebug("alloc order %d for %lx", order, len); 1175 1176 pages = alloc_pages(GFP_KERNEL, order); 1177 if (!pages) 1178 goto enomem; 1179 1180 total = 1 << order; 1181 atomic_long_add(total, &mmap_pages_allocated); 1182 1183 point = len >> PAGE_SHIFT; 1184 1185 /* we allocated a power-of-2 sized page set, so we may want to trim off 1186 * the excess */ 1187 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) { 1188 while (total > point) { 1189 order = ilog2(total - point); 1190 n = 1 << order; 1191 kdebug("shave %lu/%lu @%lu", n, total - point, total); 1192 atomic_long_sub(n, &mmap_pages_allocated); 1193 total -= n; 1194 set_page_refcounted(pages + total); 1195 __free_pages(pages + total, order); 1196 } 1197 } 1198 1199 for (point = 1; point < total; point++) 1200 set_page_refcounted(&pages[point]); 1201 1202 base = page_address(pages); 1203 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1204 region->vm_start = (unsigned long) base; 1205 region->vm_end = region->vm_start + len; 1206 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1207 1208 vma->vm_start = region->vm_start; 1209 vma->vm_end = region->vm_start + len; 1210 1211 if (vma->vm_file) { 1212 /* read the contents of a file into the copy */ 1213 mm_segment_t old_fs; 1214 loff_t fpos; 1215 1216 fpos = vma->vm_pgoff; 1217 fpos <<= PAGE_SHIFT; 1218 1219 old_fs = get_fs(); 1220 set_fs(KERNEL_DS); 1221 ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos); 1222 set_fs(old_fs); 1223 1224 if (ret < 0) 1225 goto error_free; 1226 1227 /* clear the last little bit */ 1228 if (ret < len) 1229 memset(base + ret, 0, len - ret); 1230 1231 } 1232 1233 return 0; 1234 1235 error_free: 1236 free_page_series(region->vm_start, region->vm_top); 1237 region->vm_start = vma->vm_start = 0; 1238 region->vm_end = vma->vm_end = 0; 1239 region->vm_top = 0; 1240 return ret; 1241 1242 enomem: 1243 printk("Allocation of length %lu from process %d (%s) failed\n", 1244 len, current->pid, current->comm); 1245 show_free_areas(0); 1246 return -ENOMEM; 1247 } 1248 1249 /* 1250 * handle mapping creation for uClinux 1251 */ 1252 unsigned long do_mmap_pgoff(struct file *file, 1253 unsigned long addr, 1254 unsigned long len, 1255 unsigned long prot, 1256 unsigned long flags, 1257 unsigned long pgoff, 1258 unsigned long *populate) 1259 { 1260 struct vm_area_struct *vma; 1261 struct vm_region *region; 1262 struct rb_node *rb; 1263 unsigned long capabilities, vm_flags, result; 1264 int ret; 1265 1266 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff); 1267 1268 *populate = 0; 1269 1270 /* decide whether we should attempt the mapping, and if so what sort of 1271 * mapping */ 1272 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1273 &capabilities); 1274 if (ret < 0) { 1275 kleave(" = %d [val]", ret); 1276 return ret; 1277 } 1278 1279 /* we ignore the address hint */ 1280 addr = 0; 1281 len = PAGE_ALIGN(len); 1282 1283 /* we've determined that we can make the mapping, now translate what we 1284 * now know into VMA flags */ 1285 vm_flags = determine_vm_flags(file, prot, flags, capabilities); 1286 1287 /* we're going to need to record the mapping */ 1288 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1289 if (!region) 1290 goto error_getting_region; 1291 1292 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1293 if (!vma) 1294 goto error_getting_vma; 1295 1296 region->vm_usage = 1; 1297 region->vm_flags = vm_flags; 1298 region->vm_pgoff = pgoff; 1299 1300 INIT_LIST_HEAD(&vma->anon_vma_chain); 1301 vma->vm_flags = vm_flags; 1302 vma->vm_pgoff = pgoff; 1303 1304 if (file) { 1305 region->vm_file = get_file(file); 1306 vma->vm_file = get_file(file); 1307 } 1308 1309 down_write(&nommu_region_sem); 1310 1311 /* if we want to share, we need to check for regions created by other 1312 * mmap() calls that overlap with our proposed mapping 1313 * - we can only share with a superset match on most regular files 1314 * - shared mappings on character devices and memory backed files are 1315 * permitted to overlap inexactly as far as we are concerned for in 1316 * these cases, sharing is handled in the driver or filesystem rather 1317 * than here 1318 */ 1319 if (vm_flags & VM_MAYSHARE) { 1320 struct vm_region *pregion; 1321 unsigned long pglen, rpglen, pgend, rpgend, start; 1322 1323 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1324 pgend = pgoff + pglen; 1325 1326 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1327 pregion = rb_entry(rb, struct vm_region, vm_rb); 1328 1329 if (!(pregion->vm_flags & VM_MAYSHARE)) 1330 continue; 1331 1332 /* search for overlapping mappings on the same file */ 1333 if (file_inode(pregion->vm_file) != 1334 file_inode(file)) 1335 continue; 1336 1337 if (pregion->vm_pgoff >= pgend) 1338 continue; 1339 1340 rpglen = pregion->vm_end - pregion->vm_start; 1341 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1342 rpgend = pregion->vm_pgoff + rpglen; 1343 if (pgoff >= rpgend) 1344 continue; 1345 1346 /* handle inexactly overlapping matches between 1347 * mappings */ 1348 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1349 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1350 /* new mapping is not a subset of the region */ 1351 if (!(capabilities & BDI_CAP_MAP_DIRECT)) 1352 goto sharing_violation; 1353 continue; 1354 } 1355 1356 /* we've found a region we can share */ 1357 pregion->vm_usage++; 1358 vma->vm_region = pregion; 1359 start = pregion->vm_start; 1360 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1361 vma->vm_start = start; 1362 vma->vm_end = start + len; 1363 1364 if (pregion->vm_flags & VM_MAPPED_COPY) { 1365 kdebug("share copy"); 1366 vma->vm_flags |= VM_MAPPED_COPY; 1367 } else { 1368 kdebug("share mmap"); 1369 ret = do_mmap_shared_file(vma); 1370 if (ret < 0) { 1371 vma->vm_region = NULL; 1372 vma->vm_start = 0; 1373 vma->vm_end = 0; 1374 pregion->vm_usage--; 1375 pregion = NULL; 1376 goto error_just_free; 1377 } 1378 } 1379 fput(region->vm_file); 1380 kmem_cache_free(vm_region_jar, region); 1381 region = pregion; 1382 result = start; 1383 goto share; 1384 } 1385 1386 /* obtain the address at which to make a shared mapping 1387 * - this is the hook for quasi-memory character devices to 1388 * tell us the location of a shared mapping 1389 */ 1390 if (capabilities & BDI_CAP_MAP_DIRECT) { 1391 addr = file->f_op->get_unmapped_area(file, addr, len, 1392 pgoff, flags); 1393 if (IS_ERR_VALUE(addr)) { 1394 ret = addr; 1395 if (ret != -ENOSYS) 1396 goto error_just_free; 1397 1398 /* the driver refused to tell us where to site 1399 * the mapping so we'll have to attempt to copy 1400 * it */ 1401 ret = -ENODEV; 1402 if (!(capabilities & BDI_CAP_MAP_COPY)) 1403 goto error_just_free; 1404 1405 capabilities &= ~BDI_CAP_MAP_DIRECT; 1406 } else { 1407 vma->vm_start = region->vm_start = addr; 1408 vma->vm_end = region->vm_end = addr + len; 1409 } 1410 } 1411 } 1412 1413 vma->vm_region = region; 1414 1415 /* set up the mapping 1416 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set 1417 */ 1418 if (file && vma->vm_flags & VM_SHARED) 1419 ret = do_mmap_shared_file(vma); 1420 else 1421 ret = do_mmap_private(vma, region, len, capabilities); 1422 if (ret < 0) 1423 goto error_just_free; 1424 add_nommu_region(region); 1425 1426 /* clear anonymous mappings that don't ask for uninitialized data */ 1427 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED)) 1428 memset((void *)region->vm_start, 0, 1429 region->vm_end - region->vm_start); 1430 1431 /* okay... we have a mapping; now we have to register it */ 1432 result = vma->vm_start; 1433 1434 current->mm->total_vm += len >> PAGE_SHIFT; 1435 1436 share: 1437 add_vma_to_mm(current->mm, vma); 1438 1439 /* we flush the region from the icache only when the first executable 1440 * mapping of it is made */ 1441 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1442 flush_icache_range(region->vm_start, region->vm_end); 1443 region->vm_icache_flushed = true; 1444 } 1445 1446 up_write(&nommu_region_sem); 1447 1448 kleave(" = %lx", result); 1449 return result; 1450 1451 error_just_free: 1452 up_write(&nommu_region_sem); 1453 error: 1454 if (region->vm_file) 1455 fput(region->vm_file); 1456 kmem_cache_free(vm_region_jar, region); 1457 if (vma->vm_file) 1458 fput(vma->vm_file); 1459 kmem_cache_free(vm_area_cachep, vma); 1460 kleave(" = %d", ret); 1461 return ret; 1462 1463 sharing_violation: 1464 up_write(&nommu_region_sem); 1465 printk(KERN_WARNING "Attempt to share mismatched mappings\n"); 1466 ret = -EINVAL; 1467 goto error; 1468 1469 error_getting_vma: 1470 kmem_cache_free(vm_region_jar, region); 1471 printk(KERN_WARNING "Allocation of vma for %lu byte allocation" 1472 " from process %d failed\n", 1473 len, current->pid); 1474 show_free_areas(0); 1475 return -ENOMEM; 1476 1477 error_getting_region: 1478 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation" 1479 " from process %d failed\n", 1480 len, current->pid); 1481 show_free_areas(0); 1482 return -ENOMEM; 1483 } 1484 1485 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1486 unsigned long, prot, unsigned long, flags, 1487 unsigned long, fd, unsigned long, pgoff) 1488 { 1489 struct file *file = NULL; 1490 unsigned long retval = -EBADF; 1491 1492 audit_mmap_fd(fd, flags); 1493 if (!(flags & MAP_ANONYMOUS)) { 1494 file = fget(fd); 1495 if (!file) 1496 goto out; 1497 } 1498 1499 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1500 1501 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1502 1503 if (file) 1504 fput(file); 1505 out: 1506 return retval; 1507 } 1508 1509 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1510 struct mmap_arg_struct { 1511 unsigned long addr; 1512 unsigned long len; 1513 unsigned long prot; 1514 unsigned long flags; 1515 unsigned long fd; 1516 unsigned long offset; 1517 }; 1518 1519 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1520 { 1521 struct mmap_arg_struct a; 1522 1523 if (copy_from_user(&a, arg, sizeof(a))) 1524 return -EFAULT; 1525 if (a.offset & ~PAGE_MASK) 1526 return -EINVAL; 1527 1528 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1529 a.offset >> PAGE_SHIFT); 1530 } 1531 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1532 1533 /* 1534 * split a vma into two pieces at address 'addr', a new vma is allocated either 1535 * for the first part or the tail. 1536 */ 1537 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1538 unsigned long addr, int new_below) 1539 { 1540 struct vm_area_struct *new; 1541 struct vm_region *region; 1542 unsigned long npages; 1543 1544 kenter(""); 1545 1546 /* we're only permitted to split anonymous regions (these should have 1547 * only a single usage on the region) */ 1548 if (vma->vm_file) 1549 return -ENOMEM; 1550 1551 if (mm->map_count >= sysctl_max_map_count) 1552 return -ENOMEM; 1553 1554 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1555 if (!region) 1556 return -ENOMEM; 1557 1558 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1559 if (!new) { 1560 kmem_cache_free(vm_region_jar, region); 1561 return -ENOMEM; 1562 } 1563 1564 /* most fields are the same, copy all, and then fixup */ 1565 *new = *vma; 1566 *region = *vma->vm_region; 1567 new->vm_region = region; 1568 1569 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1570 1571 if (new_below) { 1572 region->vm_top = region->vm_end = new->vm_end = addr; 1573 } else { 1574 region->vm_start = new->vm_start = addr; 1575 region->vm_pgoff = new->vm_pgoff += npages; 1576 } 1577 1578 if (new->vm_ops && new->vm_ops->open) 1579 new->vm_ops->open(new); 1580 1581 delete_vma_from_mm(vma); 1582 down_write(&nommu_region_sem); 1583 delete_nommu_region(vma->vm_region); 1584 if (new_below) { 1585 vma->vm_region->vm_start = vma->vm_start = addr; 1586 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1587 } else { 1588 vma->vm_region->vm_end = vma->vm_end = addr; 1589 vma->vm_region->vm_top = addr; 1590 } 1591 add_nommu_region(vma->vm_region); 1592 add_nommu_region(new->vm_region); 1593 up_write(&nommu_region_sem); 1594 add_vma_to_mm(mm, vma); 1595 add_vma_to_mm(mm, new); 1596 return 0; 1597 } 1598 1599 /* 1600 * shrink a VMA by removing the specified chunk from either the beginning or 1601 * the end 1602 */ 1603 static int shrink_vma(struct mm_struct *mm, 1604 struct vm_area_struct *vma, 1605 unsigned long from, unsigned long to) 1606 { 1607 struct vm_region *region; 1608 1609 kenter(""); 1610 1611 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1612 * and list */ 1613 delete_vma_from_mm(vma); 1614 if (from > vma->vm_start) 1615 vma->vm_end = from; 1616 else 1617 vma->vm_start = to; 1618 add_vma_to_mm(mm, vma); 1619 1620 /* cut the backing region down to size */ 1621 region = vma->vm_region; 1622 BUG_ON(region->vm_usage != 1); 1623 1624 down_write(&nommu_region_sem); 1625 delete_nommu_region(region); 1626 if (from > region->vm_start) { 1627 to = region->vm_top; 1628 region->vm_top = region->vm_end = from; 1629 } else { 1630 region->vm_start = to; 1631 } 1632 add_nommu_region(region); 1633 up_write(&nommu_region_sem); 1634 1635 free_page_series(from, to); 1636 return 0; 1637 } 1638 1639 /* 1640 * release a mapping 1641 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1642 * VMA, though it need not cover the whole VMA 1643 */ 1644 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 1645 { 1646 struct vm_area_struct *vma; 1647 unsigned long end; 1648 int ret; 1649 1650 kenter(",%lx,%zx", start, len); 1651 1652 len = PAGE_ALIGN(len); 1653 if (len == 0) 1654 return -EINVAL; 1655 1656 end = start + len; 1657 1658 /* find the first potentially overlapping VMA */ 1659 vma = find_vma(mm, start); 1660 if (!vma) { 1661 static int limit = 0; 1662 if (limit < 5) { 1663 printk(KERN_WARNING 1664 "munmap of memory not mmapped by process %d" 1665 " (%s): 0x%lx-0x%lx\n", 1666 current->pid, current->comm, 1667 start, start + len - 1); 1668 limit++; 1669 } 1670 return -EINVAL; 1671 } 1672 1673 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1674 if (vma->vm_file) { 1675 do { 1676 if (start > vma->vm_start) { 1677 kleave(" = -EINVAL [miss]"); 1678 return -EINVAL; 1679 } 1680 if (end == vma->vm_end) 1681 goto erase_whole_vma; 1682 vma = vma->vm_next; 1683 } while (vma); 1684 kleave(" = -EINVAL [split file]"); 1685 return -EINVAL; 1686 } else { 1687 /* the chunk must be a subset of the VMA found */ 1688 if (start == vma->vm_start && end == vma->vm_end) 1689 goto erase_whole_vma; 1690 if (start < vma->vm_start || end > vma->vm_end) { 1691 kleave(" = -EINVAL [superset]"); 1692 return -EINVAL; 1693 } 1694 if (start & ~PAGE_MASK) { 1695 kleave(" = -EINVAL [unaligned start]"); 1696 return -EINVAL; 1697 } 1698 if (end != vma->vm_end && end & ~PAGE_MASK) { 1699 kleave(" = -EINVAL [unaligned split]"); 1700 return -EINVAL; 1701 } 1702 if (start != vma->vm_start && end != vma->vm_end) { 1703 ret = split_vma(mm, vma, start, 1); 1704 if (ret < 0) { 1705 kleave(" = %d [split]", ret); 1706 return ret; 1707 } 1708 } 1709 return shrink_vma(mm, vma, start, end); 1710 } 1711 1712 erase_whole_vma: 1713 delete_vma_from_mm(vma); 1714 delete_vma(mm, vma); 1715 kleave(" = 0"); 1716 return 0; 1717 } 1718 EXPORT_SYMBOL(do_munmap); 1719 1720 int vm_munmap(unsigned long addr, size_t len) 1721 { 1722 struct mm_struct *mm = current->mm; 1723 int ret; 1724 1725 down_write(&mm->mmap_sem); 1726 ret = do_munmap(mm, addr, len); 1727 up_write(&mm->mmap_sem); 1728 return ret; 1729 } 1730 EXPORT_SYMBOL(vm_munmap); 1731 1732 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1733 { 1734 return vm_munmap(addr, len); 1735 } 1736 1737 /* 1738 * release all the mappings made in a process's VM space 1739 */ 1740 void exit_mmap(struct mm_struct *mm) 1741 { 1742 struct vm_area_struct *vma; 1743 1744 if (!mm) 1745 return; 1746 1747 kenter(""); 1748 1749 mm->total_vm = 0; 1750 1751 while ((vma = mm->mmap)) { 1752 mm->mmap = vma->vm_next; 1753 delete_vma_from_mm(vma); 1754 delete_vma(mm, vma); 1755 cond_resched(); 1756 } 1757 1758 kleave(""); 1759 } 1760 1761 unsigned long vm_brk(unsigned long addr, unsigned long len) 1762 { 1763 return -ENOMEM; 1764 } 1765 1766 /* 1767 * expand (or shrink) an existing mapping, potentially moving it at the same 1768 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1769 * 1770 * under NOMMU conditions, we only permit changing a mapping's size, and only 1771 * as long as it stays within the region allocated by do_mmap_private() and the 1772 * block is not shareable 1773 * 1774 * MREMAP_FIXED is not supported under NOMMU conditions 1775 */ 1776 static unsigned long do_mremap(unsigned long addr, 1777 unsigned long old_len, unsigned long new_len, 1778 unsigned long flags, unsigned long new_addr) 1779 { 1780 struct vm_area_struct *vma; 1781 1782 /* insanity checks first */ 1783 old_len = PAGE_ALIGN(old_len); 1784 new_len = PAGE_ALIGN(new_len); 1785 if (old_len == 0 || new_len == 0) 1786 return (unsigned long) -EINVAL; 1787 1788 if (addr & ~PAGE_MASK) 1789 return -EINVAL; 1790 1791 if (flags & MREMAP_FIXED && new_addr != addr) 1792 return (unsigned long) -EINVAL; 1793 1794 vma = find_vma_exact(current->mm, addr, old_len); 1795 if (!vma) 1796 return (unsigned long) -EINVAL; 1797 1798 if (vma->vm_end != vma->vm_start + old_len) 1799 return (unsigned long) -EFAULT; 1800 1801 if (vma->vm_flags & VM_MAYSHARE) 1802 return (unsigned long) -EPERM; 1803 1804 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1805 return (unsigned long) -ENOMEM; 1806 1807 /* all checks complete - do it */ 1808 vma->vm_end = vma->vm_start + new_len; 1809 return vma->vm_start; 1810 } 1811 1812 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1813 unsigned long, new_len, unsigned long, flags, 1814 unsigned long, new_addr) 1815 { 1816 unsigned long ret; 1817 1818 down_write(¤t->mm->mmap_sem); 1819 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1820 up_write(¤t->mm->mmap_sem); 1821 return ret; 1822 } 1823 1824 struct page *follow_page_mask(struct vm_area_struct *vma, 1825 unsigned long address, unsigned int flags, 1826 unsigned int *page_mask) 1827 { 1828 *page_mask = 0; 1829 return NULL; 1830 } 1831 1832 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1833 unsigned long pfn, unsigned long size, pgprot_t prot) 1834 { 1835 if (addr != (pfn << PAGE_SHIFT)) 1836 return -EINVAL; 1837 1838 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1839 return 0; 1840 } 1841 EXPORT_SYMBOL(remap_pfn_range); 1842 1843 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1844 { 1845 unsigned long pfn = start >> PAGE_SHIFT; 1846 unsigned long vm_len = vma->vm_end - vma->vm_start; 1847 1848 pfn += vma->vm_pgoff; 1849 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1850 } 1851 EXPORT_SYMBOL(vm_iomap_memory); 1852 1853 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1854 unsigned long pgoff) 1855 { 1856 unsigned int size = vma->vm_end - vma->vm_start; 1857 1858 if (!(vma->vm_flags & VM_USERMAP)) 1859 return -EINVAL; 1860 1861 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1862 vma->vm_end = vma->vm_start + size; 1863 1864 return 0; 1865 } 1866 EXPORT_SYMBOL(remap_vmalloc_range); 1867 1868 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, 1869 unsigned long len, unsigned long pgoff, unsigned long flags) 1870 { 1871 return -ENOMEM; 1872 } 1873 1874 void unmap_mapping_range(struct address_space *mapping, 1875 loff_t const holebegin, loff_t const holelen, 1876 int even_cows) 1877 { 1878 } 1879 EXPORT_SYMBOL(unmap_mapping_range); 1880 1881 /* 1882 * Check that a process has enough memory to allocate a new virtual 1883 * mapping. 0 means there is enough memory for the allocation to 1884 * succeed and -ENOMEM implies there is not. 1885 * 1886 * We currently support three overcommit policies, which are set via the 1887 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 1888 * 1889 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 1890 * Additional code 2002 Jul 20 by Robert Love. 1891 * 1892 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 1893 * 1894 * Note this is a helper function intended to be used by LSMs which 1895 * wish to use this logic. 1896 */ 1897 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 1898 { 1899 unsigned long free, allowed, reserve; 1900 1901 vm_acct_memory(pages); 1902 1903 /* 1904 * Sometimes we want to use more memory than we have 1905 */ 1906 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 1907 return 0; 1908 1909 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 1910 free = global_page_state(NR_FREE_PAGES); 1911 free += global_page_state(NR_FILE_PAGES); 1912 1913 /* 1914 * shmem pages shouldn't be counted as free in this 1915 * case, they can't be purged, only swapped out, and 1916 * that won't affect the overall amount of available 1917 * memory in the system. 1918 */ 1919 free -= global_page_state(NR_SHMEM); 1920 1921 free += get_nr_swap_pages(); 1922 1923 /* 1924 * Any slabs which are created with the 1925 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 1926 * which are reclaimable, under pressure. The dentry 1927 * cache and most inode caches should fall into this 1928 */ 1929 free += global_page_state(NR_SLAB_RECLAIMABLE); 1930 1931 /* 1932 * Leave reserved pages. The pages are not for anonymous pages. 1933 */ 1934 if (free <= totalreserve_pages) 1935 goto error; 1936 else 1937 free -= totalreserve_pages; 1938 1939 /* 1940 * Reserve some for root 1941 */ 1942 if (!cap_sys_admin) 1943 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 1944 1945 if (free > pages) 1946 return 0; 1947 1948 goto error; 1949 } 1950 1951 allowed = vm_commit_limit(); 1952 /* 1953 * Reserve some 3% for root 1954 */ 1955 if (!cap_sys_admin) 1956 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 1957 1958 /* 1959 * Don't let a single process grow so big a user can't recover 1960 */ 1961 if (mm) { 1962 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 1963 allowed -= min(mm->total_vm / 32, reserve); 1964 } 1965 1966 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 1967 return 0; 1968 1969 error: 1970 vm_unacct_memory(pages); 1971 1972 return -ENOMEM; 1973 } 1974 1975 int in_gate_area_no_mm(unsigned long addr) 1976 { 1977 return 0; 1978 } 1979 1980 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1981 { 1982 BUG(); 1983 return 0; 1984 } 1985 EXPORT_SYMBOL(filemap_fault); 1986 1987 int generic_file_remap_pages(struct vm_area_struct *vma, unsigned long addr, 1988 unsigned long size, pgoff_t pgoff) 1989 { 1990 BUG(); 1991 return 0; 1992 } 1993 EXPORT_SYMBOL(generic_file_remap_pages); 1994 1995 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1996 unsigned long addr, void *buf, int len, int write) 1997 { 1998 struct vm_area_struct *vma; 1999 2000 down_read(&mm->mmap_sem); 2001 2002 /* the access must start within one of the target process's mappings */ 2003 vma = find_vma(mm, addr); 2004 if (vma) { 2005 /* don't overrun this mapping */ 2006 if (addr + len >= vma->vm_end) 2007 len = vma->vm_end - addr; 2008 2009 /* only read or write mappings where it is permitted */ 2010 if (write && vma->vm_flags & VM_MAYWRITE) 2011 copy_to_user_page(vma, NULL, addr, 2012 (void *) addr, buf, len); 2013 else if (!write && vma->vm_flags & VM_MAYREAD) 2014 copy_from_user_page(vma, NULL, addr, 2015 buf, (void *) addr, len); 2016 else 2017 len = 0; 2018 } else { 2019 len = 0; 2020 } 2021 2022 up_read(&mm->mmap_sem); 2023 2024 return len; 2025 } 2026 2027 /** 2028 * @access_remote_vm - access another process' address space 2029 * @mm: the mm_struct of the target address space 2030 * @addr: start address to access 2031 * @buf: source or destination buffer 2032 * @len: number of bytes to transfer 2033 * @write: whether the access is a write 2034 * 2035 * The caller must hold a reference on @mm. 2036 */ 2037 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2038 void *buf, int len, int write) 2039 { 2040 return __access_remote_vm(NULL, mm, addr, buf, len, write); 2041 } 2042 2043 /* 2044 * Access another process' address space. 2045 * - source/target buffer must be kernel space 2046 */ 2047 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 2048 { 2049 struct mm_struct *mm; 2050 2051 if (addr + len < addr) 2052 return 0; 2053 2054 mm = get_task_mm(tsk); 2055 if (!mm) 2056 return 0; 2057 2058 len = __access_remote_vm(tsk, mm, addr, buf, len, write); 2059 2060 mmput(mm); 2061 return len; 2062 } 2063 2064 /** 2065 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 2066 * @inode: The inode to check 2067 * @size: The current filesize of the inode 2068 * @newsize: The proposed filesize of the inode 2069 * 2070 * Check the shared mappings on an inode on behalf of a shrinking truncate to 2071 * make sure that that any outstanding VMAs aren't broken and then shrink the 2072 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't 2073 * automatically grant mappings that are too large. 2074 */ 2075 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 2076 size_t newsize) 2077 { 2078 struct vm_area_struct *vma; 2079 struct vm_region *region; 2080 pgoff_t low, high; 2081 size_t r_size, r_top; 2082 2083 low = newsize >> PAGE_SHIFT; 2084 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2085 2086 down_write(&nommu_region_sem); 2087 mutex_lock(&inode->i_mapping->i_mmap_mutex); 2088 2089 /* search for VMAs that fall within the dead zone */ 2090 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 2091 /* found one - only interested if it's shared out of the page 2092 * cache */ 2093 if (vma->vm_flags & VM_SHARED) { 2094 mutex_unlock(&inode->i_mapping->i_mmap_mutex); 2095 up_write(&nommu_region_sem); 2096 return -ETXTBSY; /* not quite true, but near enough */ 2097 } 2098 } 2099 2100 /* reduce any regions that overlap the dead zone - if in existence, 2101 * these will be pointed to by VMAs that don't overlap the dead zone 2102 * 2103 * we don't check for any regions that start beyond the EOF as there 2104 * shouldn't be any 2105 */ 2106 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 2107 0, ULONG_MAX) { 2108 if (!(vma->vm_flags & VM_SHARED)) 2109 continue; 2110 2111 region = vma->vm_region; 2112 r_size = region->vm_top - region->vm_start; 2113 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 2114 2115 if (r_top > newsize) { 2116 region->vm_top -= r_top - newsize; 2117 if (region->vm_end > region->vm_top) 2118 region->vm_end = region->vm_top; 2119 } 2120 } 2121 2122 mutex_unlock(&inode->i_mapping->i_mmap_mutex); 2123 up_write(&nommu_region_sem); 2124 return 0; 2125 } 2126 2127 /* 2128 * Initialise sysctl_user_reserve_kbytes. 2129 * 2130 * This is intended to prevent a user from starting a single memory hogging 2131 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 2132 * mode. 2133 * 2134 * The default value is min(3% of free memory, 128MB) 2135 * 128MB is enough to recover with sshd/login, bash, and top/kill. 2136 */ 2137 static int __meminit init_user_reserve(void) 2138 { 2139 unsigned long free_kbytes; 2140 2141 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 2142 2143 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 2144 return 0; 2145 } 2146 module_init(init_user_reserve) 2147 2148 /* 2149 * Initialise sysctl_admin_reserve_kbytes. 2150 * 2151 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 2152 * to log in and kill a memory hogging process. 2153 * 2154 * Systems with more than 256MB will reserve 8MB, enough to recover 2155 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 2156 * only reserve 3% of free pages by default. 2157 */ 2158 static int __meminit init_admin_reserve(void) 2159 { 2160 unsigned long free_kbytes; 2161 2162 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 2163 2164 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 2165 return 0; 2166 } 2167 module_init(init_admin_reserve) 2168