xref: /openbmc/linux/mm/nommu.c (revision b9df3997)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/nommu.c
4  *
5  *  Replacement code for mm functions to support CPU's that don't
6  *  have any form of memory management unit (thus no virtual memory).
7  *
8  *  See Documentation/nommu-mmap.txt
9  *
10  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
39 
40 #include <linux/uaccess.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
45 
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
54 
55 atomic_long_t mmap_pages_allocated;
56 
57 EXPORT_SYMBOL(mem_map);
58 
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
63 
64 const struct vm_operations_struct generic_file_vm_ops = {
65 };
66 
67 /*
68  * Return the total memory allocated for this pointer, not
69  * just what the caller asked for.
70  *
71  * Doesn't have to be accurate, i.e. may have races.
72  */
73 unsigned int kobjsize(const void *objp)
74 {
75 	struct page *page;
76 
77 	/*
78 	 * If the object we have should not have ksize performed on it,
79 	 * return size of 0
80 	 */
81 	if (!objp || !virt_addr_valid(objp))
82 		return 0;
83 
84 	page = virt_to_head_page(objp);
85 
86 	/*
87 	 * If the allocator sets PageSlab, we know the pointer came from
88 	 * kmalloc().
89 	 */
90 	if (PageSlab(page))
91 		return ksize(objp);
92 
93 	/*
94 	 * If it's not a compound page, see if we have a matching VMA
95 	 * region. This test is intentionally done in reverse order,
96 	 * so if there's no VMA, we still fall through and hand back
97 	 * PAGE_SIZE for 0-order pages.
98 	 */
99 	if (!PageCompound(page)) {
100 		struct vm_area_struct *vma;
101 
102 		vma = find_vma(current->mm, (unsigned long)objp);
103 		if (vma)
104 			return vma->vm_end - vma->vm_start;
105 	}
106 
107 	/*
108 	 * The ksize() function is only guaranteed to work for pointers
109 	 * returned by kmalloc(). So handle arbitrary pointers here.
110 	 */
111 	return page_size(page);
112 }
113 
114 /**
115  * follow_pfn - look up PFN at a user virtual address
116  * @vma: memory mapping
117  * @address: user virtual address
118  * @pfn: location to store found PFN
119  *
120  * Only IO mappings and raw PFN mappings are allowed.
121  *
122  * Returns zero and the pfn at @pfn on success, -ve otherwise.
123  */
124 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
125 	unsigned long *pfn)
126 {
127 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
128 		return -EINVAL;
129 
130 	*pfn = address >> PAGE_SHIFT;
131 	return 0;
132 }
133 EXPORT_SYMBOL(follow_pfn);
134 
135 LIST_HEAD(vmap_area_list);
136 
137 void vfree(const void *addr)
138 {
139 	kfree(addr);
140 }
141 EXPORT_SYMBOL(vfree);
142 
143 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
144 {
145 	/*
146 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
147 	 * returns only a logical address.
148 	 */
149 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
150 }
151 EXPORT_SYMBOL(__vmalloc);
152 
153 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
154 {
155 	return __vmalloc(size, flags, PAGE_KERNEL);
156 }
157 
158 void *vmalloc_user(unsigned long size)
159 {
160 	void *ret;
161 
162 	ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
163 	if (ret) {
164 		struct vm_area_struct *vma;
165 
166 		down_write(&current->mm->mmap_sem);
167 		vma = find_vma(current->mm, (unsigned long)ret);
168 		if (vma)
169 			vma->vm_flags |= VM_USERMAP;
170 		up_write(&current->mm->mmap_sem);
171 	}
172 
173 	return ret;
174 }
175 EXPORT_SYMBOL(vmalloc_user);
176 
177 struct page *vmalloc_to_page(const void *addr)
178 {
179 	return virt_to_page(addr);
180 }
181 EXPORT_SYMBOL(vmalloc_to_page);
182 
183 unsigned long vmalloc_to_pfn(const void *addr)
184 {
185 	return page_to_pfn(virt_to_page(addr));
186 }
187 EXPORT_SYMBOL(vmalloc_to_pfn);
188 
189 long vread(char *buf, char *addr, unsigned long count)
190 {
191 	/* Don't allow overflow */
192 	if ((unsigned long) buf + count < count)
193 		count = -(unsigned long) buf;
194 
195 	memcpy(buf, addr, count);
196 	return count;
197 }
198 
199 long vwrite(char *buf, char *addr, unsigned long count)
200 {
201 	/* Don't allow overflow */
202 	if ((unsigned long) addr + count < count)
203 		count = -(unsigned long) addr;
204 
205 	memcpy(addr, buf, count);
206 	return count;
207 }
208 
209 /*
210  *	vmalloc  -  allocate virtually contiguous memory
211  *
212  *	@size:		allocation size
213  *
214  *	Allocate enough pages to cover @size from the page level
215  *	allocator and map them into contiguous kernel virtual space.
216  *
217  *	For tight control over page level allocator and protection flags
218  *	use __vmalloc() instead.
219  */
220 void *vmalloc(unsigned long size)
221 {
222        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
223 }
224 EXPORT_SYMBOL(vmalloc);
225 
226 /*
227  *	vzalloc - allocate virtually contiguous memory with zero fill
228  *
229  *	@size:		allocation size
230  *
231  *	Allocate enough pages to cover @size from the page level
232  *	allocator and map them into contiguous kernel virtual space.
233  *	The memory allocated is set to zero.
234  *
235  *	For tight control over page level allocator and protection flags
236  *	use __vmalloc() instead.
237  */
238 void *vzalloc(unsigned long size)
239 {
240 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
241 			PAGE_KERNEL);
242 }
243 EXPORT_SYMBOL(vzalloc);
244 
245 /**
246  * vmalloc_node - allocate memory on a specific node
247  * @size:	allocation size
248  * @node:	numa node
249  *
250  * Allocate enough pages to cover @size from the page level
251  * allocator and map them into contiguous kernel virtual space.
252  *
253  * For tight control over page level allocator and protection flags
254  * use __vmalloc() instead.
255  */
256 void *vmalloc_node(unsigned long size, int node)
257 {
258 	return vmalloc(size);
259 }
260 EXPORT_SYMBOL(vmalloc_node);
261 
262 /**
263  * vzalloc_node - allocate memory on a specific node with zero fill
264  * @size:	allocation size
265  * @node:	numa node
266  *
267  * Allocate enough pages to cover @size from the page level
268  * allocator and map them into contiguous kernel virtual space.
269  * The memory allocated is set to zero.
270  *
271  * For tight control over page level allocator and protection flags
272  * use __vmalloc() instead.
273  */
274 void *vzalloc_node(unsigned long size, int node)
275 {
276 	return vzalloc(size);
277 }
278 EXPORT_SYMBOL(vzalloc_node);
279 
280 /**
281  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
282  *	@size:		allocation size
283  *
284  *	Kernel-internal function to allocate enough pages to cover @size
285  *	the page level allocator and map them into contiguous and
286  *	executable kernel virtual space.
287  *
288  *	For tight control over page level allocator and protection flags
289  *	use __vmalloc() instead.
290  */
291 
292 void *vmalloc_exec(unsigned long size)
293 {
294 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
295 }
296 
297 /**
298  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
299  *	@size:		allocation size
300  *
301  *	Allocate enough 32bit PA addressable pages to cover @size from the
302  *	page level allocator and map them into contiguous kernel virtual space.
303  */
304 void *vmalloc_32(unsigned long size)
305 {
306 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
307 }
308 EXPORT_SYMBOL(vmalloc_32);
309 
310 /**
311  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
312  *	@size:		allocation size
313  *
314  * The resulting memory area is 32bit addressable and zeroed so it can be
315  * mapped to userspace without leaking data.
316  *
317  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
318  * remap_vmalloc_range() are permissible.
319  */
320 void *vmalloc_32_user(unsigned long size)
321 {
322 	/*
323 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
324 	 * but for now this can simply use vmalloc_user() directly.
325 	 */
326 	return vmalloc_user(size);
327 }
328 EXPORT_SYMBOL(vmalloc_32_user);
329 
330 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
331 {
332 	BUG();
333 	return NULL;
334 }
335 EXPORT_SYMBOL(vmap);
336 
337 void vunmap(const void *addr)
338 {
339 	BUG();
340 }
341 EXPORT_SYMBOL(vunmap);
342 
343 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
344 {
345 	BUG();
346 	return NULL;
347 }
348 EXPORT_SYMBOL(vm_map_ram);
349 
350 void vm_unmap_ram(const void *mem, unsigned int count)
351 {
352 	BUG();
353 }
354 EXPORT_SYMBOL(vm_unmap_ram);
355 
356 void vm_unmap_aliases(void)
357 {
358 }
359 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
360 
361 /*
362  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
363  * have one.
364  */
365 void __weak vmalloc_sync_all(void)
366 {
367 }
368 
369 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
370 {
371 	BUG();
372 	return NULL;
373 }
374 EXPORT_SYMBOL_GPL(alloc_vm_area);
375 
376 void free_vm_area(struct vm_struct *area)
377 {
378 	BUG();
379 }
380 EXPORT_SYMBOL_GPL(free_vm_area);
381 
382 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
383 		   struct page *page)
384 {
385 	return -EINVAL;
386 }
387 EXPORT_SYMBOL(vm_insert_page);
388 
389 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
390 			unsigned long num)
391 {
392 	return -EINVAL;
393 }
394 EXPORT_SYMBOL(vm_map_pages);
395 
396 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
397 				unsigned long num)
398 {
399 	return -EINVAL;
400 }
401 EXPORT_SYMBOL(vm_map_pages_zero);
402 
403 /*
404  *  sys_brk() for the most part doesn't need the global kernel
405  *  lock, except when an application is doing something nasty
406  *  like trying to un-brk an area that has already been mapped
407  *  to a regular file.  in this case, the unmapping will need
408  *  to invoke file system routines that need the global lock.
409  */
410 SYSCALL_DEFINE1(brk, unsigned long, brk)
411 {
412 	struct mm_struct *mm = current->mm;
413 
414 	if (brk < mm->start_brk || brk > mm->context.end_brk)
415 		return mm->brk;
416 
417 	if (mm->brk == brk)
418 		return mm->brk;
419 
420 	/*
421 	 * Always allow shrinking brk
422 	 */
423 	if (brk <= mm->brk) {
424 		mm->brk = brk;
425 		return brk;
426 	}
427 
428 	/*
429 	 * Ok, looks good - let it rip.
430 	 */
431 	flush_icache_range(mm->brk, brk);
432 	return mm->brk = brk;
433 }
434 
435 /*
436  * initialise the percpu counter for VM and region record slabs
437  */
438 void __init mmap_init(void)
439 {
440 	int ret;
441 
442 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
443 	VM_BUG_ON(ret);
444 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
445 }
446 
447 /*
448  * validate the region tree
449  * - the caller must hold the region lock
450  */
451 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
452 static noinline void validate_nommu_regions(void)
453 {
454 	struct vm_region *region, *last;
455 	struct rb_node *p, *lastp;
456 
457 	lastp = rb_first(&nommu_region_tree);
458 	if (!lastp)
459 		return;
460 
461 	last = rb_entry(lastp, struct vm_region, vm_rb);
462 	BUG_ON(last->vm_end <= last->vm_start);
463 	BUG_ON(last->vm_top < last->vm_end);
464 
465 	while ((p = rb_next(lastp))) {
466 		region = rb_entry(p, struct vm_region, vm_rb);
467 		last = rb_entry(lastp, struct vm_region, vm_rb);
468 
469 		BUG_ON(region->vm_end <= region->vm_start);
470 		BUG_ON(region->vm_top < region->vm_end);
471 		BUG_ON(region->vm_start < last->vm_top);
472 
473 		lastp = p;
474 	}
475 }
476 #else
477 static void validate_nommu_regions(void)
478 {
479 }
480 #endif
481 
482 /*
483  * add a region into the global tree
484  */
485 static void add_nommu_region(struct vm_region *region)
486 {
487 	struct vm_region *pregion;
488 	struct rb_node **p, *parent;
489 
490 	validate_nommu_regions();
491 
492 	parent = NULL;
493 	p = &nommu_region_tree.rb_node;
494 	while (*p) {
495 		parent = *p;
496 		pregion = rb_entry(parent, struct vm_region, vm_rb);
497 		if (region->vm_start < pregion->vm_start)
498 			p = &(*p)->rb_left;
499 		else if (region->vm_start > pregion->vm_start)
500 			p = &(*p)->rb_right;
501 		else if (pregion == region)
502 			return;
503 		else
504 			BUG();
505 	}
506 
507 	rb_link_node(&region->vm_rb, parent, p);
508 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
509 
510 	validate_nommu_regions();
511 }
512 
513 /*
514  * delete a region from the global tree
515  */
516 static void delete_nommu_region(struct vm_region *region)
517 {
518 	BUG_ON(!nommu_region_tree.rb_node);
519 
520 	validate_nommu_regions();
521 	rb_erase(&region->vm_rb, &nommu_region_tree);
522 	validate_nommu_regions();
523 }
524 
525 /*
526  * free a contiguous series of pages
527  */
528 static void free_page_series(unsigned long from, unsigned long to)
529 {
530 	for (; from < to; from += PAGE_SIZE) {
531 		struct page *page = virt_to_page(from);
532 
533 		atomic_long_dec(&mmap_pages_allocated);
534 		put_page(page);
535 	}
536 }
537 
538 /*
539  * release a reference to a region
540  * - the caller must hold the region semaphore for writing, which this releases
541  * - the region may not have been added to the tree yet, in which case vm_top
542  *   will equal vm_start
543  */
544 static void __put_nommu_region(struct vm_region *region)
545 	__releases(nommu_region_sem)
546 {
547 	BUG_ON(!nommu_region_tree.rb_node);
548 
549 	if (--region->vm_usage == 0) {
550 		if (region->vm_top > region->vm_start)
551 			delete_nommu_region(region);
552 		up_write(&nommu_region_sem);
553 
554 		if (region->vm_file)
555 			fput(region->vm_file);
556 
557 		/* IO memory and memory shared directly out of the pagecache
558 		 * from ramfs/tmpfs mustn't be released here */
559 		if (region->vm_flags & VM_MAPPED_COPY)
560 			free_page_series(region->vm_start, region->vm_top);
561 		kmem_cache_free(vm_region_jar, region);
562 	} else {
563 		up_write(&nommu_region_sem);
564 	}
565 }
566 
567 /*
568  * release a reference to a region
569  */
570 static void put_nommu_region(struct vm_region *region)
571 {
572 	down_write(&nommu_region_sem);
573 	__put_nommu_region(region);
574 }
575 
576 /*
577  * add a VMA into a process's mm_struct in the appropriate place in the list
578  * and tree and add to the address space's page tree also if not an anonymous
579  * page
580  * - should be called with mm->mmap_sem held writelocked
581  */
582 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
583 {
584 	struct vm_area_struct *pvma, *prev;
585 	struct address_space *mapping;
586 	struct rb_node **p, *parent, *rb_prev;
587 
588 	BUG_ON(!vma->vm_region);
589 
590 	mm->map_count++;
591 	vma->vm_mm = mm;
592 
593 	/* add the VMA to the mapping */
594 	if (vma->vm_file) {
595 		mapping = vma->vm_file->f_mapping;
596 
597 		i_mmap_lock_write(mapping);
598 		flush_dcache_mmap_lock(mapping);
599 		vma_interval_tree_insert(vma, &mapping->i_mmap);
600 		flush_dcache_mmap_unlock(mapping);
601 		i_mmap_unlock_write(mapping);
602 	}
603 
604 	/* add the VMA to the tree */
605 	parent = rb_prev = NULL;
606 	p = &mm->mm_rb.rb_node;
607 	while (*p) {
608 		parent = *p;
609 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
610 
611 		/* sort by: start addr, end addr, VMA struct addr in that order
612 		 * (the latter is necessary as we may get identical VMAs) */
613 		if (vma->vm_start < pvma->vm_start)
614 			p = &(*p)->rb_left;
615 		else if (vma->vm_start > pvma->vm_start) {
616 			rb_prev = parent;
617 			p = &(*p)->rb_right;
618 		} else if (vma->vm_end < pvma->vm_end)
619 			p = &(*p)->rb_left;
620 		else if (vma->vm_end > pvma->vm_end) {
621 			rb_prev = parent;
622 			p = &(*p)->rb_right;
623 		} else if (vma < pvma)
624 			p = &(*p)->rb_left;
625 		else if (vma > pvma) {
626 			rb_prev = parent;
627 			p = &(*p)->rb_right;
628 		} else
629 			BUG();
630 	}
631 
632 	rb_link_node(&vma->vm_rb, parent, p);
633 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
634 
635 	/* add VMA to the VMA list also */
636 	prev = NULL;
637 	if (rb_prev)
638 		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
639 
640 	__vma_link_list(mm, vma, prev, parent);
641 }
642 
643 /*
644  * delete a VMA from its owning mm_struct and address space
645  */
646 static void delete_vma_from_mm(struct vm_area_struct *vma)
647 {
648 	int i;
649 	struct address_space *mapping;
650 	struct mm_struct *mm = vma->vm_mm;
651 	struct task_struct *curr = current;
652 
653 	mm->map_count--;
654 	for (i = 0; i < VMACACHE_SIZE; i++) {
655 		/* if the vma is cached, invalidate the entire cache */
656 		if (curr->vmacache.vmas[i] == vma) {
657 			vmacache_invalidate(mm);
658 			break;
659 		}
660 	}
661 
662 	/* remove the VMA from the mapping */
663 	if (vma->vm_file) {
664 		mapping = vma->vm_file->f_mapping;
665 
666 		i_mmap_lock_write(mapping);
667 		flush_dcache_mmap_lock(mapping);
668 		vma_interval_tree_remove(vma, &mapping->i_mmap);
669 		flush_dcache_mmap_unlock(mapping);
670 		i_mmap_unlock_write(mapping);
671 	}
672 
673 	/* remove from the MM's tree and list */
674 	rb_erase(&vma->vm_rb, &mm->mm_rb);
675 
676 	if (vma->vm_prev)
677 		vma->vm_prev->vm_next = vma->vm_next;
678 	else
679 		mm->mmap = vma->vm_next;
680 
681 	if (vma->vm_next)
682 		vma->vm_next->vm_prev = vma->vm_prev;
683 }
684 
685 /*
686  * destroy a VMA record
687  */
688 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
689 {
690 	if (vma->vm_ops && vma->vm_ops->close)
691 		vma->vm_ops->close(vma);
692 	if (vma->vm_file)
693 		fput(vma->vm_file);
694 	put_nommu_region(vma->vm_region);
695 	vm_area_free(vma);
696 }
697 
698 /*
699  * look up the first VMA in which addr resides, NULL if none
700  * - should be called with mm->mmap_sem at least held readlocked
701  */
702 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
703 {
704 	struct vm_area_struct *vma;
705 
706 	/* check the cache first */
707 	vma = vmacache_find(mm, addr);
708 	if (likely(vma))
709 		return vma;
710 
711 	/* trawl the list (there may be multiple mappings in which addr
712 	 * resides) */
713 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
714 		if (vma->vm_start > addr)
715 			return NULL;
716 		if (vma->vm_end > addr) {
717 			vmacache_update(addr, vma);
718 			return vma;
719 		}
720 	}
721 
722 	return NULL;
723 }
724 EXPORT_SYMBOL(find_vma);
725 
726 /*
727  * find a VMA
728  * - we don't extend stack VMAs under NOMMU conditions
729  */
730 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
731 {
732 	return find_vma(mm, addr);
733 }
734 
735 /*
736  * expand a stack to a given address
737  * - not supported under NOMMU conditions
738  */
739 int expand_stack(struct vm_area_struct *vma, unsigned long address)
740 {
741 	return -ENOMEM;
742 }
743 
744 /*
745  * look up the first VMA exactly that exactly matches addr
746  * - should be called with mm->mmap_sem at least held readlocked
747  */
748 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
749 					     unsigned long addr,
750 					     unsigned long len)
751 {
752 	struct vm_area_struct *vma;
753 	unsigned long end = addr + len;
754 
755 	/* check the cache first */
756 	vma = vmacache_find_exact(mm, addr, end);
757 	if (vma)
758 		return vma;
759 
760 	/* trawl the list (there may be multiple mappings in which addr
761 	 * resides) */
762 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
763 		if (vma->vm_start < addr)
764 			continue;
765 		if (vma->vm_start > addr)
766 			return NULL;
767 		if (vma->vm_end == end) {
768 			vmacache_update(addr, vma);
769 			return vma;
770 		}
771 	}
772 
773 	return NULL;
774 }
775 
776 /*
777  * determine whether a mapping should be permitted and, if so, what sort of
778  * mapping we're capable of supporting
779  */
780 static int validate_mmap_request(struct file *file,
781 				 unsigned long addr,
782 				 unsigned long len,
783 				 unsigned long prot,
784 				 unsigned long flags,
785 				 unsigned long pgoff,
786 				 unsigned long *_capabilities)
787 {
788 	unsigned long capabilities, rlen;
789 	int ret;
790 
791 	/* do the simple checks first */
792 	if (flags & MAP_FIXED)
793 		return -EINVAL;
794 
795 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
796 	    (flags & MAP_TYPE) != MAP_SHARED)
797 		return -EINVAL;
798 
799 	if (!len)
800 		return -EINVAL;
801 
802 	/* Careful about overflows.. */
803 	rlen = PAGE_ALIGN(len);
804 	if (!rlen || rlen > TASK_SIZE)
805 		return -ENOMEM;
806 
807 	/* offset overflow? */
808 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
809 		return -EOVERFLOW;
810 
811 	if (file) {
812 		/* files must support mmap */
813 		if (!file->f_op->mmap)
814 			return -ENODEV;
815 
816 		/* work out if what we've got could possibly be shared
817 		 * - we support chardevs that provide their own "memory"
818 		 * - we support files/blockdevs that are memory backed
819 		 */
820 		if (file->f_op->mmap_capabilities) {
821 			capabilities = file->f_op->mmap_capabilities(file);
822 		} else {
823 			/* no explicit capabilities set, so assume some
824 			 * defaults */
825 			switch (file_inode(file)->i_mode & S_IFMT) {
826 			case S_IFREG:
827 			case S_IFBLK:
828 				capabilities = NOMMU_MAP_COPY;
829 				break;
830 
831 			case S_IFCHR:
832 				capabilities =
833 					NOMMU_MAP_DIRECT |
834 					NOMMU_MAP_READ |
835 					NOMMU_MAP_WRITE;
836 				break;
837 
838 			default:
839 				return -EINVAL;
840 			}
841 		}
842 
843 		/* eliminate any capabilities that we can't support on this
844 		 * device */
845 		if (!file->f_op->get_unmapped_area)
846 			capabilities &= ~NOMMU_MAP_DIRECT;
847 		if (!(file->f_mode & FMODE_CAN_READ))
848 			capabilities &= ~NOMMU_MAP_COPY;
849 
850 		/* The file shall have been opened with read permission. */
851 		if (!(file->f_mode & FMODE_READ))
852 			return -EACCES;
853 
854 		if (flags & MAP_SHARED) {
855 			/* do checks for writing, appending and locking */
856 			if ((prot & PROT_WRITE) &&
857 			    !(file->f_mode & FMODE_WRITE))
858 				return -EACCES;
859 
860 			if (IS_APPEND(file_inode(file)) &&
861 			    (file->f_mode & FMODE_WRITE))
862 				return -EACCES;
863 
864 			if (locks_verify_locked(file))
865 				return -EAGAIN;
866 
867 			if (!(capabilities & NOMMU_MAP_DIRECT))
868 				return -ENODEV;
869 
870 			/* we mustn't privatise shared mappings */
871 			capabilities &= ~NOMMU_MAP_COPY;
872 		} else {
873 			/* we're going to read the file into private memory we
874 			 * allocate */
875 			if (!(capabilities & NOMMU_MAP_COPY))
876 				return -ENODEV;
877 
878 			/* we don't permit a private writable mapping to be
879 			 * shared with the backing device */
880 			if (prot & PROT_WRITE)
881 				capabilities &= ~NOMMU_MAP_DIRECT;
882 		}
883 
884 		if (capabilities & NOMMU_MAP_DIRECT) {
885 			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
886 			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
887 			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
888 			    ) {
889 				capabilities &= ~NOMMU_MAP_DIRECT;
890 				if (flags & MAP_SHARED) {
891 					pr_warn("MAP_SHARED not completely supported on !MMU\n");
892 					return -EINVAL;
893 				}
894 			}
895 		}
896 
897 		/* handle executable mappings and implied executable
898 		 * mappings */
899 		if (path_noexec(&file->f_path)) {
900 			if (prot & PROT_EXEC)
901 				return -EPERM;
902 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
903 			/* handle implication of PROT_EXEC by PROT_READ */
904 			if (current->personality & READ_IMPLIES_EXEC) {
905 				if (capabilities & NOMMU_MAP_EXEC)
906 					prot |= PROT_EXEC;
907 			}
908 		} else if ((prot & PROT_READ) &&
909 			 (prot & PROT_EXEC) &&
910 			 !(capabilities & NOMMU_MAP_EXEC)
911 			 ) {
912 			/* backing file is not executable, try to copy */
913 			capabilities &= ~NOMMU_MAP_DIRECT;
914 		}
915 	} else {
916 		/* anonymous mappings are always memory backed and can be
917 		 * privately mapped
918 		 */
919 		capabilities = NOMMU_MAP_COPY;
920 
921 		/* handle PROT_EXEC implication by PROT_READ */
922 		if ((prot & PROT_READ) &&
923 		    (current->personality & READ_IMPLIES_EXEC))
924 			prot |= PROT_EXEC;
925 	}
926 
927 	/* allow the security API to have its say */
928 	ret = security_mmap_addr(addr);
929 	if (ret < 0)
930 		return ret;
931 
932 	/* looks okay */
933 	*_capabilities = capabilities;
934 	return 0;
935 }
936 
937 /*
938  * we've determined that we can make the mapping, now translate what we
939  * now know into VMA flags
940  */
941 static unsigned long determine_vm_flags(struct file *file,
942 					unsigned long prot,
943 					unsigned long flags,
944 					unsigned long capabilities)
945 {
946 	unsigned long vm_flags;
947 
948 	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
949 	/* vm_flags |= mm->def_flags; */
950 
951 	if (!(capabilities & NOMMU_MAP_DIRECT)) {
952 		/* attempt to share read-only copies of mapped file chunks */
953 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
954 		if (file && !(prot & PROT_WRITE))
955 			vm_flags |= VM_MAYSHARE;
956 	} else {
957 		/* overlay a shareable mapping on the backing device or inode
958 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
959 		 * romfs/cramfs */
960 		vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
961 		if (flags & MAP_SHARED)
962 			vm_flags |= VM_SHARED;
963 	}
964 
965 	/* refuse to let anyone share private mappings with this process if
966 	 * it's being traced - otherwise breakpoints set in it may interfere
967 	 * with another untraced process
968 	 */
969 	if ((flags & MAP_PRIVATE) && current->ptrace)
970 		vm_flags &= ~VM_MAYSHARE;
971 
972 	return vm_flags;
973 }
974 
975 /*
976  * set up a shared mapping on a file (the driver or filesystem provides and
977  * pins the storage)
978  */
979 static int do_mmap_shared_file(struct vm_area_struct *vma)
980 {
981 	int ret;
982 
983 	ret = call_mmap(vma->vm_file, vma);
984 	if (ret == 0) {
985 		vma->vm_region->vm_top = vma->vm_region->vm_end;
986 		return 0;
987 	}
988 	if (ret != -ENOSYS)
989 		return ret;
990 
991 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
992 	 * opposed to tried but failed) so we can only give a suitable error as
993 	 * it's not possible to make a private copy if MAP_SHARED was given */
994 	return -ENODEV;
995 }
996 
997 /*
998  * set up a private mapping or an anonymous shared mapping
999  */
1000 static int do_mmap_private(struct vm_area_struct *vma,
1001 			   struct vm_region *region,
1002 			   unsigned long len,
1003 			   unsigned long capabilities)
1004 {
1005 	unsigned long total, point;
1006 	void *base;
1007 	int ret, order;
1008 
1009 	/* invoke the file's mapping function so that it can keep track of
1010 	 * shared mappings on devices or memory
1011 	 * - VM_MAYSHARE will be set if it may attempt to share
1012 	 */
1013 	if (capabilities & NOMMU_MAP_DIRECT) {
1014 		ret = call_mmap(vma->vm_file, vma);
1015 		if (ret == 0) {
1016 			/* shouldn't return success if we're not sharing */
1017 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1018 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1019 			return 0;
1020 		}
1021 		if (ret != -ENOSYS)
1022 			return ret;
1023 
1024 		/* getting an ENOSYS error indicates that direct mmap isn't
1025 		 * possible (as opposed to tried but failed) so we'll try to
1026 		 * make a private copy of the data and map that instead */
1027 	}
1028 
1029 
1030 	/* allocate some memory to hold the mapping
1031 	 * - note that this may not return a page-aligned address if the object
1032 	 *   we're allocating is smaller than a page
1033 	 */
1034 	order = get_order(len);
1035 	total = 1 << order;
1036 	point = len >> PAGE_SHIFT;
1037 
1038 	/* we don't want to allocate a power-of-2 sized page set */
1039 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1040 		total = point;
1041 
1042 	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1043 	if (!base)
1044 		goto enomem;
1045 
1046 	atomic_long_add(total, &mmap_pages_allocated);
1047 
1048 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1049 	region->vm_start = (unsigned long) base;
1050 	region->vm_end   = region->vm_start + len;
1051 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1052 
1053 	vma->vm_start = region->vm_start;
1054 	vma->vm_end   = region->vm_start + len;
1055 
1056 	if (vma->vm_file) {
1057 		/* read the contents of a file into the copy */
1058 		loff_t fpos;
1059 
1060 		fpos = vma->vm_pgoff;
1061 		fpos <<= PAGE_SHIFT;
1062 
1063 		ret = kernel_read(vma->vm_file, base, len, &fpos);
1064 		if (ret < 0)
1065 			goto error_free;
1066 
1067 		/* clear the last little bit */
1068 		if (ret < len)
1069 			memset(base + ret, 0, len - ret);
1070 
1071 	} else {
1072 		vma_set_anonymous(vma);
1073 	}
1074 
1075 	return 0;
1076 
1077 error_free:
1078 	free_page_series(region->vm_start, region->vm_top);
1079 	region->vm_start = vma->vm_start = 0;
1080 	region->vm_end   = vma->vm_end = 0;
1081 	region->vm_top   = 0;
1082 	return ret;
1083 
1084 enomem:
1085 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1086 	       len, current->pid, current->comm);
1087 	show_free_areas(0, NULL);
1088 	return -ENOMEM;
1089 }
1090 
1091 /*
1092  * handle mapping creation for uClinux
1093  */
1094 unsigned long do_mmap(struct file *file,
1095 			unsigned long addr,
1096 			unsigned long len,
1097 			unsigned long prot,
1098 			unsigned long flags,
1099 			vm_flags_t vm_flags,
1100 			unsigned long pgoff,
1101 			unsigned long *populate,
1102 			struct list_head *uf)
1103 {
1104 	struct vm_area_struct *vma;
1105 	struct vm_region *region;
1106 	struct rb_node *rb;
1107 	unsigned long capabilities, result;
1108 	int ret;
1109 
1110 	*populate = 0;
1111 
1112 	/* decide whether we should attempt the mapping, and if so what sort of
1113 	 * mapping */
1114 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1115 				    &capabilities);
1116 	if (ret < 0)
1117 		return ret;
1118 
1119 	/* we ignore the address hint */
1120 	addr = 0;
1121 	len = PAGE_ALIGN(len);
1122 
1123 	/* we've determined that we can make the mapping, now translate what we
1124 	 * now know into VMA flags */
1125 	vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1126 
1127 	/* we're going to need to record the mapping */
1128 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1129 	if (!region)
1130 		goto error_getting_region;
1131 
1132 	vma = vm_area_alloc(current->mm);
1133 	if (!vma)
1134 		goto error_getting_vma;
1135 
1136 	region->vm_usage = 1;
1137 	region->vm_flags = vm_flags;
1138 	region->vm_pgoff = pgoff;
1139 
1140 	vma->vm_flags = vm_flags;
1141 	vma->vm_pgoff = pgoff;
1142 
1143 	if (file) {
1144 		region->vm_file = get_file(file);
1145 		vma->vm_file = get_file(file);
1146 	}
1147 
1148 	down_write(&nommu_region_sem);
1149 
1150 	/* if we want to share, we need to check for regions created by other
1151 	 * mmap() calls that overlap with our proposed mapping
1152 	 * - we can only share with a superset match on most regular files
1153 	 * - shared mappings on character devices and memory backed files are
1154 	 *   permitted to overlap inexactly as far as we are concerned for in
1155 	 *   these cases, sharing is handled in the driver or filesystem rather
1156 	 *   than here
1157 	 */
1158 	if (vm_flags & VM_MAYSHARE) {
1159 		struct vm_region *pregion;
1160 		unsigned long pglen, rpglen, pgend, rpgend, start;
1161 
1162 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1163 		pgend = pgoff + pglen;
1164 
1165 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1166 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1167 
1168 			if (!(pregion->vm_flags & VM_MAYSHARE))
1169 				continue;
1170 
1171 			/* search for overlapping mappings on the same file */
1172 			if (file_inode(pregion->vm_file) !=
1173 			    file_inode(file))
1174 				continue;
1175 
1176 			if (pregion->vm_pgoff >= pgend)
1177 				continue;
1178 
1179 			rpglen = pregion->vm_end - pregion->vm_start;
1180 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1181 			rpgend = pregion->vm_pgoff + rpglen;
1182 			if (pgoff >= rpgend)
1183 				continue;
1184 
1185 			/* handle inexactly overlapping matches between
1186 			 * mappings */
1187 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1188 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1189 				/* new mapping is not a subset of the region */
1190 				if (!(capabilities & NOMMU_MAP_DIRECT))
1191 					goto sharing_violation;
1192 				continue;
1193 			}
1194 
1195 			/* we've found a region we can share */
1196 			pregion->vm_usage++;
1197 			vma->vm_region = pregion;
1198 			start = pregion->vm_start;
1199 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1200 			vma->vm_start = start;
1201 			vma->vm_end = start + len;
1202 
1203 			if (pregion->vm_flags & VM_MAPPED_COPY)
1204 				vma->vm_flags |= VM_MAPPED_COPY;
1205 			else {
1206 				ret = do_mmap_shared_file(vma);
1207 				if (ret < 0) {
1208 					vma->vm_region = NULL;
1209 					vma->vm_start = 0;
1210 					vma->vm_end = 0;
1211 					pregion->vm_usage--;
1212 					pregion = NULL;
1213 					goto error_just_free;
1214 				}
1215 			}
1216 			fput(region->vm_file);
1217 			kmem_cache_free(vm_region_jar, region);
1218 			region = pregion;
1219 			result = start;
1220 			goto share;
1221 		}
1222 
1223 		/* obtain the address at which to make a shared mapping
1224 		 * - this is the hook for quasi-memory character devices to
1225 		 *   tell us the location of a shared mapping
1226 		 */
1227 		if (capabilities & NOMMU_MAP_DIRECT) {
1228 			addr = file->f_op->get_unmapped_area(file, addr, len,
1229 							     pgoff, flags);
1230 			if (IS_ERR_VALUE(addr)) {
1231 				ret = addr;
1232 				if (ret != -ENOSYS)
1233 					goto error_just_free;
1234 
1235 				/* the driver refused to tell us where to site
1236 				 * the mapping so we'll have to attempt to copy
1237 				 * it */
1238 				ret = -ENODEV;
1239 				if (!(capabilities & NOMMU_MAP_COPY))
1240 					goto error_just_free;
1241 
1242 				capabilities &= ~NOMMU_MAP_DIRECT;
1243 			} else {
1244 				vma->vm_start = region->vm_start = addr;
1245 				vma->vm_end = region->vm_end = addr + len;
1246 			}
1247 		}
1248 	}
1249 
1250 	vma->vm_region = region;
1251 
1252 	/* set up the mapping
1253 	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1254 	 */
1255 	if (file && vma->vm_flags & VM_SHARED)
1256 		ret = do_mmap_shared_file(vma);
1257 	else
1258 		ret = do_mmap_private(vma, region, len, capabilities);
1259 	if (ret < 0)
1260 		goto error_just_free;
1261 	add_nommu_region(region);
1262 
1263 	/* clear anonymous mappings that don't ask for uninitialized data */
1264 	if (!vma->vm_file &&
1265 	    (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1266 	     !(flags & MAP_UNINITIALIZED)))
1267 		memset((void *)region->vm_start, 0,
1268 		       region->vm_end - region->vm_start);
1269 
1270 	/* okay... we have a mapping; now we have to register it */
1271 	result = vma->vm_start;
1272 
1273 	current->mm->total_vm += len >> PAGE_SHIFT;
1274 
1275 share:
1276 	add_vma_to_mm(current->mm, vma);
1277 
1278 	/* we flush the region from the icache only when the first executable
1279 	 * mapping of it is made  */
1280 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1281 		flush_icache_range(region->vm_start, region->vm_end);
1282 		region->vm_icache_flushed = true;
1283 	}
1284 
1285 	up_write(&nommu_region_sem);
1286 
1287 	return result;
1288 
1289 error_just_free:
1290 	up_write(&nommu_region_sem);
1291 error:
1292 	if (region->vm_file)
1293 		fput(region->vm_file);
1294 	kmem_cache_free(vm_region_jar, region);
1295 	if (vma->vm_file)
1296 		fput(vma->vm_file);
1297 	vm_area_free(vma);
1298 	return ret;
1299 
1300 sharing_violation:
1301 	up_write(&nommu_region_sem);
1302 	pr_warn("Attempt to share mismatched mappings\n");
1303 	ret = -EINVAL;
1304 	goto error;
1305 
1306 error_getting_vma:
1307 	kmem_cache_free(vm_region_jar, region);
1308 	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1309 			len, current->pid);
1310 	show_free_areas(0, NULL);
1311 	return -ENOMEM;
1312 
1313 error_getting_region:
1314 	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1315 			len, current->pid);
1316 	show_free_areas(0, NULL);
1317 	return -ENOMEM;
1318 }
1319 
1320 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1321 			      unsigned long prot, unsigned long flags,
1322 			      unsigned long fd, unsigned long pgoff)
1323 {
1324 	struct file *file = NULL;
1325 	unsigned long retval = -EBADF;
1326 
1327 	audit_mmap_fd(fd, flags);
1328 	if (!(flags & MAP_ANONYMOUS)) {
1329 		file = fget(fd);
1330 		if (!file)
1331 			goto out;
1332 	}
1333 
1334 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1335 
1336 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1337 
1338 	if (file)
1339 		fput(file);
1340 out:
1341 	return retval;
1342 }
1343 
1344 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1345 		unsigned long, prot, unsigned long, flags,
1346 		unsigned long, fd, unsigned long, pgoff)
1347 {
1348 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1349 }
1350 
1351 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1352 struct mmap_arg_struct {
1353 	unsigned long addr;
1354 	unsigned long len;
1355 	unsigned long prot;
1356 	unsigned long flags;
1357 	unsigned long fd;
1358 	unsigned long offset;
1359 };
1360 
1361 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1362 {
1363 	struct mmap_arg_struct a;
1364 
1365 	if (copy_from_user(&a, arg, sizeof(a)))
1366 		return -EFAULT;
1367 	if (offset_in_page(a.offset))
1368 		return -EINVAL;
1369 
1370 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1371 			       a.offset >> PAGE_SHIFT);
1372 }
1373 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1374 
1375 /*
1376  * split a vma into two pieces at address 'addr', a new vma is allocated either
1377  * for the first part or the tail.
1378  */
1379 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1380 	      unsigned long addr, int new_below)
1381 {
1382 	struct vm_area_struct *new;
1383 	struct vm_region *region;
1384 	unsigned long npages;
1385 
1386 	/* we're only permitted to split anonymous regions (these should have
1387 	 * only a single usage on the region) */
1388 	if (vma->vm_file)
1389 		return -ENOMEM;
1390 
1391 	if (mm->map_count >= sysctl_max_map_count)
1392 		return -ENOMEM;
1393 
1394 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1395 	if (!region)
1396 		return -ENOMEM;
1397 
1398 	new = vm_area_dup(vma);
1399 	if (!new) {
1400 		kmem_cache_free(vm_region_jar, region);
1401 		return -ENOMEM;
1402 	}
1403 
1404 	/* most fields are the same, copy all, and then fixup */
1405 	*region = *vma->vm_region;
1406 	new->vm_region = region;
1407 
1408 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1409 
1410 	if (new_below) {
1411 		region->vm_top = region->vm_end = new->vm_end = addr;
1412 	} else {
1413 		region->vm_start = new->vm_start = addr;
1414 		region->vm_pgoff = new->vm_pgoff += npages;
1415 	}
1416 
1417 	if (new->vm_ops && new->vm_ops->open)
1418 		new->vm_ops->open(new);
1419 
1420 	delete_vma_from_mm(vma);
1421 	down_write(&nommu_region_sem);
1422 	delete_nommu_region(vma->vm_region);
1423 	if (new_below) {
1424 		vma->vm_region->vm_start = vma->vm_start = addr;
1425 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1426 	} else {
1427 		vma->vm_region->vm_end = vma->vm_end = addr;
1428 		vma->vm_region->vm_top = addr;
1429 	}
1430 	add_nommu_region(vma->vm_region);
1431 	add_nommu_region(new->vm_region);
1432 	up_write(&nommu_region_sem);
1433 	add_vma_to_mm(mm, vma);
1434 	add_vma_to_mm(mm, new);
1435 	return 0;
1436 }
1437 
1438 /*
1439  * shrink a VMA by removing the specified chunk from either the beginning or
1440  * the end
1441  */
1442 static int shrink_vma(struct mm_struct *mm,
1443 		      struct vm_area_struct *vma,
1444 		      unsigned long from, unsigned long to)
1445 {
1446 	struct vm_region *region;
1447 
1448 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1449 	 * and list */
1450 	delete_vma_from_mm(vma);
1451 	if (from > vma->vm_start)
1452 		vma->vm_end = from;
1453 	else
1454 		vma->vm_start = to;
1455 	add_vma_to_mm(mm, vma);
1456 
1457 	/* cut the backing region down to size */
1458 	region = vma->vm_region;
1459 	BUG_ON(region->vm_usage != 1);
1460 
1461 	down_write(&nommu_region_sem);
1462 	delete_nommu_region(region);
1463 	if (from > region->vm_start) {
1464 		to = region->vm_top;
1465 		region->vm_top = region->vm_end = from;
1466 	} else {
1467 		region->vm_start = to;
1468 	}
1469 	add_nommu_region(region);
1470 	up_write(&nommu_region_sem);
1471 
1472 	free_page_series(from, to);
1473 	return 0;
1474 }
1475 
1476 /*
1477  * release a mapping
1478  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1479  *   VMA, though it need not cover the whole VMA
1480  */
1481 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1482 {
1483 	struct vm_area_struct *vma;
1484 	unsigned long end;
1485 	int ret;
1486 
1487 	len = PAGE_ALIGN(len);
1488 	if (len == 0)
1489 		return -EINVAL;
1490 
1491 	end = start + len;
1492 
1493 	/* find the first potentially overlapping VMA */
1494 	vma = find_vma(mm, start);
1495 	if (!vma) {
1496 		static int limit;
1497 		if (limit < 5) {
1498 			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1499 					current->pid, current->comm,
1500 					start, start + len - 1);
1501 			limit++;
1502 		}
1503 		return -EINVAL;
1504 	}
1505 
1506 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1507 	if (vma->vm_file) {
1508 		do {
1509 			if (start > vma->vm_start)
1510 				return -EINVAL;
1511 			if (end == vma->vm_end)
1512 				goto erase_whole_vma;
1513 			vma = vma->vm_next;
1514 		} while (vma);
1515 		return -EINVAL;
1516 	} else {
1517 		/* the chunk must be a subset of the VMA found */
1518 		if (start == vma->vm_start && end == vma->vm_end)
1519 			goto erase_whole_vma;
1520 		if (start < vma->vm_start || end > vma->vm_end)
1521 			return -EINVAL;
1522 		if (offset_in_page(start))
1523 			return -EINVAL;
1524 		if (end != vma->vm_end && offset_in_page(end))
1525 			return -EINVAL;
1526 		if (start != vma->vm_start && end != vma->vm_end) {
1527 			ret = split_vma(mm, vma, start, 1);
1528 			if (ret < 0)
1529 				return ret;
1530 		}
1531 		return shrink_vma(mm, vma, start, end);
1532 	}
1533 
1534 erase_whole_vma:
1535 	delete_vma_from_mm(vma);
1536 	delete_vma(mm, vma);
1537 	return 0;
1538 }
1539 EXPORT_SYMBOL(do_munmap);
1540 
1541 int vm_munmap(unsigned long addr, size_t len)
1542 {
1543 	struct mm_struct *mm = current->mm;
1544 	int ret;
1545 
1546 	down_write(&mm->mmap_sem);
1547 	ret = do_munmap(mm, addr, len, NULL);
1548 	up_write(&mm->mmap_sem);
1549 	return ret;
1550 }
1551 EXPORT_SYMBOL(vm_munmap);
1552 
1553 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1554 {
1555 	return vm_munmap(addr, len);
1556 }
1557 
1558 /*
1559  * release all the mappings made in a process's VM space
1560  */
1561 void exit_mmap(struct mm_struct *mm)
1562 {
1563 	struct vm_area_struct *vma;
1564 
1565 	if (!mm)
1566 		return;
1567 
1568 	mm->total_vm = 0;
1569 
1570 	while ((vma = mm->mmap)) {
1571 		mm->mmap = vma->vm_next;
1572 		delete_vma_from_mm(vma);
1573 		delete_vma(mm, vma);
1574 		cond_resched();
1575 	}
1576 }
1577 
1578 int vm_brk(unsigned long addr, unsigned long len)
1579 {
1580 	return -ENOMEM;
1581 }
1582 
1583 /*
1584  * expand (or shrink) an existing mapping, potentially moving it at the same
1585  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1586  *
1587  * under NOMMU conditions, we only permit changing a mapping's size, and only
1588  * as long as it stays within the region allocated by do_mmap_private() and the
1589  * block is not shareable
1590  *
1591  * MREMAP_FIXED is not supported under NOMMU conditions
1592  */
1593 static unsigned long do_mremap(unsigned long addr,
1594 			unsigned long old_len, unsigned long new_len,
1595 			unsigned long flags, unsigned long new_addr)
1596 {
1597 	struct vm_area_struct *vma;
1598 
1599 	/* insanity checks first */
1600 	old_len = PAGE_ALIGN(old_len);
1601 	new_len = PAGE_ALIGN(new_len);
1602 	if (old_len == 0 || new_len == 0)
1603 		return (unsigned long) -EINVAL;
1604 
1605 	if (offset_in_page(addr))
1606 		return -EINVAL;
1607 
1608 	if (flags & MREMAP_FIXED && new_addr != addr)
1609 		return (unsigned long) -EINVAL;
1610 
1611 	vma = find_vma_exact(current->mm, addr, old_len);
1612 	if (!vma)
1613 		return (unsigned long) -EINVAL;
1614 
1615 	if (vma->vm_end != vma->vm_start + old_len)
1616 		return (unsigned long) -EFAULT;
1617 
1618 	if (vma->vm_flags & VM_MAYSHARE)
1619 		return (unsigned long) -EPERM;
1620 
1621 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1622 		return (unsigned long) -ENOMEM;
1623 
1624 	/* all checks complete - do it */
1625 	vma->vm_end = vma->vm_start + new_len;
1626 	return vma->vm_start;
1627 }
1628 
1629 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1630 		unsigned long, new_len, unsigned long, flags,
1631 		unsigned long, new_addr)
1632 {
1633 	unsigned long ret;
1634 
1635 	down_write(&current->mm->mmap_sem);
1636 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1637 	up_write(&current->mm->mmap_sem);
1638 	return ret;
1639 }
1640 
1641 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1642 			 unsigned int foll_flags)
1643 {
1644 	return NULL;
1645 }
1646 
1647 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1648 		unsigned long pfn, unsigned long size, pgprot_t prot)
1649 {
1650 	if (addr != (pfn << PAGE_SHIFT))
1651 		return -EINVAL;
1652 
1653 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1654 	return 0;
1655 }
1656 EXPORT_SYMBOL(remap_pfn_range);
1657 
1658 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1659 {
1660 	unsigned long pfn = start >> PAGE_SHIFT;
1661 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1662 
1663 	pfn += vma->vm_pgoff;
1664 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1665 }
1666 EXPORT_SYMBOL(vm_iomap_memory);
1667 
1668 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1669 			unsigned long pgoff)
1670 {
1671 	unsigned int size = vma->vm_end - vma->vm_start;
1672 
1673 	if (!(vma->vm_flags & VM_USERMAP))
1674 		return -EINVAL;
1675 
1676 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1677 	vma->vm_end = vma->vm_start + size;
1678 
1679 	return 0;
1680 }
1681 EXPORT_SYMBOL(remap_vmalloc_range);
1682 
1683 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1684 	unsigned long len, unsigned long pgoff, unsigned long flags)
1685 {
1686 	return -ENOMEM;
1687 }
1688 
1689 vm_fault_t filemap_fault(struct vm_fault *vmf)
1690 {
1691 	BUG();
1692 	return 0;
1693 }
1694 EXPORT_SYMBOL(filemap_fault);
1695 
1696 void filemap_map_pages(struct vm_fault *vmf,
1697 		pgoff_t start_pgoff, pgoff_t end_pgoff)
1698 {
1699 	BUG();
1700 }
1701 EXPORT_SYMBOL(filemap_map_pages);
1702 
1703 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1704 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
1705 {
1706 	struct vm_area_struct *vma;
1707 	int write = gup_flags & FOLL_WRITE;
1708 
1709 	if (down_read_killable(&mm->mmap_sem))
1710 		return 0;
1711 
1712 	/* the access must start within one of the target process's mappings */
1713 	vma = find_vma(mm, addr);
1714 	if (vma) {
1715 		/* don't overrun this mapping */
1716 		if (addr + len >= vma->vm_end)
1717 			len = vma->vm_end - addr;
1718 
1719 		/* only read or write mappings where it is permitted */
1720 		if (write && vma->vm_flags & VM_MAYWRITE)
1721 			copy_to_user_page(vma, NULL, addr,
1722 					 (void *) addr, buf, len);
1723 		else if (!write && vma->vm_flags & VM_MAYREAD)
1724 			copy_from_user_page(vma, NULL, addr,
1725 					    buf, (void *) addr, len);
1726 		else
1727 			len = 0;
1728 	} else {
1729 		len = 0;
1730 	}
1731 
1732 	up_read(&mm->mmap_sem);
1733 
1734 	return len;
1735 }
1736 
1737 /**
1738  * access_remote_vm - access another process' address space
1739  * @mm:		the mm_struct of the target address space
1740  * @addr:	start address to access
1741  * @buf:	source or destination buffer
1742  * @len:	number of bytes to transfer
1743  * @gup_flags:	flags modifying lookup behaviour
1744  *
1745  * The caller must hold a reference on @mm.
1746  */
1747 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1748 		void *buf, int len, unsigned int gup_flags)
1749 {
1750 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1751 }
1752 
1753 /*
1754  * Access another process' address space.
1755  * - source/target buffer must be kernel space
1756  */
1757 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1758 		unsigned int gup_flags)
1759 {
1760 	struct mm_struct *mm;
1761 
1762 	if (addr + len < addr)
1763 		return 0;
1764 
1765 	mm = get_task_mm(tsk);
1766 	if (!mm)
1767 		return 0;
1768 
1769 	len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1770 
1771 	mmput(mm);
1772 	return len;
1773 }
1774 EXPORT_SYMBOL_GPL(access_process_vm);
1775 
1776 /**
1777  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1778  * @inode: The inode to check
1779  * @size: The current filesize of the inode
1780  * @newsize: The proposed filesize of the inode
1781  *
1782  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1783  * make sure that that any outstanding VMAs aren't broken and then shrink the
1784  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1785  * automatically grant mappings that are too large.
1786  */
1787 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1788 				size_t newsize)
1789 {
1790 	struct vm_area_struct *vma;
1791 	struct vm_region *region;
1792 	pgoff_t low, high;
1793 	size_t r_size, r_top;
1794 
1795 	low = newsize >> PAGE_SHIFT;
1796 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1797 
1798 	down_write(&nommu_region_sem);
1799 	i_mmap_lock_read(inode->i_mapping);
1800 
1801 	/* search for VMAs that fall within the dead zone */
1802 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1803 		/* found one - only interested if it's shared out of the page
1804 		 * cache */
1805 		if (vma->vm_flags & VM_SHARED) {
1806 			i_mmap_unlock_read(inode->i_mapping);
1807 			up_write(&nommu_region_sem);
1808 			return -ETXTBSY; /* not quite true, but near enough */
1809 		}
1810 	}
1811 
1812 	/* reduce any regions that overlap the dead zone - if in existence,
1813 	 * these will be pointed to by VMAs that don't overlap the dead zone
1814 	 *
1815 	 * we don't check for any regions that start beyond the EOF as there
1816 	 * shouldn't be any
1817 	 */
1818 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1819 		if (!(vma->vm_flags & VM_SHARED))
1820 			continue;
1821 
1822 		region = vma->vm_region;
1823 		r_size = region->vm_top - region->vm_start;
1824 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1825 
1826 		if (r_top > newsize) {
1827 			region->vm_top -= r_top - newsize;
1828 			if (region->vm_end > region->vm_top)
1829 				region->vm_end = region->vm_top;
1830 		}
1831 	}
1832 
1833 	i_mmap_unlock_read(inode->i_mapping);
1834 	up_write(&nommu_region_sem);
1835 	return 0;
1836 }
1837 
1838 /*
1839  * Initialise sysctl_user_reserve_kbytes.
1840  *
1841  * This is intended to prevent a user from starting a single memory hogging
1842  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1843  * mode.
1844  *
1845  * The default value is min(3% of free memory, 128MB)
1846  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1847  */
1848 static int __meminit init_user_reserve(void)
1849 {
1850 	unsigned long free_kbytes;
1851 
1852 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1853 
1854 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1855 	return 0;
1856 }
1857 subsys_initcall(init_user_reserve);
1858 
1859 /*
1860  * Initialise sysctl_admin_reserve_kbytes.
1861  *
1862  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1863  * to log in and kill a memory hogging process.
1864  *
1865  * Systems with more than 256MB will reserve 8MB, enough to recover
1866  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1867  * only reserve 3% of free pages by default.
1868  */
1869 static int __meminit init_admin_reserve(void)
1870 {
1871 	unsigned long free_kbytes;
1872 
1873 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1874 
1875 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1876 	return 0;
1877 }
1878 subsys_initcall(init_admin_reserve);
1879