xref: /openbmc/linux/mm/nommu.c (revision b664e06d)
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/sched/mm.h>
21 #include <linux/vmacache.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/blkdev.h>
30 #include <linux/backing-dev.h>
31 #include <linux/compiler.h>
32 #include <linux/mount.h>
33 #include <linux/personality.h>
34 #include <linux/security.h>
35 #include <linux/syscalls.h>
36 #include <linux/audit.h>
37 #include <linux/printk.h>
38 
39 #include <linux/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44 
45 void *high_memory;
46 EXPORT_SYMBOL(high_memory);
47 struct page *mem_map;
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52 int heap_stack_gap = 0;
53 
54 atomic_long_t mmap_pages_allocated;
55 
56 EXPORT_SYMBOL(mem_map);
57 
58 /* list of mapped, potentially shareable regions */
59 static struct kmem_cache *vm_region_jar;
60 struct rb_root nommu_region_tree = RB_ROOT;
61 DECLARE_RWSEM(nommu_region_sem);
62 
63 const struct vm_operations_struct generic_file_vm_ops = {
64 };
65 
66 /*
67  * Return the total memory allocated for this pointer, not
68  * just what the caller asked for.
69  *
70  * Doesn't have to be accurate, i.e. may have races.
71  */
72 unsigned int kobjsize(const void *objp)
73 {
74 	struct page *page;
75 
76 	/*
77 	 * If the object we have should not have ksize performed on it,
78 	 * return size of 0
79 	 */
80 	if (!objp || !virt_addr_valid(objp))
81 		return 0;
82 
83 	page = virt_to_head_page(objp);
84 
85 	/*
86 	 * If the allocator sets PageSlab, we know the pointer came from
87 	 * kmalloc().
88 	 */
89 	if (PageSlab(page))
90 		return ksize(objp);
91 
92 	/*
93 	 * If it's not a compound page, see if we have a matching VMA
94 	 * region. This test is intentionally done in reverse order,
95 	 * so if there's no VMA, we still fall through and hand back
96 	 * PAGE_SIZE for 0-order pages.
97 	 */
98 	if (!PageCompound(page)) {
99 		struct vm_area_struct *vma;
100 
101 		vma = find_vma(current->mm, (unsigned long)objp);
102 		if (vma)
103 			return vma->vm_end - vma->vm_start;
104 	}
105 
106 	/*
107 	 * The ksize() function is only guaranteed to work for pointers
108 	 * returned by kmalloc(). So handle arbitrary pointers here.
109 	 */
110 	return PAGE_SIZE << compound_order(page);
111 }
112 
113 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
114 		      unsigned long start, unsigned long nr_pages,
115 		      unsigned int foll_flags, struct page **pages,
116 		      struct vm_area_struct **vmas, int *nonblocking)
117 {
118 	struct vm_area_struct *vma;
119 	unsigned long vm_flags;
120 	int i;
121 
122 	/* calculate required read or write permissions.
123 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
124 	 */
125 	vm_flags  = (foll_flags & FOLL_WRITE) ?
126 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
127 	vm_flags &= (foll_flags & FOLL_FORCE) ?
128 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
129 
130 	for (i = 0; i < nr_pages; i++) {
131 		vma = find_vma(mm, start);
132 		if (!vma)
133 			goto finish_or_fault;
134 
135 		/* protect what we can, including chardevs */
136 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
137 		    !(vm_flags & vma->vm_flags))
138 			goto finish_or_fault;
139 
140 		if (pages) {
141 			pages[i] = virt_to_page(start);
142 			if (pages[i])
143 				get_page(pages[i]);
144 		}
145 		if (vmas)
146 			vmas[i] = vma;
147 		start = (start + PAGE_SIZE) & PAGE_MASK;
148 	}
149 
150 	return i;
151 
152 finish_or_fault:
153 	return i ? : -EFAULT;
154 }
155 
156 /*
157  * get a list of pages in an address range belonging to the specified process
158  * and indicate the VMA that covers each page
159  * - this is potentially dodgy as we may end incrementing the page count of a
160  *   slab page or a secondary page from a compound page
161  * - don't permit access to VMAs that don't support it, such as I/O mappings
162  */
163 long get_user_pages(unsigned long start, unsigned long nr_pages,
164 		    unsigned int gup_flags, struct page **pages,
165 		    struct vm_area_struct **vmas)
166 {
167 	return __get_user_pages(current, current->mm, start, nr_pages,
168 				gup_flags, pages, vmas, NULL);
169 }
170 EXPORT_SYMBOL(get_user_pages);
171 
172 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
173 			    unsigned int gup_flags, struct page **pages,
174 			    int *locked)
175 {
176 	return get_user_pages(start, nr_pages, gup_flags, pages, NULL);
177 }
178 EXPORT_SYMBOL(get_user_pages_locked);
179 
180 static long __get_user_pages_unlocked(struct task_struct *tsk,
181 			struct mm_struct *mm, unsigned long start,
182 			unsigned long nr_pages, struct page **pages,
183 			unsigned int gup_flags)
184 {
185 	long ret;
186 	down_read(&mm->mmap_sem);
187 	ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
188 				NULL, NULL);
189 	up_read(&mm->mmap_sem);
190 	return ret;
191 }
192 
193 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
194 			     struct page **pages, unsigned int gup_flags)
195 {
196 	return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
197 					 pages, gup_flags);
198 }
199 EXPORT_SYMBOL(get_user_pages_unlocked);
200 
201 /**
202  * follow_pfn - look up PFN at a user virtual address
203  * @vma: memory mapping
204  * @address: user virtual address
205  * @pfn: location to store found PFN
206  *
207  * Only IO mappings and raw PFN mappings are allowed.
208  *
209  * Returns zero and the pfn at @pfn on success, -ve otherwise.
210  */
211 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
212 	unsigned long *pfn)
213 {
214 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
215 		return -EINVAL;
216 
217 	*pfn = address >> PAGE_SHIFT;
218 	return 0;
219 }
220 EXPORT_SYMBOL(follow_pfn);
221 
222 LIST_HEAD(vmap_area_list);
223 
224 void vfree(const void *addr)
225 {
226 	kfree(addr);
227 }
228 EXPORT_SYMBOL(vfree);
229 
230 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
231 {
232 	/*
233 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
234 	 * returns only a logical address.
235 	 */
236 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
237 }
238 EXPORT_SYMBOL(__vmalloc);
239 
240 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
241 {
242 	return __vmalloc(size, flags, PAGE_KERNEL);
243 }
244 
245 void *vmalloc_user(unsigned long size)
246 {
247 	void *ret;
248 
249 	ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
250 	if (ret) {
251 		struct vm_area_struct *vma;
252 
253 		down_write(&current->mm->mmap_sem);
254 		vma = find_vma(current->mm, (unsigned long)ret);
255 		if (vma)
256 			vma->vm_flags |= VM_USERMAP;
257 		up_write(&current->mm->mmap_sem);
258 	}
259 
260 	return ret;
261 }
262 EXPORT_SYMBOL(vmalloc_user);
263 
264 struct page *vmalloc_to_page(const void *addr)
265 {
266 	return virt_to_page(addr);
267 }
268 EXPORT_SYMBOL(vmalloc_to_page);
269 
270 unsigned long vmalloc_to_pfn(const void *addr)
271 {
272 	return page_to_pfn(virt_to_page(addr));
273 }
274 EXPORT_SYMBOL(vmalloc_to_pfn);
275 
276 long vread(char *buf, char *addr, unsigned long count)
277 {
278 	/* Don't allow overflow */
279 	if ((unsigned long) buf + count < count)
280 		count = -(unsigned long) buf;
281 
282 	memcpy(buf, addr, count);
283 	return count;
284 }
285 
286 long vwrite(char *buf, char *addr, unsigned long count)
287 {
288 	/* Don't allow overflow */
289 	if ((unsigned long) addr + count < count)
290 		count = -(unsigned long) addr;
291 
292 	memcpy(addr, buf, count);
293 	return count;
294 }
295 
296 /*
297  *	vmalloc  -  allocate virtually contiguous memory
298  *
299  *	@size:		allocation size
300  *
301  *	Allocate enough pages to cover @size from the page level
302  *	allocator and map them into contiguous kernel virtual space.
303  *
304  *	For tight control over page level allocator and protection flags
305  *	use __vmalloc() instead.
306  */
307 void *vmalloc(unsigned long size)
308 {
309        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
310 }
311 EXPORT_SYMBOL(vmalloc);
312 
313 /*
314  *	vzalloc - allocate virtually contiguous memory with zero fill
315  *
316  *	@size:		allocation size
317  *
318  *	Allocate enough pages to cover @size from the page level
319  *	allocator and map them into contiguous kernel virtual space.
320  *	The memory allocated is set to zero.
321  *
322  *	For tight control over page level allocator and protection flags
323  *	use __vmalloc() instead.
324  */
325 void *vzalloc(unsigned long size)
326 {
327 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
328 			PAGE_KERNEL);
329 }
330 EXPORT_SYMBOL(vzalloc);
331 
332 /**
333  * vmalloc_node - allocate memory on a specific node
334  * @size:	allocation size
335  * @node:	numa node
336  *
337  * Allocate enough pages to cover @size from the page level
338  * allocator and map them into contiguous kernel virtual space.
339  *
340  * For tight control over page level allocator and protection flags
341  * use __vmalloc() instead.
342  */
343 void *vmalloc_node(unsigned long size, int node)
344 {
345 	return vmalloc(size);
346 }
347 EXPORT_SYMBOL(vmalloc_node);
348 
349 /**
350  * vzalloc_node - allocate memory on a specific node with zero fill
351  * @size:	allocation size
352  * @node:	numa node
353  *
354  * Allocate enough pages to cover @size from the page level
355  * allocator and map them into contiguous kernel virtual space.
356  * The memory allocated is set to zero.
357  *
358  * For tight control over page level allocator and protection flags
359  * use __vmalloc() instead.
360  */
361 void *vzalloc_node(unsigned long size, int node)
362 {
363 	return vzalloc(size);
364 }
365 EXPORT_SYMBOL(vzalloc_node);
366 
367 /**
368  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
369  *	@size:		allocation size
370  *
371  *	Kernel-internal function to allocate enough pages to cover @size
372  *	the page level allocator and map them into contiguous and
373  *	executable kernel virtual space.
374  *
375  *	For tight control over page level allocator and protection flags
376  *	use __vmalloc() instead.
377  */
378 
379 void *vmalloc_exec(unsigned long size)
380 {
381 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
382 }
383 
384 /**
385  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
386  *	@size:		allocation size
387  *
388  *	Allocate enough 32bit PA addressable pages to cover @size from the
389  *	page level allocator and map them into contiguous kernel virtual space.
390  */
391 void *vmalloc_32(unsigned long size)
392 {
393 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
394 }
395 EXPORT_SYMBOL(vmalloc_32);
396 
397 /**
398  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
399  *	@size:		allocation size
400  *
401  * The resulting memory area is 32bit addressable and zeroed so it can be
402  * mapped to userspace without leaking data.
403  *
404  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
405  * remap_vmalloc_range() are permissible.
406  */
407 void *vmalloc_32_user(unsigned long size)
408 {
409 	/*
410 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
411 	 * but for now this can simply use vmalloc_user() directly.
412 	 */
413 	return vmalloc_user(size);
414 }
415 EXPORT_SYMBOL(vmalloc_32_user);
416 
417 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
418 {
419 	BUG();
420 	return NULL;
421 }
422 EXPORT_SYMBOL(vmap);
423 
424 void vunmap(const void *addr)
425 {
426 	BUG();
427 }
428 EXPORT_SYMBOL(vunmap);
429 
430 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
431 {
432 	BUG();
433 	return NULL;
434 }
435 EXPORT_SYMBOL(vm_map_ram);
436 
437 void vm_unmap_ram(const void *mem, unsigned int count)
438 {
439 	BUG();
440 }
441 EXPORT_SYMBOL(vm_unmap_ram);
442 
443 void vm_unmap_aliases(void)
444 {
445 }
446 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
447 
448 /*
449  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
450  * have one.
451  */
452 void __weak vmalloc_sync_all(void)
453 {
454 }
455 
456 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
457 {
458 	BUG();
459 	return NULL;
460 }
461 EXPORT_SYMBOL_GPL(alloc_vm_area);
462 
463 void free_vm_area(struct vm_struct *area)
464 {
465 	BUG();
466 }
467 EXPORT_SYMBOL_GPL(free_vm_area);
468 
469 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
470 		   struct page *page)
471 {
472 	return -EINVAL;
473 }
474 EXPORT_SYMBOL(vm_insert_page);
475 
476 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
477 			unsigned long num)
478 {
479 	return -EINVAL;
480 }
481 EXPORT_SYMBOL(vm_map_pages);
482 
483 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
484 				unsigned long num)
485 {
486 	return -EINVAL;
487 }
488 EXPORT_SYMBOL(vm_map_pages_zero);
489 
490 /*
491  *  sys_brk() for the most part doesn't need the global kernel
492  *  lock, except when an application is doing something nasty
493  *  like trying to un-brk an area that has already been mapped
494  *  to a regular file.  in this case, the unmapping will need
495  *  to invoke file system routines that need the global lock.
496  */
497 SYSCALL_DEFINE1(brk, unsigned long, brk)
498 {
499 	struct mm_struct *mm = current->mm;
500 
501 	if (brk < mm->start_brk || brk > mm->context.end_brk)
502 		return mm->brk;
503 
504 	if (mm->brk == brk)
505 		return mm->brk;
506 
507 	/*
508 	 * Always allow shrinking brk
509 	 */
510 	if (brk <= mm->brk) {
511 		mm->brk = brk;
512 		return brk;
513 	}
514 
515 	/*
516 	 * Ok, looks good - let it rip.
517 	 */
518 	flush_icache_range(mm->brk, brk);
519 	return mm->brk = brk;
520 }
521 
522 /*
523  * initialise the percpu counter for VM and region record slabs
524  */
525 void __init mmap_init(void)
526 {
527 	int ret;
528 
529 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
530 	VM_BUG_ON(ret);
531 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
532 }
533 
534 /*
535  * validate the region tree
536  * - the caller must hold the region lock
537  */
538 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
539 static noinline void validate_nommu_regions(void)
540 {
541 	struct vm_region *region, *last;
542 	struct rb_node *p, *lastp;
543 
544 	lastp = rb_first(&nommu_region_tree);
545 	if (!lastp)
546 		return;
547 
548 	last = rb_entry(lastp, struct vm_region, vm_rb);
549 	BUG_ON(last->vm_end <= last->vm_start);
550 	BUG_ON(last->vm_top < last->vm_end);
551 
552 	while ((p = rb_next(lastp))) {
553 		region = rb_entry(p, struct vm_region, vm_rb);
554 		last = rb_entry(lastp, struct vm_region, vm_rb);
555 
556 		BUG_ON(region->vm_end <= region->vm_start);
557 		BUG_ON(region->vm_top < region->vm_end);
558 		BUG_ON(region->vm_start < last->vm_top);
559 
560 		lastp = p;
561 	}
562 }
563 #else
564 static void validate_nommu_regions(void)
565 {
566 }
567 #endif
568 
569 /*
570  * add a region into the global tree
571  */
572 static void add_nommu_region(struct vm_region *region)
573 {
574 	struct vm_region *pregion;
575 	struct rb_node **p, *parent;
576 
577 	validate_nommu_regions();
578 
579 	parent = NULL;
580 	p = &nommu_region_tree.rb_node;
581 	while (*p) {
582 		parent = *p;
583 		pregion = rb_entry(parent, struct vm_region, vm_rb);
584 		if (region->vm_start < pregion->vm_start)
585 			p = &(*p)->rb_left;
586 		else if (region->vm_start > pregion->vm_start)
587 			p = &(*p)->rb_right;
588 		else if (pregion == region)
589 			return;
590 		else
591 			BUG();
592 	}
593 
594 	rb_link_node(&region->vm_rb, parent, p);
595 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
596 
597 	validate_nommu_regions();
598 }
599 
600 /*
601  * delete a region from the global tree
602  */
603 static void delete_nommu_region(struct vm_region *region)
604 {
605 	BUG_ON(!nommu_region_tree.rb_node);
606 
607 	validate_nommu_regions();
608 	rb_erase(&region->vm_rb, &nommu_region_tree);
609 	validate_nommu_regions();
610 }
611 
612 /*
613  * free a contiguous series of pages
614  */
615 static void free_page_series(unsigned long from, unsigned long to)
616 {
617 	for (; from < to; from += PAGE_SIZE) {
618 		struct page *page = virt_to_page(from);
619 
620 		atomic_long_dec(&mmap_pages_allocated);
621 		put_page(page);
622 	}
623 }
624 
625 /*
626  * release a reference to a region
627  * - the caller must hold the region semaphore for writing, which this releases
628  * - the region may not have been added to the tree yet, in which case vm_top
629  *   will equal vm_start
630  */
631 static void __put_nommu_region(struct vm_region *region)
632 	__releases(nommu_region_sem)
633 {
634 	BUG_ON(!nommu_region_tree.rb_node);
635 
636 	if (--region->vm_usage == 0) {
637 		if (region->vm_top > region->vm_start)
638 			delete_nommu_region(region);
639 		up_write(&nommu_region_sem);
640 
641 		if (region->vm_file)
642 			fput(region->vm_file);
643 
644 		/* IO memory and memory shared directly out of the pagecache
645 		 * from ramfs/tmpfs mustn't be released here */
646 		if (region->vm_flags & VM_MAPPED_COPY)
647 			free_page_series(region->vm_start, region->vm_top);
648 		kmem_cache_free(vm_region_jar, region);
649 	} else {
650 		up_write(&nommu_region_sem);
651 	}
652 }
653 
654 /*
655  * release a reference to a region
656  */
657 static void put_nommu_region(struct vm_region *region)
658 {
659 	down_write(&nommu_region_sem);
660 	__put_nommu_region(region);
661 }
662 
663 /*
664  * add a VMA into a process's mm_struct in the appropriate place in the list
665  * and tree and add to the address space's page tree also if not an anonymous
666  * page
667  * - should be called with mm->mmap_sem held writelocked
668  */
669 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
670 {
671 	struct vm_area_struct *pvma, *prev;
672 	struct address_space *mapping;
673 	struct rb_node **p, *parent, *rb_prev;
674 
675 	BUG_ON(!vma->vm_region);
676 
677 	mm->map_count++;
678 	vma->vm_mm = mm;
679 
680 	/* add the VMA to the mapping */
681 	if (vma->vm_file) {
682 		mapping = vma->vm_file->f_mapping;
683 
684 		i_mmap_lock_write(mapping);
685 		flush_dcache_mmap_lock(mapping);
686 		vma_interval_tree_insert(vma, &mapping->i_mmap);
687 		flush_dcache_mmap_unlock(mapping);
688 		i_mmap_unlock_write(mapping);
689 	}
690 
691 	/* add the VMA to the tree */
692 	parent = rb_prev = NULL;
693 	p = &mm->mm_rb.rb_node;
694 	while (*p) {
695 		parent = *p;
696 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
697 
698 		/* sort by: start addr, end addr, VMA struct addr in that order
699 		 * (the latter is necessary as we may get identical VMAs) */
700 		if (vma->vm_start < pvma->vm_start)
701 			p = &(*p)->rb_left;
702 		else if (vma->vm_start > pvma->vm_start) {
703 			rb_prev = parent;
704 			p = &(*p)->rb_right;
705 		} else if (vma->vm_end < pvma->vm_end)
706 			p = &(*p)->rb_left;
707 		else if (vma->vm_end > pvma->vm_end) {
708 			rb_prev = parent;
709 			p = &(*p)->rb_right;
710 		} else if (vma < pvma)
711 			p = &(*p)->rb_left;
712 		else if (vma > pvma) {
713 			rb_prev = parent;
714 			p = &(*p)->rb_right;
715 		} else
716 			BUG();
717 	}
718 
719 	rb_link_node(&vma->vm_rb, parent, p);
720 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
721 
722 	/* add VMA to the VMA list also */
723 	prev = NULL;
724 	if (rb_prev)
725 		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
726 
727 	__vma_link_list(mm, vma, prev, parent);
728 }
729 
730 /*
731  * delete a VMA from its owning mm_struct and address space
732  */
733 static void delete_vma_from_mm(struct vm_area_struct *vma)
734 {
735 	int i;
736 	struct address_space *mapping;
737 	struct mm_struct *mm = vma->vm_mm;
738 	struct task_struct *curr = current;
739 
740 	mm->map_count--;
741 	for (i = 0; i < VMACACHE_SIZE; i++) {
742 		/* if the vma is cached, invalidate the entire cache */
743 		if (curr->vmacache.vmas[i] == vma) {
744 			vmacache_invalidate(mm);
745 			break;
746 		}
747 	}
748 
749 	/* remove the VMA from the mapping */
750 	if (vma->vm_file) {
751 		mapping = vma->vm_file->f_mapping;
752 
753 		i_mmap_lock_write(mapping);
754 		flush_dcache_mmap_lock(mapping);
755 		vma_interval_tree_remove(vma, &mapping->i_mmap);
756 		flush_dcache_mmap_unlock(mapping);
757 		i_mmap_unlock_write(mapping);
758 	}
759 
760 	/* remove from the MM's tree and list */
761 	rb_erase(&vma->vm_rb, &mm->mm_rb);
762 
763 	if (vma->vm_prev)
764 		vma->vm_prev->vm_next = vma->vm_next;
765 	else
766 		mm->mmap = vma->vm_next;
767 
768 	if (vma->vm_next)
769 		vma->vm_next->vm_prev = vma->vm_prev;
770 }
771 
772 /*
773  * destroy a VMA record
774  */
775 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
776 {
777 	if (vma->vm_ops && vma->vm_ops->close)
778 		vma->vm_ops->close(vma);
779 	if (vma->vm_file)
780 		fput(vma->vm_file);
781 	put_nommu_region(vma->vm_region);
782 	vm_area_free(vma);
783 }
784 
785 /*
786  * look up the first VMA in which addr resides, NULL if none
787  * - should be called with mm->mmap_sem at least held readlocked
788  */
789 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
790 {
791 	struct vm_area_struct *vma;
792 
793 	/* check the cache first */
794 	vma = vmacache_find(mm, addr);
795 	if (likely(vma))
796 		return vma;
797 
798 	/* trawl the list (there may be multiple mappings in which addr
799 	 * resides) */
800 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
801 		if (vma->vm_start > addr)
802 			return NULL;
803 		if (vma->vm_end > addr) {
804 			vmacache_update(addr, vma);
805 			return vma;
806 		}
807 	}
808 
809 	return NULL;
810 }
811 EXPORT_SYMBOL(find_vma);
812 
813 /*
814  * find a VMA
815  * - we don't extend stack VMAs under NOMMU conditions
816  */
817 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
818 {
819 	return find_vma(mm, addr);
820 }
821 
822 /*
823  * expand a stack to a given address
824  * - not supported under NOMMU conditions
825  */
826 int expand_stack(struct vm_area_struct *vma, unsigned long address)
827 {
828 	return -ENOMEM;
829 }
830 
831 /*
832  * look up the first VMA exactly that exactly matches addr
833  * - should be called with mm->mmap_sem at least held readlocked
834  */
835 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
836 					     unsigned long addr,
837 					     unsigned long len)
838 {
839 	struct vm_area_struct *vma;
840 	unsigned long end = addr + len;
841 
842 	/* check the cache first */
843 	vma = vmacache_find_exact(mm, addr, end);
844 	if (vma)
845 		return vma;
846 
847 	/* trawl the list (there may be multiple mappings in which addr
848 	 * resides) */
849 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
850 		if (vma->vm_start < addr)
851 			continue;
852 		if (vma->vm_start > addr)
853 			return NULL;
854 		if (vma->vm_end == end) {
855 			vmacache_update(addr, vma);
856 			return vma;
857 		}
858 	}
859 
860 	return NULL;
861 }
862 
863 /*
864  * determine whether a mapping should be permitted and, if so, what sort of
865  * mapping we're capable of supporting
866  */
867 static int validate_mmap_request(struct file *file,
868 				 unsigned long addr,
869 				 unsigned long len,
870 				 unsigned long prot,
871 				 unsigned long flags,
872 				 unsigned long pgoff,
873 				 unsigned long *_capabilities)
874 {
875 	unsigned long capabilities, rlen;
876 	int ret;
877 
878 	/* do the simple checks first */
879 	if (flags & MAP_FIXED)
880 		return -EINVAL;
881 
882 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
883 	    (flags & MAP_TYPE) != MAP_SHARED)
884 		return -EINVAL;
885 
886 	if (!len)
887 		return -EINVAL;
888 
889 	/* Careful about overflows.. */
890 	rlen = PAGE_ALIGN(len);
891 	if (!rlen || rlen > TASK_SIZE)
892 		return -ENOMEM;
893 
894 	/* offset overflow? */
895 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
896 		return -EOVERFLOW;
897 
898 	if (file) {
899 		/* files must support mmap */
900 		if (!file->f_op->mmap)
901 			return -ENODEV;
902 
903 		/* work out if what we've got could possibly be shared
904 		 * - we support chardevs that provide their own "memory"
905 		 * - we support files/blockdevs that are memory backed
906 		 */
907 		if (file->f_op->mmap_capabilities) {
908 			capabilities = file->f_op->mmap_capabilities(file);
909 		} else {
910 			/* no explicit capabilities set, so assume some
911 			 * defaults */
912 			switch (file_inode(file)->i_mode & S_IFMT) {
913 			case S_IFREG:
914 			case S_IFBLK:
915 				capabilities = NOMMU_MAP_COPY;
916 				break;
917 
918 			case S_IFCHR:
919 				capabilities =
920 					NOMMU_MAP_DIRECT |
921 					NOMMU_MAP_READ |
922 					NOMMU_MAP_WRITE;
923 				break;
924 
925 			default:
926 				return -EINVAL;
927 			}
928 		}
929 
930 		/* eliminate any capabilities that we can't support on this
931 		 * device */
932 		if (!file->f_op->get_unmapped_area)
933 			capabilities &= ~NOMMU_MAP_DIRECT;
934 		if (!(file->f_mode & FMODE_CAN_READ))
935 			capabilities &= ~NOMMU_MAP_COPY;
936 
937 		/* The file shall have been opened with read permission. */
938 		if (!(file->f_mode & FMODE_READ))
939 			return -EACCES;
940 
941 		if (flags & MAP_SHARED) {
942 			/* do checks for writing, appending and locking */
943 			if ((prot & PROT_WRITE) &&
944 			    !(file->f_mode & FMODE_WRITE))
945 				return -EACCES;
946 
947 			if (IS_APPEND(file_inode(file)) &&
948 			    (file->f_mode & FMODE_WRITE))
949 				return -EACCES;
950 
951 			if (locks_verify_locked(file))
952 				return -EAGAIN;
953 
954 			if (!(capabilities & NOMMU_MAP_DIRECT))
955 				return -ENODEV;
956 
957 			/* we mustn't privatise shared mappings */
958 			capabilities &= ~NOMMU_MAP_COPY;
959 		} else {
960 			/* we're going to read the file into private memory we
961 			 * allocate */
962 			if (!(capabilities & NOMMU_MAP_COPY))
963 				return -ENODEV;
964 
965 			/* we don't permit a private writable mapping to be
966 			 * shared with the backing device */
967 			if (prot & PROT_WRITE)
968 				capabilities &= ~NOMMU_MAP_DIRECT;
969 		}
970 
971 		if (capabilities & NOMMU_MAP_DIRECT) {
972 			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
973 			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
974 			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
975 			    ) {
976 				capabilities &= ~NOMMU_MAP_DIRECT;
977 				if (flags & MAP_SHARED) {
978 					pr_warn("MAP_SHARED not completely supported on !MMU\n");
979 					return -EINVAL;
980 				}
981 			}
982 		}
983 
984 		/* handle executable mappings and implied executable
985 		 * mappings */
986 		if (path_noexec(&file->f_path)) {
987 			if (prot & PROT_EXEC)
988 				return -EPERM;
989 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
990 			/* handle implication of PROT_EXEC by PROT_READ */
991 			if (current->personality & READ_IMPLIES_EXEC) {
992 				if (capabilities & NOMMU_MAP_EXEC)
993 					prot |= PROT_EXEC;
994 			}
995 		} else if ((prot & PROT_READ) &&
996 			 (prot & PROT_EXEC) &&
997 			 !(capabilities & NOMMU_MAP_EXEC)
998 			 ) {
999 			/* backing file is not executable, try to copy */
1000 			capabilities &= ~NOMMU_MAP_DIRECT;
1001 		}
1002 	} else {
1003 		/* anonymous mappings are always memory backed and can be
1004 		 * privately mapped
1005 		 */
1006 		capabilities = NOMMU_MAP_COPY;
1007 
1008 		/* handle PROT_EXEC implication by PROT_READ */
1009 		if ((prot & PROT_READ) &&
1010 		    (current->personality & READ_IMPLIES_EXEC))
1011 			prot |= PROT_EXEC;
1012 	}
1013 
1014 	/* allow the security API to have its say */
1015 	ret = security_mmap_addr(addr);
1016 	if (ret < 0)
1017 		return ret;
1018 
1019 	/* looks okay */
1020 	*_capabilities = capabilities;
1021 	return 0;
1022 }
1023 
1024 /*
1025  * we've determined that we can make the mapping, now translate what we
1026  * now know into VMA flags
1027  */
1028 static unsigned long determine_vm_flags(struct file *file,
1029 					unsigned long prot,
1030 					unsigned long flags,
1031 					unsigned long capabilities)
1032 {
1033 	unsigned long vm_flags;
1034 
1035 	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
1036 	/* vm_flags |= mm->def_flags; */
1037 
1038 	if (!(capabilities & NOMMU_MAP_DIRECT)) {
1039 		/* attempt to share read-only copies of mapped file chunks */
1040 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1041 		if (file && !(prot & PROT_WRITE))
1042 			vm_flags |= VM_MAYSHARE;
1043 	} else {
1044 		/* overlay a shareable mapping on the backing device or inode
1045 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1046 		 * romfs/cramfs */
1047 		vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1048 		if (flags & MAP_SHARED)
1049 			vm_flags |= VM_SHARED;
1050 	}
1051 
1052 	/* refuse to let anyone share private mappings with this process if
1053 	 * it's being traced - otherwise breakpoints set in it may interfere
1054 	 * with another untraced process
1055 	 */
1056 	if ((flags & MAP_PRIVATE) && current->ptrace)
1057 		vm_flags &= ~VM_MAYSHARE;
1058 
1059 	return vm_flags;
1060 }
1061 
1062 /*
1063  * set up a shared mapping on a file (the driver or filesystem provides and
1064  * pins the storage)
1065  */
1066 static int do_mmap_shared_file(struct vm_area_struct *vma)
1067 {
1068 	int ret;
1069 
1070 	ret = call_mmap(vma->vm_file, vma);
1071 	if (ret == 0) {
1072 		vma->vm_region->vm_top = vma->vm_region->vm_end;
1073 		return 0;
1074 	}
1075 	if (ret != -ENOSYS)
1076 		return ret;
1077 
1078 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1079 	 * opposed to tried but failed) so we can only give a suitable error as
1080 	 * it's not possible to make a private copy if MAP_SHARED was given */
1081 	return -ENODEV;
1082 }
1083 
1084 /*
1085  * set up a private mapping or an anonymous shared mapping
1086  */
1087 static int do_mmap_private(struct vm_area_struct *vma,
1088 			   struct vm_region *region,
1089 			   unsigned long len,
1090 			   unsigned long capabilities)
1091 {
1092 	unsigned long total, point;
1093 	void *base;
1094 	int ret, order;
1095 
1096 	/* invoke the file's mapping function so that it can keep track of
1097 	 * shared mappings on devices or memory
1098 	 * - VM_MAYSHARE will be set if it may attempt to share
1099 	 */
1100 	if (capabilities & NOMMU_MAP_DIRECT) {
1101 		ret = call_mmap(vma->vm_file, vma);
1102 		if (ret == 0) {
1103 			/* shouldn't return success if we're not sharing */
1104 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1105 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1106 			return 0;
1107 		}
1108 		if (ret != -ENOSYS)
1109 			return ret;
1110 
1111 		/* getting an ENOSYS error indicates that direct mmap isn't
1112 		 * possible (as opposed to tried but failed) so we'll try to
1113 		 * make a private copy of the data and map that instead */
1114 	}
1115 
1116 
1117 	/* allocate some memory to hold the mapping
1118 	 * - note that this may not return a page-aligned address if the object
1119 	 *   we're allocating is smaller than a page
1120 	 */
1121 	order = get_order(len);
1122 	total = 1 << order;
1123 	point = len >> PAGE_SHIFT;
1124 
1125 	/* we don't want to allocate a power-of-2 sized page set */
1126 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1127 		total = point;
1128 
1129 	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1130 	if (!base)
1131 		goto enomem;
1132 
1133 	atomic_long_add(total, &mmap_pages_allocated);
1134 
1135 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1136 	region->vm_start = (unsigned long) base;
1137 	region->vm_end   = region->vm_start + len;
1138 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1139 
1140 	vma->vm_start = region->vm_start;
1141 	vma->vm_end   = region->vm_start + len;
1142 
1143 	if (vma->vm_file) {
1144 		/* read the contents of a file into the copy */
1145 		loff_t fpos;
1146 
1147 		fpos = vma->vm_pgoff;
1148 		fpos <<= PAGE_SHIFT;
1149 
1150 		ret = kernel_read(vma->vm_file, base, len, &fpos);
1151 		if (ret < 0)
1152 			goto error_free;
1153 
1154 		/* clear the last little bit */
1155 		if (ret < len)
1156 			memset(base + ret, 0, len - ret);
1157 
1158 	} else {
1159 		vma_set_anonymous(vma);
1160 	}
1161 
1162 	return 0;
1163 
1164 error_free:
1165 	free_page_series(region->vm_start, region->vm_top);
1166 	region->vm_start = vma->vm_start = 0;
1167 	region->vm_end   = vma->vm_end = 0;
1168 	region->vm_top   = 0;
1169 	return ret;
1170 
1171 enomem:
1172 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1173 	       len, current->pid, current->comm);
1174 	show_free_areas(0, NULL);
1175 	return -ENOMEM;
1176 }
1177 
1178 /*
1179  * handle mapping creation for uClinux
1180  */
1181 unsigned long do_mmap(struct file *file,
1182 			unsigned long addr,
1183 			unsigned long len,
1184 			unsigned long prot,
1185 			unsigned long flags,
1186 			vm_flags_t vm_flags,
1187 			unsigned long pgoff,
1188 			unsigned long *populate,
1189 			struct list_head *uf)
1190 {
1191 	struct vm_area_struct *vma;
1192 	struct vm_region *region;
1193 	struct rb_node *rb;
1194 	unsigned long capabilities, result;
1195 	int ret;
1196 
1197 	*populate = 0;
1198 
1199 	/* decide whether we should attempt the mapping, and if so what sort of
1200 	 * mapping */
1201 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1202 				    &capabilities);
1203 	if (ret < 0)
1204 		return ret;
1205 
1206 	/* we ignore the address hint */
1207 	addr = 0;
1208 	len = PAGE_ALIGN(len);
1209 
1210 	/* we've determined that we can make the mapping, now translate what we
1211 	 * now know into VMA flags */
1212 	vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1213 
1214 	/* we're going to need to record the mapping */
1215 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1216 	if (!region)
1217 		goto error_getting_region;
1218 
1219 	vma = vm_area_alloc(current->mm);
1220 	if (!vma)
1221 		goto error_getting_vma;
1222 
1223 	region->vm_usage = 1;
1224 	region->vm_flags = vm_flags;
1225 	region->vm_pgoff = pgoff;
1226 
1227 	vma->vm_flags = vm_flags;
1228 	vma->vm_pgoff = pgoff;
1229 
1230 	if (file) {
1231 		region->vm_file = get_file(file);
1232 		vma->vm_file = get_file(file);
1233 	}
1234 
1235 	down_write(&nommu_region_sem);
1236 
1237 	/* if we want to share, we need to check for regions created by other
1238 	 * mmap() calls that overlap with our proposed mapping
1239 	 * - we can only share with a superset match on most regular files
1240 	 * - shared mappings on character devices and memory backed files are
1241 	 *   permitted to overlap inexactly as far as we are concerned for in
1242 	 *   these cases, sharing is handled in the driver or filesystem rather
1243 	 *   than here
1244 	 */
1245 	if (vm_flags & VM_MAYSHARE) {
1246 		struct vm_region *pregion;
1247 		unsigned long pglen, rpglen, pgend, rpgend, start;
1248 
1249 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1250 		pgend = pgoff + pglen;
1251 
1252 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1253 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1254 
1255 			if (!(pregion->vm_flags & VM_MAYSHARE))
1256 				continue;
1257 
1258 			/* search for overlapping mappings on the same file */
1259 			if (file_inode(pregion->vm_file) !=
1260 			    file_inode(file))
1261 				continue;
1262 
1263 			if (pregion->vm_pgoff >= pgend)
1264 				continue;
1265 
1266 			rpglen = pregion->vm_end - pregion->vm_start;
1267 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1268 			rpgend = pregion->vm_pgoff + rpglen;
1269 			if (pgoff >= rpgend)
1270 				continue;
1271 
1272 			/* handle inexactly overlapping matches between
1273 			 * mappings */
1274 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1275 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1276 				/* new mapping is not a subset of the region */
1277 				if (!(capabilities & NOMMU_MAP_DIRECT))
1278 					goto sharing_violation;
1279 				continue;
1280 			}
1281 
1282 			/* we've found a region we can share */
1283 			pregion->vm_usage++;
1284 			vma->vm_region = pregion;
1285 			start = pregion->vm_start;
1286 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1287 			vma->vm_start = start;
1288 			vma->vm_end = start + len;
1289 
1290 			if (pregion->vm_flags & VM_MAPPED_COPY)
1291 				vma->vm_flags |= VM_MAPPED_COPY;
1292 			else {
1293 				ret = do_mmap_shared_file(vma);
1294 				if (ret < 0) {
1295 					vma->vm_region = NULL;
1296 					vma->vm_start = 0;
1297 					vma->vm_end = 0;
1298 					pregion->vm_usage--;
1299 					pregion = NULL;
1300 					goto error_just_free;
1301 				}
1302 			}
1303 			fput(region->vm_file);
1304 			kmem_cache_free(vm_region_jar, region);
1305 			region = pregion;
1306 			result = start;
1307 			goto share;
1308 		}
1309 
1310 		/* obtain the address at which to make a shared mapping
1311 		 * - this is the hook for quasi-memory character devices to
1312 		 *   tell us the location of a shared mapping
1313 		 */
1314 		if (capabilities & NOMMU_MAP_DIRECT) {
1315 			addr = file->f_op->get_unmapped_area(file, addr, len,
1316 							     pgoff, flags);
1317 			if (IS_ERR_VALUE(addr)) {
1318 				ret = addr;
1319 				if (ret != -ENOSYS)
1320 					goto error_just_free;
1321 
1322 				/* the driver refused to tell us where to site
1323 				 * the mapping so we'll have to attempt to copy
1324 				 * it */
1325 				ret = -ENODEV;
1326 				if (!(capabilities & NOMMU_MAP_COPY))
1327 					goto error_just_free;
1328 
1329 				capabilities &= ~NOMMU_MAP_DIRECT;
1330 			} else {
1331 				vma->vm_start = region->vm_start = addr;
1332 				vma->vm_end = region->vm_end = addr + len;
1333 			}
1334 		}
1335 	}
1336 
1337 	vma->vm_region = region;
1338 
1339 	/* set up the mapping
1340 	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1341 	 */
1342 	if (file && vma->vm_flags & VM_SHARED)
1343 		ret = do_mmap_shared_file(vma);
1344 	else
1345 		ret = do_mmap_private(vma, region, len, capabilities);
1346 	if (ret < 0)
1347 		goto error_just_free;
1348 	add_nommu_region(region);
1349 
1350 	/* clear anonymous mappings that don't ask for uninitialized data */
1351 	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1352 		memset((void *)region->vm_start, 0,
1353 		       region->vm_end - region->vm_start);
1354 
1355 	/* okay... we have a mapping; now we have to register it */
1356 	result = vma->vm_start;
1357 
1358 	current->mm->total_vm += len >> PAGE_SHIFT;
1359 
1360 share:
1361 	add_vma_to_mm(current->mm, vma);
1362 
1363 	/* we flush the region from the icache only when the first executable
1364 	 * mapping of it is made  */
1365 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1366 		flush_icache_range(region->vm_start, region->vm_end);
1367 		region->vm_icache_flushed = true;
1368 	}
1369 
1370 	up_write(&nommu_region_sem);
1371 
1372 	return result;
1373 
1374 error_just_free:
1375 	up_write(&nommu_region_sem);
1376 error:
1377 	if (region->vm_file)
1378 		fput(region->vm_file);
1379 	kmem_cache_free(vm_region_jar, region);
1380 	if (vma->vm_file)
1381 		fput(vma->vm_file);
1382 	vm_area_free(vma);
1383 	return ret;
1384 
1385 sharing_violation:
1386 	up_write(&nommu_region_sem);
1387 	pr_warn("Attempt to share mismatched mappings\n");
1388 	ret = -EINVAL;
1389 	goto error;
1390 
1391 error_getting_vma:
1392 	kmem_cache_free(vm_region_jar, region);
1393 	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1394 			len, current->pid);
1395 	show_free_areas(0, NULL);
1396 	return -ENOMEM;
1397 
1398 error_getting_region:
1399 	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1400 			len, current->pid);
1401 	show_free_areas(0, NULL);
1402 	return -ENOMEM;
1403 }
1404 
1405 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1406 			      unsigned long prot, unsigned long flags,
1407 			      unsigned long fd, unsigned long pgoff)
1408 {
1409 	struct file *file = NULL;
1410 	unsigned long retval = -EBADF;
1411 
1412 	audit_mmap_fd(fd, flags);
1413 	if (!(flags & MAP_ANONYMOUS)) {
1414 		file = fget(fd);
1415 		if (!file)
1416 			goto out;
1417 	}
1418 
1419 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1420 
1421 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1422 
1423 	if (file)
1424 		fput(file);
1425 out:
1426 	return retval;
1427 }
1428 
1429 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1430 		unsigned long, prot, unsigned long, flags,
1431 		unsigned long, fd, unsigned long, pgoff)
1432 {
1433 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1434 }
1435 
1436 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1437 struct mmap_arg_struct {
1438 	unsigned long addr;
1439 	unsigned long len;
1440 	unsigned long prot;
1441 	unsigned long flags;
1442 	unsigned long fd;
1443 	unsigned long offset;
1444 };
1445 
1446 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1447 {
1448 	struct mmap_arg_struct a;
1449 
1450 	if (copy_from_user(&a, arg, sizeof(a)))
1451 		return -EFAULT;
1452 	if (offset_in_page(a.offset))
1453 		return -EINVAL;
1454 
1455 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1456 			       a.offset >> PAGE_SHIFT);
1457 }
1458 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1459 
1460 /*
1461  * split a vma into two pieces at address 'addr', a new vma is allocated either
1462  * for the first part or the tail.
1463  */
1464 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1465 	      unsigned long addr, int new_below)
1466 {
1467 	struct vm_area_struct *new;
1468 	struct vm_region *region;
1469 	unsigned long npages;
1470 
1471 	/* we're only permitted to split anonymous regions (these should have
1472 	 * only a single usage on the region) */
1473 	if (vma->vm_file)
1474 		return -ENOMEM;
1475 
1476 	if (mm->map_count >= sysctl_max_map_count)
1477 		return -ENOMEM;
1478 
1479 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1480 	if (!region)
1481 		return -ENOMEM;
1482 
1483 	new = vm_area_dup(vma);
1484 	if (!new) {
1485 		kmem_cache_free(vm_region_jar, region);
1486 		return -ENOMEM;
1487 	}
1488 
1489 	/* most fields are the same, copy all, and then fixup */
1490 	*region = *vma->vm_region;
1491 	new->vm_region = region;
1492 
1493 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1494 
1495 	if (new_below) {
1496 		region->vm_top = region->vm_end = new->vm_end = addr;
1497 	} else {
1498 		region->vm_start = new->vm_start = addr;
1499 		region->vm_pgoff = new->vm_pgoff += npages;
1500 	}
1501 
1502 	if (new->vm_ops && new->vm_ops->open)
1503 		new->vm_ops->open(new);
1504 
1505 	delete_vma_from_mm(vma);
1506 	down_write(&nommu_region_sem);
1507 	delete_nommu_region(vma->vm_region);
1508 	if (new_below) {
1509 		vma->vm_region->vm_start = vma->vm_start = addr;
1510 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1511 	} else {
1512 		vma->vm_region->vm_end = vma->vm_end = addr;
1513 		vma->vm_region->vm_top = addr;
1514 	}
1515 	add_nommu_region(vma->vm_region);
1516 	add_nommu_region(new->vm_region);
1517 	up_write(&nommu_region_sem);
1518 	add_vma_to_mm(mm, vma);
1519 	add_vma_to_mm(mm, new);
1520 	return 0;
1521 }
1522 
1523 /*
1524  * shrink a VMA by removing the specified chunk from either the beginning or
1525  * the end
1526  */
1527 static int shrink_vma(struct mm_struct *mm,
1528 		      struct vm_area_struct *vma,
1529 		      unsigned long from, unsigned long to)
1530 {
1531 	struct vm_region *region;
1532 
1533 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1534 	 * and list */
1535 	delete_vma_from_mm(vma);
1536 	if (from > vma->vm_start)
1537 		vma->vm_end = from;
1538 	else
1539 		vma->vm_start = to;
1540 	add_vma_to_mm(mm, vma);
1541 
1542 	/* cut the backing region down to size */
1543 	region = vma->vm_region;
1544 	BUG_ON(region->vm_usage != 1);
1545 
1546 	down_write(&nommu_region_sem);
1547 	delete_nommu_region(region);
1548 	if (from > region->vm_start) {
1549 		to = region->vm_top;
1550 		region->vm_top = region->vm_end = from;
1551 	} else {
1552 		region->vm_start = to;
1553 	}
1554 	add_nommu_region(region);
1555 	up_write(&nommu_region_sem);
1556 
1557 	free_page_series(from, to);
1558 	return 0;
1559 }
1560 
1561 /*
1562  * release a mapping
1563  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1564  *   VMA, though it need not cover the whole VMA
1565  */
1566 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1567 {
1568 	struct vm_area_struct *vma;
1569 	unsigned long end;
1570 	int ret;
1571 
1572 	len = PAGE_ALIGN(len);
1573 	if (len == 0)
1574 		return -EINVAL;
1575 
1576 	end = start + len;
1577 
1578 	/* find the first potentially overlapping VMA */
1579 	vma = find_vma(mm, start);
1580 	if (!vma) {
1581 		static int limit;
1582 		if (limit < 5) {
1583 			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1584 					current->pid, current->comm,
1585 					start, start + len - 1);
1586 			limit++;
1587 		}
1588 		return -EINVAL;
1589 	}
1590 
1591 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1592 	if (vma->vm_file) {
1593 		do {
1594 			if (start > vma->vm_start)
1595 				return -EINVAL;
1596 			if (end == vma->vm_end)
1597 				goto erase_whole_vma;
1598 			vma = vma->vm_next;
1599 		} while (vma);
1600 		return -EINVAL;
1601 	} else {
1602 		/* the chunk must be a subset of the VMA found */
1603 		if (start == vma->vm_start && end == vma->vm_end)
1604 			goto erase_whole_vma;
1605 		if (start < vma->vm_start || end > vma->vm_end)
1606 			return -EINVAL;
1607 		if (offset_in_page(start))
1608 			return -EINVAL;
1609 		if (end != vma->vm_end && offset_in_page(end))
1610 			return -EINVAL;
1611 		if (start != vma->vm_start && end != vma->vm_end) {
1612 			ret = split_vma(mm, vma, start, 1);
1613 			if (ret < 0)
1614 				return ret;
1615 		}
1616 		return shrink_vma(mm, vma, start, end);
1617 	}
1618 
1619 erase_whole_vma:
1620 	delete_vma_from_mm(vma);
1621 	delete_vma(mm, vma);
1622 	return 0;
1623 }
1624 EXPORT_SYMBOL(do_munmap);
1625 
1626 int vm_munmap(unsigned long addr, size_t len)
1627 {
1628 	struct mm_struct *mm = current->mm;
1629 	int ret;
1630 
1631 	down_write(&mm->mmap_sem);
1632 	ret = do_munmap(mm, addr, len, NULL);
1633 	up_write(&mm->mmap_sem);
1634 	return ret;
1635 }
1636 EXPORT_SYMBOL(vm_munmap);
1637 
1638 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1639 {
1640 	return vm_munmap(addr, len);
1641 }
1642 
1643 /*
1644  * release all the mappings made in a process's VM space
1645  */
1646 void exit_mmap(struct mm_struct *mm)
1647 {
1648 	struct vm_area_struct *vma;
1649 
1650 	if (!mm)
1651 		return;
1652 
1653 	mm->total_vm = 0;
1654 
1655 	while ((vma = mm->mmap)) {
1656 		mm->mmap = vma->vm_next;
1657 		delete_vma_from_mm(vma);
1658 		delete_vma(mm, vma);
1659 		cond_resched();
1660 	}
1661 }
1662 
1663 int vm_brk(unsigned long addr, unsigned long len)
1664 {
1665 	return -ENOMEM;
1666 }
1667 
1668 /*
1669  * expand (or shrink) an existing mapping, potentially moving it at the same
1670  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1671  *
1672  * under NOMMU conditions, we only permit changing a mapping's size, and only
1673  * as long as it stays within the region allocated by do_mmap_private() and the
1674  * block is not shareable
1675  *
1676  * MREMAP_FIXED is not supported under NOMMU conditions
1677  */
1678 static unsigned long do_mremap(unsigned long addr,
1679 			unsigned long old_len, unsigned long new_len,
1680 			unsigned long flags, unsigned long new_addr)
1681 {
1682 	struct vm_area_struct *vma;
1683 
1684 	/* insanity checks first */
1685 	old_len = PAGE_ALIGN(old_len);
1686 	new_len = PAGE_ALIGN(new_len);
1687 	if (old_len == 0 || new_len == 0)
1688 		return (unsigned long) -EINVAL;
1689 
1690 	if (offset_in_page(addr))
1691 		return -EINVAL;
1692 
1693 	if (flags & MREMAP_FIXED && new_addr != addr)
1694 		return (unsigned long) -EINVAL;
1695 
1696 	vma = find_vma_exact(current->mm, addr, old_len);
1697 	if (!vma)
1698 		return (unsigned long) -EINVAL;
1699 
1700 	if (vma->vm_end != vma->vm_start + old_len)
1701 		return (unsigned long) -EFAULT;
1702 
1703 	if (vma->vm_flags & VM_MAYSHARE)
1704 		return (unsigned long) -EPERM;
1705 
1706 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1707 		return (unsigned long) -ENOMEM;
1708 
1709 	/* all checks complete - do it */
1710 	vma->vm_end = vma->vm_start + new_len;
1711 	return vma->vm_start;
1712 }
1713 
1714 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1715 		unsigned long, new_len, unsigned long, flags,
1716 		unsigned long, new_addr)
1717 {
1718 	unsigned long ret;
1719 
1720 	down_write(&current->mm->mmap_sem);
1721 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1722 	up_write(&current->mm->mmap_sem);
1723 	return ret;
1724 }
1725 
1726 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1727 			 unsigned int foll_flags)
1728 {
1729 	return NULL;
1730 }
1731 
1732 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1733 		unsigned long pfn, unsigned long size, pgprot_t prot)
1734 {
1735 	if (addr != (pfn << PAGE_SHIFT))
1736 		return -EINVAL;
1737 
1738 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1739 	return 0;
1740 }
1741 EXPORT_SYMBOL(remap_pfn_range);
1742 
1743 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1744 {
1745 	unsigned long pfn = start >> PAGE_SHIFT;
1746 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1747 
1748 	pfn += vma->vm_pgoff;
1749 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1750 }
1751 EXPORT_SYMBOL(vm_iomap_memory);
1752 
1753 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1754 			unsigned long pgoff)
1755 {
1756 	unsigned int size = vma->vm_end - vma->vm_start;
1757 
1758 	if (!(vma->vm_flags & VM_USERMAP))
1759 		return -EINVAL;
1760 
1761 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1762 	vma->vm_end = vma->vm_start + size;
1763 
1764 	return 0;
1765 }
1766 EXPORT_SYMBOL(remap_vmalloc_range);
1767 
1768 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1769 	unsigned long len, unsigned long pgoff, unsigned long flags)
1770 {
1771 	return -ENOMEM;
1772 }
1773 
1774 vm_fault_t filemap_fault(struct vm_fault *vmf)
1775 {
1776 	BUG();
1777 	return 0;
1778 }
1779 EXPORT_SYMBOL(filemap_fault);
1780 
1781 void filemap_map_pages(struct vm_fault *vmf,
1782 		pgoff_t start_pgoff, pgoff_t end_pgoff)
1783 {
1784 	BUG();
1785 }
1786 EXPORT_SYMBOL(filemap_map_pages);
1787 
1788 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1789 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
1790 {
1791 	struct vm_area_struct *vma;
1792 	int write = gup_flags & FOLL_WRITE;
1793 
1794 	down_read(&mm->mmap_sem);
1795 
1796 	/* the access must start within one of the target process's mappings */
1797 	vma = find_vma(mm, addr);
1798 	if (vma) {
1799 		/* don't overrun this mapping */
1800 		if (addr + len >= vma->vm_end)
1801 			len = vma->vm_end - addr;
1802 
1803 		/* only read or write mappings where it is permitted */
1804 		if (write && vma->vm_flags & VM_MAYWRITE)
1805 			copy_to_user_page(vma, NULL, addr,
1806 					 (void *) addr, buf, len);
1807 		else if (!write && vma->vm_flags & VM_MAYREAD)
1808 			copy_from_user_page(vma, NULL, addr,
1809 					    buf, (void *) addr, len);
1810 		else
1811 			len = 0;
1812 	} else {
1813 		len = 0;
1814 	}
1815 
1816 	up_read(&mm->mmap_sem);
1817 
1818 	return len;
1819 }
1820 
1821 /**
1822  * access_remote_vm - access another process' address space
1823  * @mm:		the mm_struct of the target address space
1824  * @addr:	start address to access
1825  * @buf:	source or destination buffer
1826  * @len:	number of bytes to transfer
1827  * @gup_flags:	flags modifying lookup behaviour
1828  *
1829  * The caller must hold a reference on @mm.
1830  */
1831 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1832 		void *buf, int len, unsigned int gup_flags)
1833 {
1834 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1835 }
1836 
1837 /*
1838  * Access another process' address space.
1839  * - source/target buffer must be kernel space
1840  */
1841 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1842 		unsigned int gup_flags)
1843 {
1844 	struct mm_struct *mm;
1845 
1846 	if (addr + len < addr)
1847 		return 0;
1848 
1849 	mm = get_task_mm(tsk);
1850 	if (!mm)
1851 		return 0;
1852 
1853 	len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1854 
1855 	mmput(mm);
1856 	return len;
1857 }
1858 EXPORT_SYMBOL_GPL(access_process_vm);
1859 
1860 /**
1861  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1862  * @inode: The inode to check
1863  * @size: The current filesize of the inode
1864  * @newsize: The proposed filesize of the inode
1865  *
1866  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1867  * make sure that that any outstanding VMAs aren't broken and then shrink the
1868  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1869  * automatically grant mappings that are too large.
1870  */
1871 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1872 				size_t newsize)
1873 {
1874 	struct vm_area_struct *vma;
1875 	struct vm_region *region;
1876 	pgoff_t low, high;
1877 	size_t r_size, r_top;
1878 
1879 	low = newsize >> PAGE_SHIFT;
1880 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1881 
1882 	down_write(&nommu_region_sem);
1883 	i_mmap_lock_read(inode->i_mapping);
1884 
1885 	/* search for VMAs that fall within the dead zone */
1886 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1887 		/* found one - only interested if it's shared out of the page
1888 		 * cache */
1889 		if (vma->vm_flags & VM_SHARED) {
1890 			i_mmap_unlock_read(inode->i_mapping);
1891 			up_write(&nommu_region_sem);
1892 			return -ETXTBSY; /* not quite true, but near enough */
1893 		}
1894 	}
1895 
1896 	/* reduce any regions that overlap the dead zone - if in existence,
1897 	 * these will be pointed to by VMAs that don't overlap the dead zone
1898 	 *
1899 	 * we don't check for any regions that start beyond the EOF as there
1900 	 * shouldn't be any
1901 	 */
1902 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1903 		if (!(vma->vm_flags & VM_SHARED))
1904 			continue;
1905 
1906 		region = vma->vm_region;
1907 		r_size = region->vm_top - region->vm_start;
1908 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1909 
1910 		if (r_top > newsize) {
1911 			region->vm_top -= r_top - newsize;
1912 			if (region->vm_end > region->vm_top)
1913 				region->vm_end = region->vm_top;
1914 		}
1915 	}
1916 
1917 	i_mmap_unlock_read(inode->i_mapping);
1918 	up_write(&nommu_region_sem);
1919 	return 0;
1920 }
1921 
1922 /*
1923  * Initialise sysctl_user_reserve_kbytes.
1924  *
1925  * This is intended to prevent a user from starting a single memory hogging
1926  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1927  * mode.
1928  *
1929  * The default value is min(3% of free memory, 128MB)
1930  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1931  */
1932 static int __meminit init_user_reserve(void)
1933 {
1934 	unsigned long free_kbytes;
1935 
1936 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1937 
1938 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1939 	return 0;
1940 }
1941 subsys_initcall(init_user_reserve);
1942 
1943 /*
1944  * Initialise sysctl_admin_reserve_kbytes.
1945  *
1946  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1947  * to log in and kill a memory hogging process.
1948  *
1949  * Systems with more than 256MB will reserve 8MB, enough to recover
1950  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1951  * only reserve 3% of free pages by default.
1952  */
1953 static int __meminit init_admin_reserve(void)
1954 {
1955 	unsigned long free_kbytes;
1956 
1957 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1958 
1959 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1960 	return 0;
1961 }
1962 subsys_initcall(init_admin_reserve);
1963