xref: /openbmc/linux/mm/nommu.c (revision b595076a)
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/audit.h>
33 
34 #include <asm/uaccess.h>
35 #include <asm/tlb.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mmu_context.h>
38 #include "internal.h"
39 
40 #if 0
41 #define kenter(FMT, ...) \
42 	printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
43 #define kleave(FMT, ...) \
44 	printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
45 #define kdebug(FMT, ...) \
46 	printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
47 #else
48 #define kenter(FMT, ...) \
49 	no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
50 #define kleave(FMT, ...) \
51 	no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
52 #define kdebug(FMT, ...) \
53 	no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
54 #endif
55 
56 void *high_memory;
57 struct page *mem_map;
58 unsigned long max_mapnr;
59 unsigned long num_physpages;
60 unsigned long highest_memmap_pfn;
61 struct percpu_counter vm_committed_as;
62 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
63 int sysctl_overcommit_ratio = 50; /* default is 50% */
64 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
65 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
66 int heap_stack_gap = 0;
67 
68 atomic_long_t mmap_pages_allocated;
69 
70 EXPORT_SYMBOL(mem_map);
71 EXPORT_SYMBOL(num_physpages);
72 
73 /* list of mapped, potentially shareable regions */
74 static struct kmem_cache *vm_region_jar;
75 struct rb_root nommu_region_tree = RB_ROOT;
76 DECLARE_RWSEM(nommu_region_sem);
77 
78 const struct vm_operations_struct generic_file_vm_ops = {
79 };
80 
81 /*
82  * Return the total memory allocated for this pointer, not
83  * just what the caller asked for.
84  *
85  * Doesn't have to be accurate, i.e. may have races.
86  */
87 unsigned int kobjsize(const void *objp)
88 {
89 	struct page *page;
90 
91 	/*
92 	 * If the object we have should not have ksize performed on it,
93 	 * return size of 0
94 	 */
95 	if (!objp || !virt_addr_valid(objp))
96 		return 0;
97 
98 	page = virt_to_head_page(objp);
99 
100 	/*
101 	 * If the allocator sets PageSlab, we know the pointer came from
102 	 * kmalloc().
103 	 */
104 	if (PageSlab(page))
105 		return ksize(objp);
106 
107 	/*
108 	 * If it's not a compound page, see if we have a matching VMA
109 	 * region. This test is intentionally done in reverse order,
110 	 * so if there's no VMA, we still fall through and hand back
111 	 * PAGE_SIZE for 0-order pages.
112 	 */
113 	if (!PageCompound(page)) {
114 		struct vm_area_struct *vma;
115 
116 		vma = find_vma(current->mm, (unsigned long)objp);
117 		if (vma)
118 			return vma->vm_end - vma->vm_start;
119 	}
120 
121 	/*
122 	 * The ksize() function is only guaranteed to work for pointers
123 	 * returned by kmalloc(). So handle arbitrary pointers here.
124 	 */
125 	return PAGE_SIZE << compound_order(page);
126 }
127 
128 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
129 		     unsigned long start, int nr_pages, unsigned int foll_flags,
130 		     struct page **pages, struct vm_area_struct **vmas)
131 {
132 	struct vm_area_struct *vma;
133 	unsigned long vm_flags;
134 	int i;
135 
136 	/* calculate required read or write permissions.
137 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
138 	 */
139 	vm_flags  = (foll_flags & FOLL_WRITE) ?
140 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
141 	vm_flags &= (foll_flags & FOLL_FORCE) ?
142 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
143 
144 	for (i = 0; i < nr_pages; i++) {
145 		vma = find_vma(mm, start);
146 		if (!vma)
147 			goto finish_or_fault;
148 
149 		/* protect what we can, including chardevs */
150 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
151 		    !(vm_flags & vma->vm_flags))
152 			goto finish_or_fault;
153 
154 		if (pages) {
155 			pages[i] = virt_to_page(start);
156 			if (pages[i])
157 				page_cache_get(pages[i]);
158 		}
159 		if (vmas)
160 			vmas[i] = vma;
161 		start = (start + PAGE_SIZE) & PAGE_MASK;
162 	}
163 
164 	return i;
165 
166 finish_or_fault:
167 	return i ? : -EFAULT;
168 }
169 
170 /*
171  * get a list of pages in an address range belonging to the specified process
172  * and indicate the VMA that covers each page
173  * - this is potentially dodgy as we may end incrementing the page count of a
174  *   slab page or a secondary page from a compound page
175  * - don't permit access to VMAs that don't support it, such as I/O mappings
176  */
177 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
178 	unsigned long start, int nr_pages, int write, int force,
179 	struct page **pages, struct vm_area_struct **vmas)
180 {
181 	int flags = 0;
182 
183 	if (write)
184 		flags |= FOLL_WRITE;
185 	if (force)
186 		flags |= FOLL_FORCE;
187 
188 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
189 }
190 EXPORT_SYMBOL(get_user_pages);
191 
192 /**
193  * follow_pfn - look up PFN at a user virtual address
194  * @vma: memory mapping
195  * @address: user virtual address
196  * @pfn: location to store found PFN
197  *
198  * Only IO mappings and raw PFN mappings are allowed.
199  *
200  * Returns zero and the pfn at @pfn on success, -ve otherwise.
201  */
202 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
203 	unsigned long *pfn)
204 {
205 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
206 		return -EINVAL;
207 
208 	*pfn = address >> PAGE_SHIFT;
209 	return 0;
210 }
211 EXPORT_SYMBOL(follow_pfn);
212 
213 DEFINE_RWLOCK(vmlist_lock);
214 struct vm_struct *vmlist;
215 
216 void vfree(const void *addr)
217 {
218 	kfree(addr);
219 }
220 EXPORT_SYMBOL(vfree);
221 
222 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
223 {
224 	/*
225 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
226 	 * returns only a logical address.
227 	 */
228 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
229 }
230 EXPORT_SYMBOL(__vmalloc);
231 
232 void *vmalloc_user(unsigned long size)
233 {
234 	void *ret;
235 
236 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
237 			PAGE_KERNEL);
238 	if (ret) {
239 		struct vm_area_struct *vma;
240 
241 		down_write(&current->mm->mmap_sem);
242 		vma = find_vma(current->mm, (unsigned long)ret);
243 		if (vma)
244 			vma->vm_flags |= VM_USERMAP;
245 		up_write(&current->mm->mmap_sem);
246 	}
247 
248 	return ret;
249 }
250 EXPORT_SYMBOL(vmalloc_user);
251 
252 struct page *vmalloc_to_page(const void *addr)
253 {
254 	return virt_to_page(addr);
255 }
256 EXPORT_SYMBOL(vmalloc_to_page);
257 
258 unsigned long vmalloc_to_pfn(const void *addr)
259 {
260 	return page_to_pfn(virt_to_page(addr));
261 }
262 EXPORT_SYMBOL(vmalloc_to_pfn);
263 
264 long vread(char *buf, char *addr, unsigned long count)
265 {
266 	memcpy(buf, addr, count);
267 	return count;
268 }
269 
270 long vwrite(char *buf, char *addr, unsigned long count)
271 {
272 	/* Don't allow overflow */
273 	if ((unsigned long) addr + count < count)
274 		count = -(unsigned long) addr;
275 
276 	memcpy(addr, buf, count);
277 	return(count);
278 }
279 
280 /*
281  *	vmalloc  -  allocate virtually continguos memory
282  *
283  *	@size:		allocation size
284  *
285  *	Allocate enough pages to cover @size from the page level
286  *	allocator and map them into continguos kernel virtual space.
287  *
288  *	For tight control over page level allocator and protection flags
289  *	use __vmalloc() instead.
290  */
291 void *vmalloc(unsigned long size)
292 {
293        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
294 }
295 EXPORT_SYMBOL(vmalloc);
296 
297 /*
298  *	vzalloc - allocate virtually continguos memory with zero fill
299  *
300  *	@size:		allocation size
301  *
302  *	Allocate enough pages to cover @size from the page level
303  *	allocator and map them into continguos kernel virtual space.
304  *	The memory allocated is set to zero.
305  *
306  *	For tight control over page level allocator and protection flags
307  *	use __vmalloc() instead.
308  */
309 void *vzalloc(unsigned long size)
310 {
311 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
312 			PAGE_KERNEL);
313 }
314 EXPORT_SYMBOL(vzalloc);
315 
316 /**
317  * vmalloc_node - allocate memory on a specific node
318  * @size:	allocation size
319  * @node:	numa node
320  *
321  * Allocate enough pages to cover @size from the page level
322  * allocator and map them into contiguous kernel virtual space.
323  *
324  * For tight control over page level allocator and protection flags
325  * use __vmalloc() instead.
326  */
327 void *vmalloc_node(unsigned long size, int node)
328 {
329 	return vmalloc(size);
330 }
331 
332 /**
333  * vzalloc_node - allocate memory on a specific node with zero fill
334  * @size:	allocation size
335  * @node:	numa node
336  *
337  * Allocate enough pages to cover @size from the page level
338  * allocator and map them into contiguous kernel virtual space.
339  * The memory allocated is set to zero.
340  *
341  * For tight control over page level allocator and protection flags
342  * use __vmalloc() instead.
343  */
344 void *vzalloc_node(unsigned long size, int node)
345 {
346 	return vzalloc(size);
347 }
348 EXPORT_SYMBOL(vzalloc_node);
349 
350 #ifndef PAGE_KERNEL_EXEC
351 # define PAGE_KERNEL_EXEC PAGE_KERNEL
352 #endif
353 
354 /**
355  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
356  *	@size:		allocation size
357  *
358  *	Kernel-internal function to allocate enough pages to cover @size
359  *	the page level allocator and map them into contiguous and
360  *	executable kernel virtual space.
361  *
362  *	For tight control over page level allocator and protection flags
363  *	use __vmalloc() instead.
364  */
365 
366 void *vmalloc_exec(unsigned long size)
367 {
368 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
369 }
370 
371 /**
372  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
373  *	@size:		allocation size
374  *
375  *	Allocate enough 32bit PA addressable pages to cover @size from the
376  *	page level allocator and map them into continguos kernel virtual space.
377  */
378 void *vmalloc_32(unsigned long size)
379 {
380 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
381 }
382 EXPORT_SYMBOL(vmalloc_32);
383 
384 /**
385  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
386  *	@size:		allocation size
387  *
388  * The resulting memory area is 32bit addressable and zeroed so it can be
389  * mapped to userspace without leaking data.
390  *
391  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
392  * remap_vmalloc_range() are permissible.
393  */
394 void *vmalloc_32_user(unsigned long size)
395 {
396 	/*
397 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
398 	 * but for now this can simply use vmalloc_user() directly.
399 	 */
400 	return vmalloc_user(size);
401 }
402 EXPORT_SYMBOL(vmalloc_32_user);
403 
404 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
405 {
406 	BUG();
407 	return NULL;
408 }
409 EXPORT_SYMBOL(vmap);
410 
411 void vunmap(const void *addr)
412 {
413 	BUG();
414 }
415 EXPORT_SYMBOL(vunmap);
416 
417 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
418 {
419 	BUG();
420 	return NULL;
421 }
422 EXPORT_SYMBOL(vm_map_ram);
423 
424 void vm_unmap_ram(const void *mem, unsigned int count)
425 {
426 	BUG();
427 }
428 EXPORT_SYMBOL(vm_unmap_ram);
429 
430 void vm_unmap_aliases(void)
431 {
432 }
433 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
434 
435 /*
436  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
437  * have one.
438  */
439 void  __attribute__((weak)) vmalloc_sync_all(void)
440 {
441 }
442 
443 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
444 		   struct page *page)
445 {
446 	return -EINVAL;
447 }
448 EXPORT_SYMBOL(vm_insert_page);
449 
450 /*
451  *  sys_brk() for the most part doesn't need the global kernel
452  *  lock, except when an application is doing something nasty
453  *  like trying to un-brk an area that has already been mapped
454  *  to a regular file.  in this case, the unmapping will need
455  *  to invoke file system routines that need the global lock.
456  */
457 SYSCALL_DEFINE1(brk, unsigned long, brk)
458 {
459 	struct mm_struct *mm = current->mm;
460 
461 	if (brk < mm->start_brk || brk > mm->context.end_brk)
462 		return mm->brk;
463 
464 	if (mm->brk == brk)
465 		return mm->brk;
466 
467 	/*
468 	 * Always allow shrinking brk
469 	 */
470 	if (brk <= mm->brk) {
471 		mm->brk = brk;
472 		return brk;
473 	}
474 
475 	/*
476 	 * Ok, looks good - let it rip.
477 	 */
478 	flush_icache_range(mm->brk, brk);
479 	return mm->brk = brk;
480 }
481 
482 /*
483  * initialise the VMA and region record slabs
484  */
485 void __init mmap_init(void)
486 {
487 	int ret;
488 
489 	ret = percpu_counter_init(&vm_committed_as, 0);
490 	VM_BUG_ON(ret);
491 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
492 }
493 
494 /*
495  * validate the region tree
496  * - the caller must hold the region lock
497  */
498 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
499 static noinline void validate_nommu_regions(void)
500 {
501 	struct vm_region *region, *last;
502 	struct rb_node *p, *lastp;
503 
504 	lastp = rb_first(&nommu_region_tree);
505 	if (!lastp)
506 		return;
507 
508 	last = rb_entry(lastp, struct vm_region, vm_rb);
509 	BUG_ON(unlikely(last->vm_end <= last->vm_start));
510 	BUG_ON(unlikely(last->vm_top < last->vm_end));
511 
512 	while ((p = rb_next(lastp))) {
513 		region = rb_entry(p, struct vm_region, vm_rb);
514 		last = rb_entry(lastp, struct vm_region, vm_rb);
515 
516 		BUG_ON(unlikely(region->vm_end <= region->vm_start));
517 		BUG_ON(unlikely(region->vm_top < region->vm_end));
518 		BUG_ON(unlikely(region->vm_start < last->vm_top));
519 
520 		lastp = p;
521 	}
522 }
523 #else
524 static void validate_nommu_regions(void)
525 {
526 }
527 #endif
528 
529 /*
530  * add a region into the global tree
531  */
532 static void add_nommu_region(struct vm_region *region)
533 {
534 	struct vm_region *pregion;
535 	struct rb_node **p, *parent;
536 
537 	validate_nommu_regions();
538 
539 	parent = NULL;
540 	p = &nommu_region_tree.rb_node;
541 	while (*p) {
542 		parent = *p;
543 		pregion = rb_entry(parent, struct vm_region, vm_rb);
544 		if (region->vm_start < pregion->vm_start)
545 			p = &(*p)->rb_left;
546 		else if (region->vm_start > pregion->vm_start)
547 			p = &(*p)->rb_right;
548 		else if (pregion == region)
549 			return;
550 		else
551 			BUG();
552 	}
553 
554 	rb_link_node(&region->vm_rb, parent, p);
555 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
556 
557 	validate_nommu_regions();
558 }
559 
560 /*
561  * delete a region from the global tree
562  */
563 static void delete_nommu_region(struct vm_region *region)
564 {
565 	BUG_ON(!nommu_region_tree.rb_node);
566 
567 	validate_nommu_regions();
568 	rb_erase(&region->vm_rb, &nommu_region_tree);
569 	validate_nommu_regions();
570 }
571 
572 /*
573  * free a contiguous series of pages
574  */
575 static void free_page_series(unsigned long from, unsigned long to)
576 {
577 	for (; from < to; from += PAGE_SIZE) {
578 		struct page *page = virt_to_page(from);
579 
580 		kdebug("- free %lx", from);
581 		atomic_long_dec(&mmap_pages_allocated);
582 		if (page_count(page) != 1)
583 			kdebug("free page %p: refcount not one: %d",
584 			       page, page_count(page));
585 		put_page(page);
586 	}
587 }
588 
589 /*
590  * release a reference to a region
591  * - the caller must hold the region semaphore for writing, which this releases
592  * - the region may not have been added to the tree yet, in which case vm_top
593  *   will equal vm_start
594  */
595 static void __put_nommu_region(struct vm_region *region)
596 	__releases(nommu_region_sem)
597 {
598 	kenter("%p{%d}", region, region->vm_usage);
599 
600 	BUG_ON(!nommu_region_tree.rb_node);
601 
602 	if (--region->vm_usage == 0) {
603 		if (region->vm_top > region->vm_start)
604 			delete_nommu_region(region);
605 		up_write(&nommu_region_sem);
606 
607 		if (region->vm_file)
608 			fput(region->vm_file);
609 
610 		/* IO memory and memory shared directly out of the pagecache
611 		 * from ramfs/tmpfs mustn't be released here */
612 		if (region->vm_flags & VM_MAPPED_COPY) {
613 			kdebug("free series");
614 			free_page_series(region->vm_start, region->vm_top);
615 		}
616 		kmem_cache_free(vm_region_jar, region);
617 	} else {
618 		up_write(&nommu_region_sem);
619 	}
620 }
621 
622 /*
623  * release a reference to a region
624  */
625 static void put_nommu_region(struct vm_region *region)
626 {
627 	down_write(&nommu_region_sem);
628 	__put_nommu_region(region);
629 }
630 
631 /*
632  * update protection on a vma
633  */
634 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
635 {
636 #ifdef CONFIG_MPU
637 	struct mm_struct *mm = vma->vm_mm;
638 	long start = vma->vm_start & PAGE_MASK;
639 	while (start < vma->vm_end) {
640 		protect_page(mm, start, flags);
641 		start += PAGE_SIZE;
642 	}
643 	update_protections(mm);
644 #endif
645 }
646 
647 /*
648  * add a VMA into a process's mm_struct in the appropriate place in the list
649  * and tree and add to the address space's page tree also if not an anonymous
650  * page
651  * - should be called with mm->mmap_sem held writelocked
652  */
653 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
654 {
655 	struct vm_area_struct *pvma, **pp, *next;
656 	struct address_space *mapping;
657 	struct rb_node **p, *parent;
658 
659 	kenter(",%p", vma);
660 
661 	BUG_ON(!vma->vm_region);
662 
663 	mm->map_count++;
664 	vma->vm_mm = mm;
665 
666 	protect_vma(vma, vma->vm_flags);
667 
668 	/* add the VMA to the mapping */
669 	if (vma->vm_file) {
670 		mapping = vma->vm_file->f_mapping;
671 
672 		flush_dcache_mmap_lock(mapping);
673 		vma_prio_tree_insert(vma, &mapping->i_mmap);
674 		flush_dcache_mmap_unlock(mapping);
675 	}
676 
677 	/* add the VMA to the tree */
678 	parent = NULL;
679 	p = &mm->mm_rb.rb_node;
680 	while (*p) {
681 		parent = *p;
682 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
683 
684 		/* sort by: start addr, end addr, VMA struct addr in that order
685 		 * (the latter is necessary as we may get identical VMAs) */
686 		if (vma->vm_start < pvma->vm_start)
687 			p = &(*p)->rb_left;
688 		else if (vma->vm_start > pvma->vm_start)
689 			p = &(*p)->rb_right;
690 		else if (vma->vm_end < pvma->vm_end)
691 			p = &(*p)->rb_left;
692 		else if (vma->vm_end > pvma->vm_end)
693 			p = &(*p)->rb_right;
694 		else if (vma < pvma)
695 			p = &(*p)->rb_left;
696 		else if (vma > pvma)
697 			p = &(*p)->rb_right;
698 		else
699 			BUG();
700 	}
701 
702 	rb_link_node(&vma->vm_rb, parent, p);
703 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
704 
705 	/* add VMA to the VMA list also */
706 	for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) {
707 		if (pvma->vm_start > vma->vm_start)
708 			break;
709 		if (pvma->vm_start < vma->vm_start)
710 			continue;
711 		if (pvma->vm_end < vma->vm_end)
712 			break;
713 	}
714 
715 	next = *pp;
716 	*pp = vma;
717 	vma->vm_next = next;
718 	if (next)
719 		next->vm_prev = vma;
720 }
721 
722 /*
723  * delete a VMA from its owning mm_struct and address space
724  */
725 static void delete_vma_from_mm(struct vm_area_struct *vma)
726 {
727 	struct vm_area_struct **pp;
728 	struct address_space *mapping;
729 	struct mm_struct *mm = vma->vm_mm;
730 
731 	kenter("%p", vma);
732 
733 	protect_vma(vma, 0);
734 
735 	mm->map_count--;
736 	if (mm->mmap_cache == vma)
737 		mm->mmap_cache = NULL;
738 
739 	/* remove the VMA from the mapping */
740 	if (vma->vm_file) {
741 		mapping = vma->vm_file->f_mapping;
742 
743 		flush_dcache_mmap_lock(mapping);
744 		vma_prio_tree_remove(vma, &mapping->i_mmap);
745 		flush_dcache_mmap_unlock(mapping);
746 	}
747 
748 	/* remove from the MM's tree and list */
749 	rb_erase(&vma->vm_rb, &mm->mm_rb);
750 	for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) {
751 		if (*pp == vma) {
752 			*pp = vma->vm_next;
753 			break;
754 		}
755 	}
756 
757 	vma->vm_mm = NULL;
758 }
759 
760 /*
761  * destroy a VMA record
762  */
763 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
764 {
765 	kenter("%p", vma);
766 	if (vma->vm_ops && vma->vm_ops->close)
767 		vma->vm_ops->close(vma);
768 	if (vma->vm_file) {
769 		fput(vma->vm_file);
770 		if (vma->vm_flags & VM_EXECUTABLE)
771 			removed_exe_file_vma(mm);
772 	}
773 	put_nommu_region(vma->vm_region);
774 	kmem_cache_free(vm_area_cachep, vma);
775 }
776 
777 /*
778  * look up the first VMA in which addr resides, NULL if none
779  * - should be called with mm->mmap_sem at least held readlocked
780  */
781 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
782 {
783 	struct vm_area_struct *vma;
784 	struct rb_node *n = mm->mm_rb.rb_node;
785 
786 	/* check the cache first */
787 	vma = mm->mmap_cache;
788 	if (vma && vma->vm_start <= addr && vma->vm_end > addr)
789 		return vma;
790 
791 	/* trawl the tree (there may be multiple mappings in which addr
792 	 * resides) */
793 	for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
794 		vma = rb_entry(n, struct vm_area_struct, vm_rb);
795 		if (vma->vm_start > addr)
796 			return NULL;
797 		if (vma->vm_end > addr) {
798 			mm->mmap_cache = vma;
799 			return vma;
800 		}
801 	}
802 
803 	return NULL;
804 }
805 EXPORT_SYMBOL(find_vma);
806 
807 /*
808  * find a VMA
809  * - we don't extend stack VMAs under NOMMU conditions
810  */
811 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
812 {
813 	return find_vma(mm, addr);
814 }
815 
816 /*
817  * expand a stack to a given address
818  * - not supported under NOMMU conditions
819  */
820 int expand_stack(struct vm_area_struct *vma, unsigned long address)
821 {
822 	return -ENOMEM;
823 }
824 
825 /*
826  * look up the first VMA exactly that exactly matches addr
827  * - should be called with mm->mmap_sem at least held readlocked
828  */
829 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
830 					     unsigned long addr,
831 					     unsigned long len)
832 {
833 	struct vm_area_struct *vma;
834 	struct rb_node *n = mm->mm_rb.rb_node;
835 	unsigned long end = addr + len;
836 
837 	/* check the cache first */
838 	vma = mm->mmap_cache;
839 	if (vma && vma->vm_start == addr && vma->vm_end == end)
840 		return vma;
841 
842 	/* trawl the tree (there may be multiple mappings in which addr
843 	 * resides) */
844 	for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
845 		vma = rb_entry(n, struct vm_area_struct, vm_rb);
846 		if (vma->vm_start < addr)
847 			continue;
848 		if (vma->vm_start > addr)
849 			return NULL;
850 		if (vma->vm_end == end) {
851 			mm->mmap_cache = vma;
852 			return vma;
853 		}
854 	}
855 
856 	return NULL;
857 }
858 
859 /*
860  * determine whether a mapping should be permitted and, if so, what sort of
861  * mapping we're capable of supporting
862  */
863 static int validate_mmap_request(struct file *file,
864 				 unsigned long addr,
865 				 unsigned long len,
866 				 unsigned long prot,
867 				 unsigned long flags,
868 				 unsigned long pgoff,
869 				 unsigned long *_capabilities)
870 {
871 	unsigned long capabilities, rlen;
872 	unsigned long reqprot = prot;
873 	int ret;
874 
875 	/* do the simple checks first */
876 	if (flags & MAP_FIXED) {
877 		printk(KERN_DEBUG
878 		       "%d: Can't do fixed-address/overlay mmap of RAM\n",
879 		       current->pid);
880 		return -EINVAL;
881 	}
882 
883 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
884 	    (flags & MAP_TYPE) != MAP_SHARED)
885 		return -EINVAL;
886 
887 	if (!len)
888 		return -EINVAL;
889 
890 	/* Careful about overflows.. */
891 	rlen = PAGE_ALIGN(len);
892 	if (!rlen || rlen > TASK_SIZE)
893 		return -ENOMEM;
894 
895 	/* offset overflow? */
896 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
897 		return -EOVERFLOW;
898 
899 	if (file) {
900 		/* validate file mapping requests */
901 		struct address_space *mapping;
902 
903 		/* files must support mmap */
904 		if (!file->f_op || !file->f_op->mmap)
905 			return -ENODEV;
906 
907 		/* work out if what we've got could possibly be shared
908 		 * - we support chardevs that provide their own "memory"
909 		 * - we support files/blockdevs that are memory backed
910 		 */
911 		mapping = file->f_mapping;
912 		if (!mapping)
913 			mapping = file->f_path.dentry->d_inode->i_mapping;
914 
915 		capabilities = 0;
916 		if (mapping && mapping->backing_dev_info)
917 			capabilities = mapping->backing_dev_info->capabilities;
918 
919 		if (!capabilities) {
920 			/* no explicit capabilities set, so assume some
921 			 * defaults */
922 			switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
923 			case S_IFREG:
924 			case S_IFBLK:
925 				capabilities = BDI_CAP_MAP_COPY;
926 				break;
927 
928 			case S_IFCHR:
929 				capabilities =
930 					BDI_CAP_MAP_DIRECT |
931 					BDI_CAP_READ_MAP |
932 					BDI_CAP_WRITE_MAP;
933 				break;
934 
935 			default:
936 				return -EINVAL;
937 			}
938 		}
939 
940 		/* eliminate any capabilities that we can't support on this
941 		 * device */
942 		if (!file->f_op->get_unmapped_area)
943 			capabilities &= ~BDI_CAP_MAP_DIRECT;
944 		if (!file->f_op->read)
945 			capabilities &= ~BDI_CAP_MAP_COPY;
946 
947 		/* The file shall have been opened with read permission. */
948 		if (!(file->f_mode & FMODE_READ))
949 			return -EACCES;
950 
951 		if (flags & MAP_SHARED) {
952 			/* do checks for writing, appending and locking */
953 			if ((prot & PROT_WRITE) &&
954 			    !(file->f_mode & FMODE_WRITE))
955 				return -EACCES;
956 
957 			if (IS_APPEND(file->f_path.dentry->d_inode) &&
958 			    (file->f_mode & FMODE_WRITE))
959 				return -EACCES;
960 
961 			if (locks_verify_locked(file->f_path.dentry->d_inode))
962 				return -EAGAIN;
963 
964 			if (!(capabilities & BDI_CAP_MAP_DIRECT))
965 				return -ENODEV;
966 
967 			/* we mustn't privatise shared mappings */
968 			capabilities &= ~BDI_CAP_MAP_COPY;
969 		}
970 		else {
971 			/* we're going to read the file into private memory we
972 			 * allocate */
973 			if (!(capabilities & BDI_CAP_MAP_COPY))
974 				return -ENODEV;
975 
976 			/* we don't permit a private writable mapping to be
977 			 * shared with the backing device */
978 			if (prot & PROT_WRITE)
979 				capabilities &= ~BDI_CAP_MAP_DIRECT;
980 		}
981 
982 		if (capabilities & BDI_CAP_MAP_DIRECT) {
983 			if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
984 			    ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
985 			    ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
986 			    ) {
987 				capabilities &= ~BDI_CAP_MAP_DIRECT;
988 				if (flags & MAP_SHARED) {
989 					printk(KERN_WARNING
990 					       "MAP_SHARED not completely supported on !MMU\n");
991 					return -EINVAL;
992 				}
993 			}
994 		}
995 
996 		/* handle executable mappings and implied executable
997 		 * mappings */
998 		if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
999 			if (prot & PROT_EXEC)
1000 				return -EPERM;
1001 		}
1002 		else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1003 			/* handle implication of PROT_EXEC by PROT_READ */
1004 			if (current->personality & READ_IMPLIES_EXEC) {
1005 				if (capabilities & BDI_CAP_EXEC_MAP)
1006 					prot |= PROT_EXEC;
1007 			}
1008 		}
1009 		else if ((prot & PROT_READ) &&
1010 			 (prot & PROT_EXEC) &&
1011 			 !(capabilities & BDI_CAP_EXEC_MAP)
1012 			 ) {
1013 			/* backing file is not executable, try to copy */
1014 			capabilities &= ~BDI_CAP_MAP_DIRECT;
1015 		}
1016 	}
1017 	else {
1018 		/* anonymous mappings are always memory backed and can be
1019 		 * privately mapped
1020 		 */
1021 		capabilities = BDI_CAP_MAP_COPY;
1022 
1023 		/* handle PROT_EXEC implication by PROT_READ */
1024 		if ((prot & PROT_READ) &&
1025 		    (current->personality & READ_IMPLIES_EXEC))
1026 			prot |= PROT_EXEC;
1027 	}
1028 
1029 	/* allow the security API to have its say */
1030 	ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1031 	if (ret < 0)
1032 		return ret;
1033 
1034 	/* looks okay */
1035 	*_capabilities = capabilities;
1036 	return 0;
1037 }
1038 
1039 /*
1040  * we've determined that we can make the mapping, now translate what we
1041  * now know into VMA flags
1042  */
1043 static unsigned long determine_vm_flags(struct file *file,
1044 					unsigned long prot,
1045 					unsigned long flags,
1046 					unsigned long capabilities)
1047 {
1048 	unsigned long vm_flags;
1049 
1050 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1051 	/* vm_flags |= mm->def_flags; */
1052 
1053 	if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1054 		/* attempt to share read-only copies of mapped file chunks */
1055 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1056 		if (file && !(prot & PROT_WRITE))
1057 			vm_flags |= VM_MAYSHARE;
1058 	} else {
1059 		/* overlay a shareable mapping on the backing device or inode
1060 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1061 		 * romfs/cramfs */
1062 		vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1063 		if (flags & MAP_SHARED)
1064 			vm_flags |= VM_SHARED;
1065 	}
1066 
1067 	/* refuse to let anyone share private mappings with this process if
1068 	 * it's being traced - otherwise breakpoints set in it may interfere
1069 	 * with another untraced process
1070 	 */
1071 	if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1072 		vm_flags &= ~VM_MAYSHARE;
1073 
1074 	return vm_flags;
1075 }
1076 
1077 /*
1078  * set up a shared mapping on a file (the driver or filesystem provides and
1079  * pins the storage)
1080  */
1081 static int do_mmap_shared_file(struct vm_area_struct *vma)
1082 {
1083 	int ret;
1084 
1085 	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1086 	if (ret == 0) {
1087 		vma->vm_region->vm_top = vma->vm_region->vm_end;
1088 		return 0;
1089 	}
1090 	if (ret != -ENOSYS)
1091 		return ret;
1092 
1093 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1094 	 * opposed to tried but failed) so we can only give a suitable error as
1095 	 * it's not possible to make a private copy if MAP_SHARED was given */
1096 	return -ENODEV;
1097 }
1098 
1099 /*
1100  * set up a private mapping or an anonymous shared mapping
1101  */
1102 static int do_mmap_private(struct vm_area_struct *vma,
1103 			   struct vm_region *region,
1104 			   unsigned long len,
1105 			   unsigned long capabilities)
1106 {
1107 	struct page *pages;
1108 	unsigned long total, point, n, rlen;
1109 	void *base;
1110 	int ret, order;
1111 
1112 	/* invoke the file's mapping function so that it can keep track of
1113 	 * shared mappings on devices or memory
1114 	 * - VM_MAYSHARE will be set if it may attempt to share
1115 	 */
1116 	if (capabilities & BDI_CAP_MAP_DIRECT) {
1117 		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1118 		if (ret == 0) {
1119 			/* shouldn't return success if we're not sharing */
1120 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1121 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1122 			return 0;
1123 		}
1124 		if (ret != -ENOSYS)
1125 			return ret;
1126 
1127 		/* getting an ENOSYS error indicates that direct mmap isn't
1128 		 * possible (as opposed to tried but failed) so we'll try to
1129 		 * make a private copy of the data and map that instead */
1130 	}
1131 
1132 	rlen = PAGE_ALIGN(len);
1133 
1134 	/* allocate some memory to hold the mapping
1135 	 * - note that this may not return a page-aligned address if the object
1136 	 *   we're allocating is smaller than a page
1137 	 */
1138 	order = get_order(rlen);
1139 	kdebug("alloc order %d for %lx", order, len);
1140 
1141 	pages = alloc_pages(GFP_KERNEL, order);
1142 	if (!pages)
1143 		goto enomem;
1144 
1145 	total = 1 << order;
1146 	atomic_long_add(total, &mmap_pages_allocated);
1147 
1148 	point = rlen >> PAGE_SHIFT;
1149 
1150 	/* we allocated a power-of-2 sized page set, so we may want to trim off
1151 	 * the excess */
1152 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1153 		while (total > point) {
1154 			order = ilog2(total - point);
1155 			n = 1 << order;
1156 			kdebug("shave %lu/%lu @%lu", n, total - point, total);
1157 			atomic_long_sub(n, &mmap_pages_allocated);
1158 			total -= n;
1159 			set_page_refcounted(pages + total);
1160 			__free_pages(pages + total, order);
1161 		}
1162 	}
1163 
1164 	for (point = 1; point < total; point++)
1165 		set_page_refcounted(&pages[point]);
1166 
1167 	base = page_address(pages);
1168 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1169 	region->vm_start = (unsigned long) base;
1170 	region->vm_end   = region->vm_start + rlen;
1171 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1172 
1173 	vma->vm_start = region->vm_start;
1174 	vma->vm_end   = region->vm_start + len;
1175 
1176 	if (vma->vm_file) {
1177 		/* read the contents of a file into the copy */
1178 		mm_segment_t old_fs;
1179 		loff_t fpos;
1180 
1181 		fpos = vma->vm_pgoff;
1182 		fpos <<= PAGE_SHIFT;
1183 
1184 		old_fs = get_fs();
1185 		set_fs(KERNEL_DS);
1186 		ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1187 		set_fs(old_fs);
1188 
1189 		if (ret < 0)
1190 			goto error_free;
1191 
1192 		/* clear the last little bit */
1193 		if (ret < rlen)
1194 			memset(base + ret, 0, rlen - ret);
1195 
1196 	}
1197 
1198 	return 0;
1199 
1200 error_free:
1201 	free_page_series(region->vm_start, region->vm_end);
1202 	region->vm_start = vma->vm_start = 0;
1203 	region->vm_end   = vma->vm_end = 0;
1204 	region->vm_top   = 0;
1205 	return ret;
1206 
1207 enomem:
1208 	printk("Allocation of length %lu from process %d (%s) failed\n",
1209 	       len, current->pid, current->comm);
1210 	show_free_areas();
1211 	return -ENOMEM;
1212 }
1213 
1214 /*
1215  * handle mapping creation for uClinux
1216  */
1217 unsigned long do_mmap_pgoff(struct file *file,
1218 			    unsigned long addr,
1219 			    unsigned long len,
1220 			    unsigned long prot,
1221 			    unsigned long flags,
1222 			    unsigned long pgoff)
1223 {
1224 	struct vm_area_struct *vma;
1225 	struct vm_region *region;
1226 	struct rb_node *rb;
1227 	unsigned long capabilities, vm_flags, result;
1228 	int ret;
1229 
1230 	kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1231 
1232 	/* decide whether we should attempt the mapping, and if so what sort of
1233 	 * mapping */
1234 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1235 				    &capabilities);
1236 	if (ret < 0) {
1237 		kleave(" = %d [val]", ret);
1238 		return ret;
1239 	}
1240 
1241 	/* we ignore the address hint */
1242 	addr = 0;
1243 
1244 	/* we've determined that we can make the mapping, now translate what we
1245 	 * now know into VMA flags */
1246 	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1247 
1248 	/* we're going to need to record the mapping */
1249 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1250 	if (!region)
1251 		goto error_getting_region;
1252 
1253 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1254 	if (!vma)
1255 		goto error_getting_vma;
1256 
1257 	region->vm_usage = 1;
1258 	region->vm_flags = vm_flags;
1259 	region->vm_pgoff = pgoff;
1260 
1261 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1262 	vma->vm_flags = vm_flags;
1263 	vma->vm_pgoff = pgoff;
1264 
1265 	if (file) {
1266 		region->vm_file = file;
1267 		get_file(file);
1268 		vma->vm_file = file;
1269 		get_file(file);
1270 		if (vm_flags & VM_EXECUTABLE) {
1271 			added_exe_file_vma(current->mm);
1272 			vma->vm_mm = current->mm;
1273 		}
1274 	}
1275 
1276 	down_write(&nommu_region_sem);
1277 
1278 	/* if we want to share, we need to check for regions created by other
1279 	 * mmap() calls that overlap with our proposed mapping
1280 	 * - we can only share with a superset match on most regular files
1281 	 * - shared mappings on character devices and memory backed files are
1282 	 *   permitted to overlap inexactly as far as we are concerned for in
1283 	 *   these cases, sharing is handled in the driver or filesystem rather
1284 	 *   than here
1285 	 */
1286 	if (vm_flags & VM_MAYSHARE) {
1287 		struct vm_region *pregion;
1288 		unsigned long pglen, rpglen, pgend, rpgend, start;
1289 
1290 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1291 		pgend = pgoff + pglen;
1292 
1293 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1294 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1295 
1296 			if (!(pregion->vm_flags & VM_MAYSHARE))
1297 				continue;
1298 
1299 			/* search for overlapping mappings on the same file */
1300 			if (pregion->vm_file->f_path.dentry->d_inode !=
1301 			    file->f_path.dentry->d_inode)
1302 				continue;
1303 
1304 			if (pregion->vm_pgoff >= pgend)
1305 				continue;
1306 
1307 			rpglen = pregion->vm_end - pregion->vm_start;
1308 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1309 			rpgend = pregion->vm_pgoff + rpglen;
1310 			if (pgoff >= rpgend)
1311 				continue;
1312 
1313 			/* handle inexactly overlapping matches between
1314 			 * mappings */
1315 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1316 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1317 				/* new mapping is not a subset of the region */
1318 				if (!(capabilities & BDI_CAP_MAP_DIRECT))
1319 					goto sharing_violation;
1320 				continue;
1321 			}
1322 
1323 			/* we've found a region we can share */
1324 			pregion->vm_usage++;
1325 			vma->vm_region = pregion;
1326 			start = pregion->vm_start;
1327 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1328 			vma->vm_start = start;
1329 			vma->vm_end = start + len;
1330 
1331 			if (pregion->vm_flags & VM_MAPPED_COPY) {
1332 				kdebug("share copy");
1333 				vma->vm_flags |= VM_MAPPED_COPY;
1334 			} else {
1335 				kdebug("share mmap");
1336 				ret = do_mmap_shared_file(vma);
1337 				if (ret < 0) {
1338 					vma->vm_region = NULL;
1339 					vma->vm_start = 0;
1340 					vma->vm_end = 0;
1341 					pregion->vm_usage--;
1342 					pregion = NULL;
1343 					goto error_just_free;
1344 				}
1345 			}
1346 			fput(region->vm_file);
1347 			kmem_cache_free(vm_region_jar, region);
1348 			region = pregion;
1349 			result = start;
1350 			goto share;
1351 		}
1352 
1353 		/* obtain the address at which to make a shared mapping
1354 		 * - this is the hook for quasi-memory character devices to
1355 		 *   tell us the location of a shared mapping
1356 		 */
1357 		if (capabilities & BDI_CAP_MAP_DIRECT) {
1358 			addr = file->f_op->get_unmapped_area(file, addr, len,
1359 							     pgoff, flags);
1360 			if (IS_ERR((void *) addr)) {
1361 				ret = addr;
1362 				if (ret != (unsigned long) -ENOSYS)
1363 					goto error_just_free;
1364 
1365 				/* the driver refused to tell us where to site
1366 				 * the mapping so we'll have to attempt to copy
1367 				 * it */
1368 				ret = (unsigned long) -ENODEV;
1369 				if (!(capabilities & BDI_CAP_MAP_COPY))
1370 					goto error_just_free;
1371 
1372 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1373 			} else {
1374 				vma->vm_start = region->vm_start = addr;
1375 				vma->vm_end = region->vm_end = addr + len;
1376 			}
1377 		}
1378 	}
1379 
1380 	vma->vm_region = region;
1381 
1382 	/* set up the mapping
1383 	 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1384 	 */
1385 	if (file && vma->vm_flags & VM_SHARED)
1386 		ret = do_mmap_shared_file(vma);
1387 	else
1388 		ret = do_mmap_private(vma, region, len, capabilities);
1389 	if (ret < 0)
1390 		goto error_just_free;
1391 	add_nommu_region(region);
1392 
1393 	/* clear anonymous mappings that don't ask for uninitialized data */
1394 	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1395 		memset((void *)region->vm_start, 0,
1396 		       region->vm_end - region->vm_start);
1397 
1398 	/* okay... we have a mapping; now we have to register it */
1399 	result = vma->vm_start;
1400 
1401 	current->mm->total_vm += len >> PAGE_SHIFT;
1402 
1403 share:
1404 	add_vma_to_mm(current->mm, vma);
1405 
1406 	/* we flush the region from the icache only when the first executable
1407 	 * mapping of it is made  */
1408 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1409 		flush_icache_range(region->vm_start, region->vm_end);
1410 		region->vm_icache_flushed = true;
1411 	}
1412 
1413 	up_write(&nommu_region_sem);
1414 
1415 	kleave(" = %lx", result);
1416 	return result;
1417 
1418 error_just_free:
1419 	up_write(&nommu_region_sem);
1420 error:
1421 	if (region->vm_file)
1422 		fput(region->vm_file);
1423 	kmem_cache_free(vm_region_jar, region);
1424 	if (vma->vm_file)
1425 		fput(vma->vm_file);
1426 	if (vma->vm_flags & VM_EXECUTABLE)
1427 		removed_exe_file_vma(vma->vm_mm);
1428 	kmem_cache_free(vm_area_cachep, vma);
1429 	kleave(" = %d", ret);
1430 	return ret;
1431 
1432 sharing_violation:
1433 	up_write(&nommu_region_sem);
1434 	printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1435 	ret = -EINVAL;
1436 	goto error;
1437 
1438 error_getting_vma:
1439 	kmem_cache_free(vm_region_jar, region);
1440 	printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1441 	       " from process %d failed\n",
1442 	       len, current->pid);
1443 	show_free_areas();
1444 	return -ENOMEM;
1445 
1446 error_getting_region:
1447 	printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1448 	       " from process %d failed\n",
1449 	       len, current->pid);
1450 	show_free_areas();
1451 	return -ENOMEM;
1452 }
1453 EXPORT_SYMBOL(do_mmap_pgoff);
1454 
1455 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1456 		unsigned long, prot, unsigned long, flags,
1457 		unsigned long, fd, unsigned long, pgoff)
1458 {
1459 	struct file *file = NULL;
1460 	unsigned long retval = -EBADF;
1461 
1462 	audit_mmap_fd(fd, flags);
1463 	if (!(flags & MAP_ANONYMOUS)) {
1464 		file = fget(fd);
1465 		if (!file)
1466 			goto out;
1467 	}
1468 
1469 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1470 
1471 	down_write(&current->mm->mmap_sem);
1472 	retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1473 	up_write(&current->mm->mmap_sem);
1474 
1475 	if (file)
1476 		fput(file);
1477 out:
1478 	return retval;
1479 }
1480 
1481 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1482 struct mmap_arg_struct {
1483 	unsigned long addr;
1484 	unsigned long len;
1485 	unsigned long prot;
1486 	unsigned long flags;
1487 	unsigned long fd;
1488 	unsigned long offset;
1489 };
1490 
1491 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1492 {
1493 	struct mmap_arg_struct a;
1494 
1495 	if (copy_from_user(&a, arg, sizeof(a)))
1496 		return -EFAULT;
1497 	if (a.offset & ~PAGE_MASK)
1498 		return -EINVAL;
1499 
1500 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1501 			      a.offset >> PAGE_SHIFT);
1502 }
1503 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1504 
1505 /*
1506  * split a vma into two pieces at address 'addr', a new vma is allocated either
1507  * for the first part or the tail.
1508  */
1509 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1510 	      unsigned long addr, int new_below)
1511 {
1512 	struct vm_area_struct *new;
1513 	struct vm_region *region;
1514 	unsigned long npages;
1515 
1516 	kenter("");
1517 
1518 	/* we're only permitted to split anonymous regions (these should have
1519 	 * only a single usage on the region) */
1520 	if (vma->vm_file)
1521 		return -ENOMEM;
1522 
1523 	if (mm->map_count >= sysctl_max_map_count)
1524 		return -ENOMEM;
1525 
1526 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1527 	if (!region)
1528 		return -ENOMEM;
1529 
1530 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1531 	if (!new) {
1532 		kmem_cache_free(vm_region_jar, region);
1533 		return -ENOMEM;
1534 	}
1535 
1536 	/* most fields are the same, copy all, and then fixup */
1537 	*new = *vma;
1538 	*region = *vma->vm_region;
1539 	new->vm_region = region;
1540 
1541 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1542 
1543 	if (new_below) {
1544 		region->vm_top = region->vm_end = new->vm_end = addr;
1545 	} else {
1546 		region->vm_start = new->vm_start = addr;
1547 		region->vm_pgoff = new->vm_pgoff += npages;
1548 	}
1549 
1550 	if (new->vm_ops && new->vm_ops->open)
1551 		new->vm_ops->open(new);
1552 
1553 	delete_vma_from_mm(vma);
1554 	down_write(&nommu_region_sem);
1555 	delete_nommu_region(vma->vm_region);
1556 	if (new_below) {
1557 		vma->vm_region->vm_start = vma->vm_start = addr;
1558 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1559 	} else {
1560 		vma->vm_region->vm_end = vma->vm_end = addr;
1561 		vma->vm_region->vm_top = addr;
1562 	}
1563 	add_nommu_region(vma->vm_region);
1564 	add_nommu_region(new->vm_region);
1565 	up_write(&nommu_region_sem);
1566 	add_vma_to_mm(mm, vma);
1567 	add_vma_to_mm(mm, new);
1568 	return 0;
1569 }
1570 
1571 /*
1572  * shrink a VMA by removing the specified chunk from either the beginning or
1573  * the end
1574  */
1575 static int shrink_vma(struct mm_struct *mm,
1576 		      struct vm_area_struct *vma,
1577 		      unsigned long from, unsigned long to)
1578 {
1579 	struct vm_region *region;
1580 
1581 	kenter("");
1582 
1583 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1584 	 * and list */
1585 	delete_vma_from_mm(vma);
1586 	if (from > vma->vm_start)
1587 		vma->vm_end = from;
1588 	else
1589 		vma->vm_start = to;
1590 	add_vma_to_mm(mm, vma);
1591 
1592 	/* cut the backing region down to size */
1593 	region = vma->vm_region;
1594 	BUG_ON(region->vm_usage != 1);
1595 
1596 	down_write(&nommu_region_sem);
1597 	delete_nommu_region(region);
1598 	if (from > region->vm_start) {
1599 		to = region->vm_top;
1600 		region->vm_top = region->vm_end = from;
1601 	} else {
1602 		region->vm_start = to;
1603 	}
1604 	add_nommu_region(region);
1605 	up_write(&nommu_region_sem);
1606 
1607 	free_page_series(from, to);
1608 	return 0;
1609 }
1610 
1611 /*
1612  * release a mapping
1613  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1614  *   VMA, though it need not cover the whole VMA
1615  */
1616 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1617 {
1618 	struct vm_area_struct *vma;
1619 	struct rb_node *rb;
1620 	unsigned long end = start + len;
1621 	int ret;
1622 
1623 	kenter(",%lx,%zx", start, len);
1624 
1625 	if (len == 0)
1626 		return -EINVAL;
1627 
1628 	/* find the first potentially overlapping VMA */
1629 	vma = find_vma(mm, start);
1630 	if (!vma) {
1631 		static int limit = 0;
1632 		if (limit < 5) {
1633 			printk(KERN_WARNING
1634 			       "munmap of memory not mmapped by process %d"
1635 			       " (%s): 0x%lx-0x%lx\n",
1636 			       current->pid, current->comm,
1637 			       start, start + len - 1);
1638 			limit++;
1639 		}
1640 		return -EINVAL;
1641 	}
1642 
1643 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1644 	if (vma->vm_file) {
1645 		do {
1646 			if (start > vma->vm_start) {
1647 				kleave(" = -EINVAL [miss]");
1648 				return -EINVAL;
1649 			}
1650 			if (end == vma->vm_end)
1651 				goto erase_whole_vma;
1652 			rb = rb_next(&vma->vm_rb);
1653 			vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1654 		} while (rb);
1655 		kleave(" = -EINVAL [split file]");
1656 		return -EINVAL;
1657 	} else {
1658 		/* the chunk must be a subset of the VMA found */
1659 		if (start == vma->vm_start && end == vma->vm_end)
1660 			goto erase_whole_vma;
1661 		if (start < vma->vm_start || end > vma->vm_end) {
1662 			kleave(" = -EINVAL [superset]");
1663 			return -EINVAL;
1664 		}
1665 		if (start & ~PAGE_MASK) {
1666 			kleave(" = -EINVAL [unaligned start]");
1667 			return -EINVAL;
1668 		}
1669 		if (end != vma->vm_end && end & ~PAGE_MASK) {
1670 			kleave(" = -EINVAL [unaligned split]");
1671 			return -EINVAL;
1672 		}
1673 		if (start != vma->vm_start && end != vma->vm_end) {
1674 			ret = split_vma(mm, vma, start, 1);
1675 			if (ret < 0) {
1676 				kleave(" = %d [split]", ret);
1677 				return ret;
1678 			}
1679 		}
1680 		return shrink_vma(mm, vma, start, end);
1681 	}
1682 
1683 erase_whole_vma:
1684 	delete_vma_from_mm(vma);
1685 	delete_vma(mm, vma);
1686 	kleave(" = 0");
1687 	return 0;
1688 }
1689 EXPORT_SYMBOL(do_munmap);
1690 
1691 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1692 {
1693 	int ret;
1694 	struct mm_struct *mm = current->mm;
1695 
1696 	down_write(&mm->mmap_sem);
1697 	ret = do_munmap(mm, addr, len);
1698 	up_write(&mm->mmap_sem);
1699 	return ret;
1700 }
1701 
1702 /*
1703  * release all the mappings made in a process's VM space
1704  */
1705 void exit_mmap(struct mm_struct *mm)
1706 {
1707 	struct vm_area_struct *vma;
1708 
1709 	if (!mm)
1710 		return;
1711 
1712 	kenter("");
1713 
1714 	mm->total_vm = 0;
1715 
1716 	while ((vma = mm->mmap)) {
1717 		mm->mmap = vma->vm_next;
1718 		delete_vma_from_mm(vma);
1719 		delete_vma(mm, vma);
1720 	}
1721 
1722 	kleave("");
1723 }
1724 
1725 unsigned long do_brk(unsigned long addr, unsigned long len)
1726 {
1727 	return -ENOMEM;
1728 }
1729 
1730 /*
1731  * expand (or shrink) an existing mapping, potentially moving it at the same
1732  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1733  *
1734  * under NOMMU conditions, we only permit changing a mapping's size, and only
1735  * as long as it stays within the region allocated by do_mmap_private() and the
1736  * block is not shareable
1737  *
1738  * MREMAP_FIXED is not supported under NOMMU conditions
1739  */
1740 unsigned long do_mremap(unsigned long addr,
1741 			unsigned long old_len, unsigned long new_len,
1742 			unsigned long flags, unsigned long new_addr)
1743 {
1744 	struct vm_area_struct *vma;
1745 
1746 	/* insanity checks first */
1747 	if (old_len == 0 || new_len == 0)
1748 		return (unsigned long) -EINVAL;
1749 
1750 	if (addr & ~PAGE_MASK)
1751 		return -EINVAL;
1752 
1753 	if (flags & MREMAP_FIXED && new_addr != addr)
1754 		return (unsigned long) -EINVAL;
1755 
1756 	vma = find_vma_exact(current->mm, addr, old_len);
1757 	if (!vma)
1758 		return (unsigned long) -EINVAL;
1759 
1760 	if (vma->vm_end != vma->vm_start + old_len)
1761 		return (unsigned long) -EFAULT;
1762 
1763 	if (vma->vm_flags & VM_MAYSHARE)
1764 		return (unsigned long) -EPERM;
1765 
1766 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1767 		return (unsigned long) -ENOMEM;
1768 
1769 	/* all checks complete - do it */
1770 	vma->vm_end = vma->vm_start + new_len;
1771 	return vma->vm_start;
1772 }
1773 EXPORT_SYMBOL(do_mremap);
1774 
1775 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1776 		unsigned long, new_len, unsigned long, flags,
1777 		unsigned long, new_addr)
1778 {
1779 	unsigned long ret;
1780 
1781 	down_write(&current->mm->mmap_sem);
1782 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1783 	up_write(&current->mm->mmap_sem);
1784 	return ret;
1785 }
1786 
1787 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1788 			unsigned int foll_flags)
1789 {
1790 	return NULL;
1791 }
1792 
1793 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1794 		unsigned long to, unsigned long size, pgprot_t prot)
1795 {
1796 	vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1797 	return 0;
1798 }
1799 EXPORT_SYMBOL(remap_pfn_range);
1800 
1801 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1802 			unsigned long pgoff)
1803 {
1804 	unsigned int size = vma->vm_end - vma->vm_start;
1805 
1806 	if (!(vma->vm_flags & VM_USERMAP))
1807 		return -EINVAL;
1808 
1809 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1810 	vma->vm_end = vma->vm_start + size;
1811 
1812 	return 0;
1813 }
1814 EXPORT_SYMBOL(remap_vmalloc_range);
1815 
1816 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1817 {
1818 }
1819 
1820 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1821 	unsigned long len, unsigned long pgoff, unsigned long flags)
1822 {
1823 	return -ENOMEM;
1824 }
1825 
1826 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1827 {
1828 }
1829 
1830 void unmap_mapping_range(struct address_space *mapping,
1831 			 loff_t const holebegin, loff_t const holelen,
1832 			 int even_cows)
1833 {
1834 }
1835 EXPORT_SYMBOL(unmap_mapping_range);
1836 
1837 /*
1838  * Check that a process has enough memory to allocate a new virtual
1839  * mapping. 0 means there is enough memory for the allocation to
1840  * succeed and -ENOMEM implies there is not.
1841  *
1842  * We currently support three overcommit policies, which are set via the
1843  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1844  *
1845  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1846  * Additional code 2002 Jul 20 by Robert Love.
1847  *
1848  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1849  *
1850  * Note this is a helper function intended to be used by LSMs which
1851  * wish to use this logic.
1852  */
1853 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1854 {
1855 	unsigned long free, allowed;
1856 
1857 	vm_acct_memory(pages);
1858 
1859 	/*
1860 	 * Sometimes we want to use more memory than we have
1861 	 */
1862 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1863 		return 0;
1864 
1865 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1866 		unsigned long n;
1867 
1868 		free = global_page_state(NR_FILE_PAGES);
1869 		free += nr_swap_pages;
1870 
1871 		/*
1872 		 * Any slabs which are created with the
1873 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1874 		 * which are reclaimable, under pressure.  The dentry
1875 		 * cache and most inode caches should fall into this
1876 		 */
1877 		free += global_page_state(NR_SLAB_RECLAIMABLE);
1878 
1879 		/*
1880 		 * Leave the last 3% for root
1881 		 */
1882 		if (!cap_sys_admin)
1883 			free -= free / 32;
1884 
1885 		if (free > pages)
1886 			return 0;
1887 
1888 		/*
1889 		 * nr_free_pages() is very expensive on large systems,
1890 		 * only call if we're about to fail.
1891 		 */
1892 		n = nr_free_pages();
1893 
1894 		/*
1895 		 * Leave reserved pages. The pages are not for anonymous pages.
1896 		 */
1897 		if (n <= totalreserve_pages)
1898 			goto error;
1899 		else
1900 			n -= totalreserve_pages;
1901 
1902 		/*
1903 		 * Leave the last 3% for root
1904 		 */
1905 		if (!cap_sys_admin)
1906 			n -= n / 32;
1907 		free += n;
1908 
1909 		if (free > pages)
1910 			return 0;
1911 
1912 		goto error;
1913 	}
1914 
1915 	allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1916 	/*
1917 	 * Leave the last 3% for root
1918 	 */
1919 	if (!cap_sys_admin)
1920 		allowed -= allowed / 32;
1921 	allowed += total_swap_pages;
1922 
1923 	/* Don't let a single process grow too big:
1924 	   leave 3% of the size of this process for other processes */
1925 	if (mm)
1926 		allowed -= mm->total_vm / 32;
1927 
1928 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1929 		return 0;
1930 
1931 error:
1932 	vm_unacct_memory(pages);
1933 
1934 	return -ENOMEM;
1935 }
1936 
1937 int in_gate_area_no_task(unsigned long addr)
1938 {
1939 	return 0;
1940 }
1941 
1942 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1943 {
1944 	BUG();
1945 	return 0;
1946 }
1947 EXPORT_SYMBOL(filemap_fault);
1948 
1949 /*
1950  * Access another process' address space.
1951  * - source/target buffer must be kernel space
1952  */
1953 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1954 {
1955 	struct vm_area_struct *vma;
1956 	struct mm_struct *mm;
1957 
1958 	if (addr + len < addr)
1959 		return 0;
1960 
1961 	mm = get_task_mm(tsk);
1962 	if (!mm)
1963 		return 0;
1964 
1965 	down_read(&mm->mmap_sem);
1966 
1967 	/* the access must start within one of the target process's mappings */
1968 	vma = find_vma(mm, addr);
1969 	if (vma) {
1970 		/* don't overrun this mapping */
1971 		if (addr + len >= vma->vm_end)
1972 			len = vma->vm_end - addr;
1973 
1974 		/* only read or write mappings where it is permitted */
1975 		if (write && vma->vm_flags & VM_MAYWRITE)
1976 			copy_to_user_page(vma, NULL, addr,
1977 					 (void *) addr, buf, len);
1978 		else if (!write && vma->vm_flags & VM_MAYREAD)
1979 			copy_from_user_page(vma, NULL, addr,
1980 					    buf, (void *) addr, len);
1981 		else
1982 			len = 0;
1983 	} else {
1984 		len = 0;
1985 	}
1986 
1987 	up_read(&mm->mmap_sem);
1988 	mmput(mm);
1989 	return len;
1990 }
1991 
1992 /**
1993  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1994  * @inode: The inode to check
1995  * @size: The current filesize of the inode
1996  * @newsize: The proposed filesize of the inode
1997  *
1998  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1999  * make sure that that any outstanding VMAs aren't broken and then shrink the
2000  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2001  * automatically grant mappings that are too large.
2002  */
2003 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2004 				size_t newsize)
2005 {
2006 	struct vm_area_struct *vma;
2007 	struct prio_tree_iter iter;
2008 	struct vm_region *region;
2009 	pgoff_t low, high;
2010 	size_t r_size, r_top;
2011 
2012 	low = newsize >> PAGE_SHIFT;
2013 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2014 
2015 	down_write(&nommu_region_sem);
2016 
2017 	/* search for VMAs that fall within the dead zone */
2018 	vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
2019 			      low, high) {
2020 		/* found one - only interested if it's shared out of the page
2021 		 * cache */
2022 		if (vma->vm_flags & VM_SHARED) {
2023 			up_write(&nommu_region_sem);
2024 			return -ETXTBSY; /* not quite true, but near enough */
2025 		}
2026 	}
2027 
2028 	/* reduce any regions that overlap the dead zone - if in existence,
2029 	 * these will be pointed to by VMAs that don't overlap the dead zone
2030 	 *
2031 	 * we don't check for any regions that start beyond the EOF as there
2032 	 * shouldn't be any
2033 	 */
2034 	vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
2035 			      0, ULONG_MAX) {
2036 		if (!(vma->vm_flags & VM_SHARED))
2037 			continue;
2038 
2039 		region = vma->vm_region;
2040 		r_size = region->vm_top - region->vm_start;
2041 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2042 
2043 		if (r_top > newsize) {
2044 			region->vm_top -= r_top - newsize;
2045 			if (region->vm_end > region->vm_top)
2046 				region->vm_end = region->vm_top;
2047 		}
2048 	}
2049 
2050 	up_write(&nommu_region_sem);
2051 	return 0;
2052 }
2053