1 /* 2 * linux/mm/nommu.c 3 * 4 * Replacement code for mm functions to support CPU's that don't 5 * have any form of memory management unit (thus no virtual memory). 6 * 7 * See Documentation/nommu-mmap.txt 8 * 9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> 10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> 11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> 12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> 13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> 14 */ 15 16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 17 18 #include <linux/export.h> 19 #include <linux/mm.h> 20 #include <linux/sched/mm.h> 21 #include <linux/vmacache.h> 22 #include <linux/mman.h> 23 #include <linux/swap.h> 24 #include <linux/file.h> 25 #include <linux/highmem.h> 26 #include <linux/pagemap.h> 27 #include <linux/slab.h> 28 #include <linux/vmalloc.h> 29 #include <linux/blkdev.h> 30 #include <linux/backing-dev.h> 31 #include <linux/compiler.h> 32 #include <linux/mount.h> 33 #include <linux/personality.h> 34 #include <linux/security.h> 35 #include <linux/syscalls.h> 36 #include <linux/audit.h> 37 #include <linux/printk.h> 38 39 #include <linux/uaccess.h> 40 #include <asm/tlb.h> 41 #include <asm/tlbflush.h> 42 #include <asm/mmu_context.h> 43 #include "internal.h" 44 45 void *high_memory; 46 EXPORT_SYMBOL(high_memory); 47 struct page *mem_map; 48 unsigned long max_mapnr; 49 EXPORT_SYMBOL(max_mapnr); 50 unsigned long highest_memmap_pfn; 51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; 52 int heap_stack_gap = 0; 53 54 atomic_long_t mmap_pages_allocated; 55 56 EXPORT_SYMBOL(mem_map); 57 58 /* list of mapped, potentially shareable regions */ 59 static struct kmem_cache *vm_region_jar; 60 struct rb_root nommu_region_tree = RB_ROOT; 61 DECLARE_RWSEM(nommu_region_sem); 62 63 const struct vm_operations_struct generic_file_vm_ops = { 64 }; 65 66 /* 67 * Return the total memory allocated for this pointer, not 68 * just what the caller asked for. 69 * 70 * Doesn't have to be accurate, i.e. may have races. 71 */ 72 unsigned int kobjsize(const void *objp) 73 { 74 struct page *page; 75 76 /* 77 * If the object we have should not have ksize performed on it, 78 * return size of 0 79 */ 80 if (!objp || !virt_addr_valid(objp)) 81 return 0; 82 83 page = virt_to_head_page(objp); 84 85 /* 86 * If the allocator sets PageSlab, we know the pointer came from 87 * kmalloc(). 88 */ 89 if (PageSlab(page)) 90 return ksize(objp); 91 92 /* 93 * If it's not a compound page, see if we have a matching VMA 94 * region. This test is intentionally done in reverse order, 95 * so if there's no VMA, we still fall through and hand back 96 * PAGE_SIZE for 0-order pages. 97 */ 98 if (!PageCompound(page)) { 99 struct vm_area_struct *vma; 100 101 vma = find_vma(current->mm, (unsigned long)objp); 102 if (vma) 103 return vma->vm_end - vma->vm_start; 104 } 105 106 /* 107 * The ksize() function is only guaranteed to work for pointers 108 * returned by kmalloc(). So handle arbitrary pointers here. 109 */ 110 return PAGE_SIZE << compound_order(page); 111 } 112 113 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 114 unsigned long start, unsigned long nr_pages, 115 unsigned int foll_flags, struct page **pages, 116 struct vm_area_struct **vmas, int *nonblocking) 117 { 118 struct vm_area_struct *vma; 119 unsigned long vm_flags; 120 int i; 121 122 /* calculate required read or write permissions. 123 * If FOLL_FORCE is set, we only require the "MAY" flags. 124 */ 125 vm_flags = (foll_flags & FOLL_WRITE) ? 126 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 127 vm_flags &= (foll_flags & FOLL_FORCE) ? 128 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 129 130 for (i = 0; i < nr_pages; i++) { 131 vma = find_vma(mm, start); 132 if (!vma) 133 goto finish_or_fault; 134 135 /* protect what we can, including chardevs */ 136 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 137 !(vm_flags & vma->vm_flags)) 138 goto finish_or_fault; 139 140 if (pages) { 141 pages[i] = virt_to_page(start); 142 if (pages[i]) 143 get_page(pages[i]); 144 } 145 if (vmas) 146 vmas[i] = vma; 147 start = (start + PAGE_SIZE) & PAGE_MASK; 148 } 149 150 return i; 151 152 finish_or_fault: 153 return i ? : -EFAULT; 154 } 155 156 /* 157 * get a list of pages in an address range belonging to the specified process 158 * and indicate the VMA that covers each page 159 * - this is potentially dodgy as we may end incrementing the page count of a 160 * slab page or a secondary page from a compound page 161 * - don't permit access to VMAs that don't support it, such as I/O mappings 162 */ 163 long get_user_pages(unsigned long start, unsigned long nr_pages, 164 unsigned int gup_flags, struct page **pages, 165 struct vm_area_struct **vmas) 166 { 167 return __get_user_pages(current, current->mm, start, nr_pages, 168 gup_flags, pages, vmas, NULL); 169 } 170 EXPORT_SYMBOL(get_user_pages); 171 172 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 173 unsigned int gup_flags, struct page **pages, 174 int *locked) 175 { 176 return get_user_pages(start, nr_pages, gup_flags, pages, NULL); 177 } 178 EXPORT_SYMBOL(get_user_pages_locked); 179 180 static long __get_user_pages_unlocked(struct task_struct *tsk, 181 struct mm_struct *mm, unsigned long start, 182 unsigned long nr_pages, struct page **pages, 183 unsigned int gup_flags) 184 { 185 long ret; 186 down_read(&mm->mmap_sem); 187 ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages, 188 NULL, NULL); 189 up_read(&mm->mmap_sem); 190 return ret; 191 } 192 193 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 194 struct page **pages, unsigned int gup_flags) 195 { 196 return __get_user_pages_unlocked(current, current->mm, start, nr_pages, 197 pages, gup_flags); 198 } 199 EXPORT_SYMBOL(get_user_pages_unlocked); 200 201 /** 202 * follow_pfn - look up PFN at a user virtual address 203 * @vma: memory mapping 204 * @address: user virtual address 205 * @pfn: location to store found PFN 206 * 207 * Only IO mappings and raw PFN mappings are allowed. 208 * 209 * Returns zero and the pfn at @pfn on success, -ve otherwise. 210 */ 211 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 212 unsigned long *pfn) 213 { 214 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 215 return -EINVAL; 216 217 *pfn = address >> PAGE_SHIFT; 218 return 0; 219 } 220 EXPORT_SYMBOL(follow_pfn); 221 222 LIST_HEAD(vmap_area_list); 223 224 void vfree(const void *addr) 225 { 226 kfree(addr); 227 } 228 EXPORT_SYMBOL(vfree); 229 230 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 231 { 232 /* 233 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() 234 * returns only a logical address. 235 */ 236 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); 237 } 238 EXPORT_SYMBOL(__vmalloc); 239 240 void *vmalloc_user(unsigned long size) 241 { 242 void *ret; 243 244 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 245 PAGE_KERNEL); 246 if (ret) { 247 struct vm_area_struct *vma; 248 249 down_write(¤t->mm->mmap_sem); 250 vma = find_vma(current->mm, (unsigned long)ret); 251 if (vma) 252 vma->vm_flags |= VM_USERMAP; 253 up_write(¤t->mm->mmap_sem); 254 } 255 256 return ret; 257 } 258 EXPORT_SYMBOL(vmalloc_user); 259 260 struct page *vmalloc_to_page(const void *addr) 261 { 262 return virt_to_page(addr); 263 } 264 EXPORT_SYMBOL(vmalloc_to_page); 265 266 unsigned long vmalloc_to_pfn(const void *addr) 267 { 268 return page_to_pfn(virt_to_page(addr)); 269 } 270 EXPORT_SYMBOL(vmalloc_to_pfn); 271 272 long vread(char *buf, char *addr, unsigned long count) 273 { 274 /* Don't allow overflow */ 275 if ((unsigned long) buf + count < count) 276 count = -(unsigned long) buf; 277 278 memcpy(buf, addr, count); 279 return count; 280 } 281 282 long vwrite(char *buf, char *addr, unsigned long count) 283 { 284 /* Don't allow overflow */ 285 if ((unsigned long) addr + count < count) 286 count = -(unsigned long) addr; 287 288 memcpy(addr, buf, count); 289 return count; 290 } 291 292 /* 293 * vmalloc - allocate virtually contiguous memory 294 * 295 * @size: allocation size 296 * 297 * Allocate enough pages to cover @size from the page level 298 * allocator and map them into contiguous kernel virtual space. 299 * 300 * For tight control over page level allocator and protection flags 301 * use __vmalloc() instead. 302 */ 303 void *vmalloc(unsigned long size) 304 { 305 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 306 } 307 EXPORT_SYMBOL(vmalloc); 308 309 /* 310 * vzalloc - allocate virtually contiguous memory with zero fill 311 * 312 * @size: allocation size 313 * 314 * Allocate enough pages to cover @size from the page level 315 * allocator and map them into contiguous kernel virtual space. 316 * The memory allocated is set to zero. 317 * 318 * For tight control over page level allocator and protection flags 319 * use __vmalloc() instead. 320 */ 321 void *vzalloc(unsigned long size) 322 { 323 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 324 PAGE_KERNEL); 325 } 326 EXPORT_SYMBOL(vzalloc); 327 328 /** 329 * vmalloc_node - allocate memory on a specific node 330 * @size: allocation size 331 * @node: numa node 332 * 333 * Allocate enough pages to cover @size from the page level 334 * allocator and map them into contiguous kernel virtual space. 335 * 336 * For tight control over page level allocator and protection flags 337 * use __vmalloc() instead. 338 */ 339 void *vmalloc_node(unsigned long size, int node) 340 { 341 return vmalloc(size); 342 } 343 EXPORT_SYMBOL(vmalloc_node); 344 345 /** 346 * vzalloc_node - allocate memory on a specific node with zero fill 347 * @size: allocation size 348 * @node: numa node 349 * 350 * Allocate enough pages to cover @size from the page level 351 * allocator and map them into contiguous kernel virtual space. 352 * The memory allocated is set to zero. 353 * 354 * For tight control over page level allocator and protection flags 355 * use __vmalloc() instead. 356 */ 357 void *vzalloc_node(unsigned long size, int node) 358 { 359 return vzalloc(size); 360 } 361 EXPORT_SYMBOL(vzalloc_node); 362 363 #ifndef PAGE_KERNEL_EXEC 364 # define PAGE_KERNEL_EXEC PAGE_KERNEL 365 #endif 366 367 /** 368 * vmalloc_exec - allocate virtually contiguous, executable memory 369 * @size: allocation size 370 * 371 * Kernel-internal function to allocate enough pages to cover @size 372 * the page level allocator and map them into contiguous and 373 * executable kernel virtual space. 374 * 375 * For tight control over page level allocator and protection flags 376 * use __vmalloc() instead. 377 */ 378 379 void *vmalloc_exec(unsigned long size) 380 { 381 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 382 } 383 384 /** 385 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 386 * @size: allocation size 387 * 388 * Allocate enough 32bit PA addressable pages to cover @size from the 389 * page level allocator and map them into contiguous kernel virtual space. 390 */ 391 void *vmalloc_32(unsigned long size) 392 { 393 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 394 } 395 EXPORT_SYMBOL(vmalloc_32); 396 397 /** 398 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 399 * @size: allocation size 400 * 401 * The resulting memory area is 32bit addressable and zeroed so it can be 402 * mapped to userspace without leaking data. 403 * 404 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to 405 * remap_vmalloc_range() are permissible. 406 */ 407 void *vmalloc_32_user(unsigned long size) 408 { 409 /* 410 * We'll have to sort out the ZONE_DMA bits for 64-bit, 411 * but for now this can simply use vmalloc_user() directly. 412 */ 413 return vmalloc_user(size); 414 } 415 EXPORT_SYMBOL(vmalloc_32_user); 416 417 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) 418 { 419 BUG(); 420 return NULL; 421 } 422 EXPORT_SYMBOL(vmap); 423 424 void vunmap(const void *addr) 425 { 426 BUG(); 427 } 428 EXPORT_SYMBOL(vunmap); 429 430 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 431 { 432 BUG(); 433 return NULL; 434 } 435 EXPORT_SYMBOL(vm_map_ram); 436 437 void vm_unmap_ram(const void *mem, unsigned int count) 438 { 439 BUG(); 440 } 441 EXPORT_SYMBOL(vm_unmap_ram); 442 443 void vm_unmap_aliases(void) 444 { 445 } 446 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 447 448 /* 449 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 450 * have one. 451 */ 452 void __weak vmalloc_sync_all(void) 453 { 454 } 455 456 /** 457 * alloc_vm_area - allocate a range of kernel address space 458 * @size: size of the area 459 * 460 * Returns: NULL on failure, vm_struct on success 461 * 462 * This function reserves a range of kernel address space, and 463 * allocates pagetables to map that range. No actual mappings 464 * are created. If the kernel address space is not shared 465 * between processes, it syncs the pagetable across all 466 * processes. 467 */ 468 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 469 { 470 BUG(); 471 return NULL; 472 } 473 EXPORT_SYMBOL_GPL(alloc_vm_area); 474 475 void free_vm_area(struct vm_struct *area) 476 { 477 BUG(); 478 } 479 EXPORT_SYMBOL_GPL(free_vm_area); 480 481 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 482 struct page *page) 483 { 484 return -EINVAL; 485 } 486 EXPORT_SYMBOL(vm_insert_page); 487 488 /* 489 * sys_brk() for the most part doesn't need the global kernel 490 * lock, except when an application is doing something nasty 491 * like trying to un-brk an area that has already been mapped 492 * to a regular file. in this case, the unmapping will need 493 * to invoke file system routines that need the global lock. 494 */ 495 SYSCALL_DEFINE1(brk, unsigned long, brk) 496 { 497 struct mm_struct *mm = current->mm; 498 499 if (brk < mm->start_brk || brk > mm->context.end_brk) 500 return mm->brk; 501 502 if (mm->brk == brk) 503 return mm->brk; 504 505 /* 506 * Always allow shrinking brk 507 */ 508 if (brk <= mm->brk) { 509 mm->brk = brk; 510 return brk; 511 } 512 513 /* 514 * Ok, looks good - let it rip. 515 */ 516 flush_icache_range(mm->brk, brk); 517 return mm->brk = brk; 518 } 519 520 /* 521 * initialise the percpu counter for VM and region record slabs 522 */ 523 void __init mmap_init(void) 524 { 525 int ret; 526 527 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 528 VM_BUG_ON(ret); 529 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT); 530 } 531 532 /* 533 * validate the region tree 534 * - the caller must hold the region lock 535 */ 536 #ifdef CONFIG_DEBUG_NOMMU_REGIONS 537 static noinline void validate_nommu_regions(void) 538 { 539 struct vm_region *region, *last; 540 struct rb_node *p, *lastp; 541 542 lastp = rb_first(&nommu_region_tree); 543 if (!lastp) 544 return; 545 546 last = rb_entry(lastp, struct vm_region, vm_rb); 547 BUG_ON(last->vm_end <= last->vm_start); 548 BUG_ON(last->vm_top < last->vm_end); 549 550 while ((p = rb_next(lastp))) { 551 region = rb_entry(p, struct vm_region, vm_rb); 552 last = rb_entry(lastp, struct vm_region, vm_rb); 553 554 BUG_ON(region->vm_end <= region->vm_start); 555 BUG_ON(region->vm_top < region->vm_end); 556 BUG_ON(region->vm_start < last->vm_top); 557 558 lastp = p; 559 } 560 } 561 #else 562 static void validate_nommu_regions(void) 563 { 564 } 565 #endif 566 567 /* 568 * add a region into the global tree 569 */ 570 static void add_nommu_region(struct vm_region *region) 571 { 572 struct vm_region *pregion; 573 struct rb_node **p, *parent; 574 575 validate_nommu_regions(); 576 577 parent = NULL; 578 p = &nommu_region_tree.rb_node; 579 while (*p) { 580 parent = *p; 581 pregion = rb_entry(parent, struct vm_region, vm_rb); 582 if (region->vm_start < pregion->vm_start) 583 p = &(*p)->rb_left; 584 else if (region->vm_start > pregion->vm_start) 585 p = &(*p)->rb_right; 586 else if (pregion == region) 587 return; 588 else 589 BUG(); 590 } 591 592 rb_link_node(®ion->vm_rb, parent, p); 593 rb_insert_color(®ion->vm_rb, &nommu_region_tree); 594 595 validate_nommu_regions(); 596 } 597 598 /* 599 * delete a region from the global tree 600 */ 601 static void delete_nommu_region(struct vm_region *region) 602 { 603 BUG_ON(!nommu_region_tree.rb_node); 604 605 validate_nommu_regions(); 606 rb_erase(®ion->vm_rb, &nommu_region_tree); 607 validate_nommu_regions(); 608 } 609 610 /* 611 * free a contiguous series of pages 612 */ 613 static void free_page_series(unsigned long from, unsigned long to) 614 { 615 for (; from < to; from += PAGE_SIZE) { 616 struct page *page = virt_to_page(from); 617 618 atomic_long_dec(&mmap_pages_allocated); 619 put_page(page); 620 } 621 } 622 623 /* 624 * release a reference to a region 625 * - the caller must hold the region semaphore for writing, which this releases 626 * - the region may not have been added to the tree yet, in which case vm_top 627 * will equal vm_start 628 */ 629 static void __put_nommu_region(struct vm_region *region) 630 __releases(nommu_region_sem) 631 { 632 BUG_ON(!nommu_region_tree.rb_node); 633 634 if (--region->vm_usage == 0) { 635 if (region->vm_top > region->vm_start) 636 delete_nommu_region(region); 637 up_write(&nommu_region_sem); 638 639 if (region->vm_file) 640 fput(region->vm_file); 641 642 /* IO memory and memory shared directly out of the pagecache 643 * from ramfs/tmpfs mustn't be released here */ 644 if (region->vm_flags & VM_MAPPED_COPY) 645 free_page_series(region->vm_start, region->vm_top); 646 kmem_cache_free(vm_region_jar, region); 647 } else { 648 up_write(&nommu_region_sem); 649 } 650 } 651 652 /* 653 * release a reference to a region 654 */ 655 static void put_nommu_region(struct vm_region *region) 656 { 657 down_write(&nommu_region_sem); 658 __put_nommu_region(region); 659 } 660 661 /* 662 * update protection on a vma 663 */ 664 static void protect_vma(struct vm_area_struct *vma, unsigned long flags) 665 { 666 #ifdef CONFIG_MPU 667 struct mm_struct *mm = vma->vm_mm; 668 long start = vma->vm_start & PAGE_MASK; 669 while (start < vma->vm_end) { 670 protect_page(mm, start, flags); 671 start += PAGE_SIZE; 672 } 673 update_protections(mm); 674 #endif 675 } 676 677 /* 678 * add a VMA into a process's mm_struct in the appropriate place in the list 679 * and tree and add to the address space's page tree also if not an anonymous 680 * page 681 * - should be called with mm->mmap_sem held writelocked 682 */ 683 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) 684 { 685 struct vm_area_struct *pvma, *prev; 686 struct address_space *mapping; 687 struct rb_node **p, *parent, *rb_prev; 688 689 BUG_ON(!vma->vm_region); 690 691 mm->map_count++; 692 vma->vm_mm = mm; 693 694 protect_vma(vma, vma->vm_flags); 695 696 /* add the VMA to the mapping */ 697 if (vma->vm_file) { 698 mapping = vma->vm_file->f_mapping; 699 700 i_mmap_lock_write(mapping); 701 flush_dcache_mmap_lock(mapping); 702 vma_interval_tree_insert(vma, &mapping->i_mmap); 703 flush_dcache_mmap_unlock(mapping); 704 i_mmap_unlock_write(mapping); 705 } 706 707 /* add the VMA to the tree */ 708 parent = rb_prev = NULL; 709 p = &mm->mm_rb.rb_node; 710 while (*p) { 711 parent = *p; 712 pvma = rb_entry(parent, struct vm_area_struct, vm_rb); 713 714 /* sort by: start addr, end addr, VMA struct addr in that order 715 * (the latter is necessary as we may get identical VMAs) */ 716 if (vma->vm_start < pvma->vm_start) 717 p = &(*p)->rb_left; 718 else if (vma->vm_start > pvma->vm_start) { 719 rb_prev = parent; 720 p = &(*p)->rb_right; 721 } else if (vma->vm_end < pvma->vm_end) 722 p = &(*p)->rb_left; 723 else if (vma->vm_end > pvma->vm_end) { 724 rb_prev = parent; 725 p = &(*p)->rb_right; 726 } else if (vma < pvma) 727 p = &(*p)->rb_left; 728 else if (vma > pvma) { 729 rb_prev = parent; 730 p = &(*p)->rb_right; 731 } else 732 BUG(); 733 } 734 735 rb_link_node(&vma->vm_rb, parent, p); 736 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 737 738 /* add VMA to the VMA list also */ 739 prev = NULL; 740 if (rb_prev) 741 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 742 743 __vma_link_list(mm, vma, prev, parent); 744 } 745 746 /* 747 * delete a VMA from its owning mm_struct and address space 748 */ 749 static void delete_vma_from_mm(struct vm_area_struct *vma) 750 { 751 int i; 752 struct address_space *mapping; 753 struct mm_struct *mm = vma->vm_mm; 754 struct task_struct *curr = current; 755 756 protect_vma(vma, 0); 757 758 mm->map_count--; 759 for (i = 0; i < VMACACHE_SIZE; i++) { 760 /* if the vma is cached, invalidate the entire cache */ 761 if (curr->vmacache.vmas[i] == vma) { 762 vmacache_invalidate(mm); 763 break; 764 } 765 } 766 767 /* remove the VMA from the mapping */ 768 if (vma->vm_file) { 769 mapping = vma->vm_file->f_mapping; 770 771 i_mmap_lock_write(mapping); 772 flush_dcache_mmap_lock(mapping); 773 vma_interval_tree_remove(vma, &mapping->i_mmap); 774 flush_dcache_mmap_unlock(mapping); 775 i_mmap_unlock_write(mapping); 776 } 777 778 /* remove from the MM's tree and list */ 779 rb_erase(&vma->vm_rb, &mm->mm_rb); 780 781 if (vma->vm_prev) 782 vma->vm_prev->vm_next = vma->vm_next; 783 else 784 mm->mmap = vma->vm_next; 785 786 if (vma->vm_next) 787 vma->vm_next->vm_prev = vma->vm_prev; 788 } 789 790 /* 791 * destroy a VMA record 792 */ 793 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) 794 { 795 if (vma->vm_ops && vma->vm_ops->close) 796 vma->vm_ops->close(vma); 797 if (vma->vm_file) 798 fput(vma->vm_file); 799 put_nommu_region(vma->vm_region); 800 kmem_cache_free(vm_area_cachep, vma); 801 } 802 803 /* 804 * look up the first VMA in which addr resides, NULL if none 805 * - should be called with mm->mmap_sem at least held readlocked 806 */ 807 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 808 { 809 struct vm_area_struct *vma; 810 811 /* check the cache first */ 812 vma = vmacache_find(mm, addr); 813 if (likely(vma)) 814 return vma; 815 816 /* trawl the list (there may be multiple mappings in which addr 817 * resides) */ 818 for (vma = mm->mmap; vma; vma = vma->vm_next) { 819 if (vma->vm_start > addr) 820 return NULL; 821 if (vma->vm_end > addr) { 822 vmacache_update(addr, vma); 823 return vma; 824 } 825 } 826 827 return NULL; 828 } 829 EXPORT_SYMBOL(find_vma); 830 831 /* 832 * find a VMA 833 * - we don't extend stack VMAs under NOMMU conditions 834 */ 835 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) 836 { 837 return find_vma(mm, addr); 838 } 839 840 /* 841 * expand a stack to a given address 842 * - not supported under NOMMU conditions 843 */ 844 int expand_stack(struct vm_area_struct *vma, unsigned long address) 845 { 846 return -ENOMEM; 847 } 848 849 /* 850 * look up the first VMA exactly that exactly matches addr 851 * - should be called with mm->mmap_sem at least held readlocked 852 */ 853 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, 854 unsigned long addr, 855 unsigned long len) 856 { 857 struct vm_area_struct *vma; 858 unsigned long end = addr + len; 859 860 /* check the cache first */ 861 vma = vmacache_find_exact(mm, addr, end); 862 if (vma) 863 return vma; 864 865 /* trawl the list (there may be multiple mappings in which addr 866 * resides) */ 867 for (vma = mm->mmap; vma; vma = vma->vm_next) { 868 if (vma->vm_start < addr) 869 continue; 870 if (vma->vm_start > addr) 871 return NULL; 872 if (vma->vm_end == end) { 873 vmacache_update(addr, vma); 874 return vma; 875 } 876 } 877 878 return NULL; 879 } 880 881 /* 882 * determine whether a mapping should be permitted and, if so, what sort of 883 * mapping we're capable of supporting 884 */ 885 static int validate_mmap_request(struct file *file, 886 unsigned long addr, 887 unsigned long len, 888 unsigned long prot, 889 unsigned long flags, 890 unsigned long pgoff, 891 unsigned long *_capabilities) 892 { 893 unsigned long capabilities, rlen; 894 int ret; 895 896 /* do the simple checks first */ 897 if (flags & MAP_FIXED) 898 return -EINVAL; 899 900 if ((flags & MAP_TYPE) != MAP_PRIVATE && 901 (flags & MAP_TYPE) != MAP_SHARED) 902 return -EINVAL; 903 904 if (!len) 905 return -EINVAL; 906 907 /* Careful about overflows.. */ 908 rlen = PAGE_ALIGN(len); 909 if (!rlen || rlen > TASK_SIZE) 910 return -ENOMEM; 911 912 /* offset overflow? */ 913 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) 914 return -EOVERFLOW; 915 916 if (file) { 917 /* files must support mmap */ 918 if (!file->f_op->mmap) 919 return -ENODEV; 920 921 /* work out if what we've got could possibly be shared 922 * - we support chardevs that provide their own "memory" 923 * - we support files/blockdevs that are memory backed 924 */ 925 if (file->f_op->mmap_capabilities) { 926 capabilities = file->f_op->mmap_capabilities(file); 927 } else { 928 /* no explicit capabilities set, so assume some 929 * defaults */ 930 switch (file_inode(file)->i_mode & S_IFMT) { 931 case S_IFREG: 932 case S_IFBLK: 933 capabilities = NOMMU_MAP_COPY; 934 break; 935 936 case S_IFCHR: 937 capabilities = 938 NOMMU_MAP_DIRECT | 939 NOMMU_MAP_READ | 940 NOMMU_MAP_WRITE; 941 break; 942 943 default: 944 return -EINVAL; 945 } 946 } 947 948 /* eliminate any capabilities that we can't support on this 949 * device */ 950 if (!file->f_op->get_unmapped_area) 951 capabilities &= ~NOMMU_MAP_DIRECT; 952 if (!(file->f_mode & FMODE_CAN_READ)) 953 capabilities &= ~NOMMU_MAP_COPY; 954 955 /* The file shall have been opened with read permission. */ 956 if (!(file->f_mode & FMODE_READ)) 957 return -EACCES; 958 959 if (flags & MAP_SHARED) { 960 /* do checks for writing, appending and locking */ 961 if ((prot & PROT_WRITE) && 962 !(file->f_mode & FMODE_WRITE)) 963 return -EACCES; 964 965 if (IS_APPEND(file_inode(file)) && 966 (file->f_mode & FMODE_WRITE)) 967 return -EACCES; 968 969 if (locks_verify_locked(file)) 970 return -EAGAIN; 971 972 if (!(capabilities & NOMMU_MAP_DIRECT)) 973 return -ENODEV; 974 975 /* we mustn't privatise shared mappings */ 976 capabilities &= ~NOMMU_MAP_COPY; 977 } else { 978 /* we're going to read the file into private memory we 979 * allocate */ 980 if (!(capabilities & NOMMU_MAP_COPY)) 981 return -ENODEV; 982 983 /* we don't permit a private writable mapping to be 984 * shared with the backing device */ 985 if (prot & PROT_WRITE) 986 capabilities &= ~NOMMU_MAP_DIRECT; 987 } 988 989 if (capabilities & NOMMU_MAP_DIRECT) { 990 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) || 991 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) || 992 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC)) 993 ) { 994 capabilities &= ~NOMMU_MAP_DIRECT; 995 if (flags & MAP_SHARED) { 996 pr_warn("MAP_SHARED not completely supported on !MMU\n"); 997 return -EINVAL; 998 } 999 } 1000 } 1001 1002 /* handle executable mappings and implied executable 1003 * mappings */ 1004 if (path_noexec(&file->f_path)) { 1005 if (prot & PROT_EXEC) 1006 return -EPERM; 1007 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { 1008 /* handle implication of PROT_EXEC by PROT_READ */ 1009 if (current->personality & READ_IMPLIES_EXEC) { 1010 if (capabilities & NOMMU_MAP_EXEC) 1011 prot |= PROT_EXEC; 1012 } 1013 } else if ((prot & PROT_READ) && 1014 (prot & PROT_EXEC) && 1015 !(capabilities & NOMMU_MAP_EXEC) 1016 ) { 1017 /* backing file is not executable, try to copy */ 1018 capabilities &= ~NOMMU_MAP_DIRECT; 1019 } 1020 } else { 1021 /* anonymous mappings are always memory backed and can be 1022 * privately mapped 1023 */ 1024 capabilities = NOMMU_MAP_COPY; 1025 1026 /* handle PROT_EXEC implication by PROT_READ */ 1027 if ((prot & PROT_READ) && 1028 (current->personality & READ_IMPLIES_EXEC)) 1029 prot |= PROT_EXEC; 1030 } 1031 1032 /* allow the security API to have its say */ 1033 ret = security_mmap_addr(addr); 1034 if (ret < 0) 1035 return ret; 1036 1037 /* looks okay */ 1038 *_capabilities = capabilities; 1039 return 0; 1040 } 1041 1042 /* 1043 * we've determined that we can make the mapping, now translate what we 1044 * now know into VMA flags 1045 */ 1046 static unsigned long determine_vm_flags(struct file *file, 1047 unsigned long prot, 1048 unsigned long flags, 1049 unsigned long capabilities) 1050 { 1051 unsigned long vm_flags; 1052 1053 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags); 1054 /* vm_flags |= mm->def_flags; */ 1055 1056 if (!(capabilities & NOMMU_MAP_DIRECT)) { 1057 /* attempt to share read-only copies of mapped file chunks */ 1058 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1059 if (file && !(prot & PROT_WRITE)) 1060 vm_flags |= VM_MAYSHARE; 1061 } else { 1062 /* overlay a shareable mapping on the backing device or inode 1063 * if possible - used for chardevs, ramfs/tmpfs/shmfs and 1064 * romfs/cramfs */ 1065 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS); 1066 if (flags & MAP_SHARED) 1067 vm_flags |= VM_SHARED; 1068 } 1069 1070 /* refuse to let anyone share private mappings with this process if 1071 * it's being traced - otherwise breakpoints set in it may interfere 1072 * with another untraced process 1073 */ 1074 if ((flags & MAP_PRIVATE) && current->ptrace) 1075 vm_flags &= ~VM_MAYSHARE; 1076 1077 return vm_flags; 1078 } 1079 1080 /* 1081 * set up a shared mapping on a file (the driver or filesystem provides and 1082 * pins the storage) 1083 */ 1084 static int do_mmap_shared_file(struct vm_area_struct *vma) 1085 { 1086 int ret; 1087 1088 ret = call_mmap(vma->vm_file, vma); 1089 if (ret == 0) { 1090 vma->vm_region->vm_top = vma->vm_region->vm_end; 1091 return 0; 1092 } 1093 if (ret != -ENOSYS) 1094 return ret; 1095 1096 /* getting -ENOSYS indicates that direct mmap isn't possible (as 1097 * opposed to tried but failed) so we can only give a suitable error as 1098 * it's not possible to make a private copy if MAP_SHARED was given */ 1099 return -ENODEV; 1100 } 1101 1102 /* 1103 * set up a private mapping or an anonymous shared mapping 1104 */ 1105 static int do_mmap_private(struct vm_area_struct *vma, 1106 struct vm_region *region, 1107 unsigned long len, 1108 unsigned long capabilities) 1109 { 1110 unsigned long total, point; 1111 void *base; 1112 int ret, order; 1113 1114 /* invoke the file's mapping function so that it can keep track of 1115 * shared mappings on devices or memory 1116 * - VM_MAYSHARE will be set if it may attempt to share 1117 */ 1118 if (capabilities & NOMMU_MAP_DIRECT) { 1119 ret = call_mmap(vma->vm_file, vma); 1120 if (ret == 0) { 1121 /* shouldn't return success if we're not sharing */ 1122 BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); 1123 vma->vm_region->vm_top = vma->vm_region->vm_end; 1124 return 0; 1125 } 1126 if (ret != -ENOSYS) 1127 return ret; 1128 1129 /* getting an ENOSYS error indicates that direct mmap isn't 1130 * possible (as opposed to tried but failed) so we'll try to 1131 * make a private copy of the data and map that instead */ 1132 } 1133 1134 1135 /* allocate some memory to hold the mapping 1136 * - note that this may not return a page-aligned address if the object 1137 * we're allocating is smaller than a page 1138 */ 1139 order = get_order(len); 1140 total = 1 << order; 1141 point = len >> PAGE_SHIFT; 1142 1143 /* we don't want to allocate a power-of-2 sized page set */ 1144 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) 1145 total = point; 1146 1147 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL); 1148 if (!base) 1149 goto enomem; 1150 1151 atomic_long_add(total, &mmap_pages_allocated); 1152 1153 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; 1154 region->vm_start = (unsigned long) base; 1155 region->vm_end = region->vm_start + len; 1156 region->vm_top = region->vm_start + (total << PAGE_SHIFT); 1157 1158 vma->vm_start = region->vm_start; 1159 vma->vm_end = region->vm_start + len; 1160 1161 if (vma->vm_file) { 1162 /* read the contents of a file into the copy */ 1163 mm_segment_t old_fs; 1164 loff_t fpos; 1165 1166 fpos = vma->vm_pgoff; 1167 fpos <<= PAGE_SHIFT; 1168 1169 old_fs = get_fs(); 1170 set_fs(KERNEL_DS); 1171 ret = __vfs_read(vma->vm_file, base, len, &fpos); 1172 set_fs(old_fs); 1173 1174 if (ret < 0) 1175 goto error_free; 1176 1177 /* clear the last little bit */ 1178 if (ret < len) 1179 memset(base + ret, 0, len - ret); 1180 1181 } 1182 1183 return 0; 1184 1185 error_free: 1186 free_page_series(region->vm_start, region->vm_top); 1187 region->vm_start = vma->vm_start = 0; 1188 region->vm_end = vma->vm_end = 0; 1189 region->vm_top = 0; 1190 return ret; 1191 1192 enomem: 1193 pr_err("Allocation of length %lu from process %d (%s) failed\n", 1194 len, current->pid, current->comm); 1195 show_free_areas(0, NULL); 1196 return -ENOMEM; 1197 } 1198 1199 /* 1200 * handle mapping creation for uClinux 1201 */ 1202 unsigned long do_mmap(struct file *file, 1203 unsigned long addr, 1204 unsigned long len, 1205 unsigned long prot, 1206 unsigned long flags, 1207 vm_flags_t vm_flags, 1208 unsigned long pgoff, 1209 unsigned long *populate, 1210 struct list_head *uf) 1211 { 1212 struct vm_area_struct *vma; 1213 struct vm_region *region; 1214 struct rb_node *rb; 1215 unsigned long capabilities, result; 1216 int ret; 1217 1218 *populate = 0; 1219 1220 /* decide whether we should attempt the mapping, and if so what sort of 1221 * mapping */ 1222 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, 1223 &capabilities); 1224 if (ret < 0) 1225 return ret; 1226 1227 /* we ignore the address hint */ 1228 addr = 0; 1229 len = PAGE_ALIGN(len); 1230 1231 /* we've determined that we can make the mapping, now translate what we 1232 * now know into VMA flags */ 1233 vm_flags |= determine_vm_flags(file, prot, flags, capabilities); 1234 1235 /* we're going to need to record the mapping */ 1236 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); 1237 if (!region) 1238 goto error_getting_region; 1239 1240 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1241 if (!vma) 1242 goto error_getting_vma; 1243 1244 region->vm_usage = 1; 1245 region->vm_flags = vm_flags; 1246 region->vm_pgoff = pgoff; 1247 1248 INIT_LIST_HEAD(&vma->anon_vma_chain); 1249 vma->vm_flags = vm_flags; 1250 vma->vm_pgoff = pgoff; 1251 1252 if (file) { 1253 region->vm_file = get_file(file); 1254 vma->vm_file = get_file(file); 1255 } 1256 1257 down_write(&nommu_region_sem); 1258 1259 /* if we want to share, we need to check for regions created by other 1260 * mmap() calls that overlap with our proposed mapping 1261 * - we can only share with a superset match on most regular files 1262 * - shared mappings on character devices and memory backed files are 1263 * permitted to overlap inexactly as far as we are concerned for in 1264 * these cases, sharing is handled in the driver or filesystem rather 1265 * than here 1266 */ 1267 if (vm_flags & VM_MAYSHARE) { 1268 struct vm_region *pregion; 1269 unsigned long pglen, rpglen, pgend, rpgend, start; 1270 1271 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1272 pgend = pgoff + pglen; 1273 1274 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { 1275 pregion = rb_entry(rb, struct vm_region, vm_rb); 1276 1277 if (!(pregion->vm_flags & VM_MAYSHARE)) 1278 continue; 1279 1280 /* search for overlapping mappings on the same file */ 1281 if (file_inode(pregion->vm_file) != 1282 file_inode(file)) 1283 continue; 1284 1285 if (pregion->vm_pgoff >= pgend) 1286 continue; 1287 1288 rpglen = pregion->vm_end - pregion->vm_start; 1289 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1290 rpgend = pregion->vm_pgoff + rpglen; 1291 if (pgoff >= rpgend) 1292 continue; 1293 1294 /* handle inexactly overlapping matches between 1295 * mappings */ 1296 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && 1297 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { 1298 /* new mapping is not a subset of the region */ 1299 if (!(capabilities & NOMMU_MAP_DIRECT)) 1300 goto sharing_violation; 1301 continue; 1302 } 1303 1304 /* we've found a region we can share */ 1305 pregion->vm_usage++; 1306 vma->vm_region = pregion; 1307 start = pregion->vm_start; 1308 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; 1309 vma->vm_start = start; 1310 vma->vm_end = start + len; 1311 1312 if (pregion->vm_flags & VM_MAPPED_COPY) 1313 vma->vm_flags |= VM_MAPPED_COPY; 1314 else { 1315 ret = do_mmap_shared_file(vma); 1316 if (ret < 0) { 1317 vma->vm_region = NULL; 1318 vma->vm_start = 0; 1319 vma->vm_end = 0; 1320 pregion->vm_usage--; 1321 pregion = NULL; 1322 goto error_just_free; 1323 } 1324 } 1325 fput(region->vm_file); 1326 kmem_cache_free(vm_region_jar, region); 1327 region = pregion; 1328 result = start; 1329 goto share; 1330 } 1331 1332 /* obtain the address at which to make a shared mapping 1333 * - this is the hook for quasi-memory character devices to 1334 * tell us the location of a shared mapping 1335 */ 1336 if (capabilities & NOMMU_MAP_DIRECT) { 1337 addr = file->f_op->get_unmapped_area(file, addr, len, 1338 pgoff, flags); 1339 if (IS_ERR_VALUE(addr)) { 1340 ret = addr; 1341 if (ret != -ENOSYS) 1342 goto error_just_free; 1343 1344 /* the driver refused to tell us where to site 1345 * the mapping so we'll have to attempt to copy 1346 * it */ 1347 ret = -ENODEV; 1348 if (!(capabilities & NOMMU_MAP_COPY)) 1349 goto error_just_free; 1350 1351 capabilities &= ~NOMMU_MAP_DIRECT; 1352 } else { 1353 vma->vm_start = region->vm_start = addr; 1354 vma->vm_end = region->vm_end = addr + len; 1355 } 1356 } 1357 } 1358 1359 vma->vm_region = region; 1360 1361 /* set up the mapping 1362 * - the region is filled in if NOMMU_MAP_DIRECT is still set 1363 */ 1364 if (file && vma->vm_flags & VM_SHARED) 1365 ret = do_mmap_shared_file(vma); 1366 else 1367 ret = do_mmap_private(vma, region, len, capabilities); 1368 if (ret < 0) 1369 goto error_just_free; 1370 add_nommu_region(region); 1371 1372 /* clear anonymous mappings that don't ask for uninitialized data */ 1373 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED)) 1374 memset((void *)region->vm_start, 0, 1375 region->vm_end - region->vm_start); 1376 1377 /* okay... we have a mapping; now we have to register it */ 1378 result = vma->vm_start; 1379 1380 current->mm->total_vm += len >> PAGE_SHIFT; 1381 1382 share: 1383 add_vma_to_mm(current->mm, vma); 1384 1385 /* we flush the region from the icache only when the first executable 1386 * mapping of it is made */ 1387 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { 1388 flush_icache_range(region->vm_start, region->vm_end); 1389 region->vm_icache_flushed = true; 1390 } 1391 1392 up_write(&nommu_region_sem); 1393 1394 return result; 1395 1396 error_just_free: 1397 up_write(&nommu_region_sem); 1398 error: 1399 if (region->vm_file) 1400 fput(region->vm_file); 1401 kmem_cache_free(vm_region_jar, region); 1402 if (vma->vm_file) 1403 fput(vma->vm_file); 1404 kmem_cache_free(vm_area_cachep, vma); 1405 return ret; 1406 1407 sharing_violation: 1408 up_write(&nommu_region_sem); 1409 pr_warn("Attempt to share mismatched mappings\n"); 1410 ret = -EINVAL; 1411 goto error; 1412 1413 error_getting_vma: 1414 kmem_cache_free(vm_region_jar, region); 1415 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n", 1416 len, current->pid); 1417 show_free_areas(0, NULL); 1418 return -ENOMEM; 1419 1420 error_getting_region: 1421 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n", 1422 len, current->pid); 1423 show_free_areas(0, NULL); 1424 return -ENOMEM; 1425 } 1426 1427 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1428 unsigned long, prot, unsigned long, flags, 1429 unsigned long, fd, unsigned long, pgoff) 1430 { 1431 struct file *file = NULL; 1432 unsigned long retval = -EBADF; 1433 1434 audit_mmap_fd(fd, flags); 1435 if (!(flags & MAP_ANONYMOUS)) { 1436 file = fget(fd); 1437 if (!file) 1438 goto out; 1439 } 1440 1441 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1442 1443 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1444 1445 if (file) 1446 fput(file); 1447 out: 1448 return retval; 1449 } 1450 1451 #ifdef __ARCH_WANT_SYS_OLD_MMAP 1452 struct mmap_arg_struct { 1453 unsigned long addr; 1454 unsigned long len; 1455 unsigned long prot; 1456 unsigned long flags; 1457 unsigned long fd; 1458 unsigned long offset; 1459 }; 1460 1461 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1462 { 1463 struct mmap_arg_struct a; 1464 1465 if (copy_from_user(&a, arg, sizeof(a))) 1466 return -EFAULT; 1467 if (offset_in_page(a.offset)) 1468 return -EINVAL; 1469 1470 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1471 a.offset >> PAGE_SHIFT); 1472 } 1473 #endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1474 1475 /* 1476 * split a vma into two pieces at address 'addr', a new vma is allocated either 1477 * for the first part or the tail. 1478 */ 1479 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 1480 unsigned long addr, int new_below) 1481 { 1482 struct vm_area_struct *new; 1483 struct vm_region *region; 1484 unsigned long npages; 1485 1486 /* we're only permitted to split anonymous regions (these should have 1487 * only a single usage on the region) */ 1488 if (vma->vm_file) 1489 return -ENOMEM; 1490 1491 if (mm->map_count >= sysctl_max_map_count) 1492 return -ENOMEM; 1493 1494 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); 1495 if (!region) 1496 return -ENOMEM; 1497 1498 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1499 if (!new) { 1500 kmem_cache_free(vm_region_jar, region); 1501 return -ENOMEM; 1502 } 1503 1504 /* most fields are the same, copy all, and then fixup */ 1505 *new = *vma; 1506 *region = *vma->vm_region; 1507 new->vm_region = region; 1508 1509 npages = (addr - vma->vm_start) >> PAGE_SHIFT; 1510 1511 if (new_below) { 1512 region->vm_top = region->vm_end = new->vm_end = addr; 1513 } else { 1514 region->vm_start = new->vm_start = addr; 1515 region->vm_pgoff = new->vm_pgoff += npages; 1516 } 1517 1518 if (new->vm_ops && new->vm_ops->open) 1519 new->vm_ops->open(new); 1520 1521 delete_vma_from_mm(vma); 1522 down_write(&nommu_region_sem); 1523 delete_nommu_region(vma->vm_region); 1524 if (new_below) { 1525 vma->vm_region->vm_start = vma->vm_start = addr; 1526 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; 1527 } else { 1528 vma->vm_region->vm_end = vma->vm_end = addr; 1529 vma->vm_region->vm_top = addr; 1530 } 1531 add_nommu_region(vma->vm_region); 1532 add_nommu_region(new->vm_region); 1533 up_write(&nommu_region_sem); 1534 add_vma_to_mm(mm, vma); 1535 add_vma_to_mm(mm, new); 1536 return 0; 1537 } 1538 1539 /* 1540 * shrink a VMA by removing the specified chunk from either the beginning or 1541 * the end 1542 */ 1543 static int shrink_vma(struct mm_struct *mm, 1544 struct vm_area_struct *vma, 1545 unsigned long from, unsigned long to) 1546 { 1547 struct vm_region *region; 1548 1549 /* adjust the VMA's pointers, which may reposition it in the MM's tree 1550 * and list */ 1551 delete_vma_from_mm(vma); 1552 if (from > vma->vm_start) 1553 vma->vm_end = from; 1554 else 1555 vma->vm_start = to; 1556 add_vma_to_mm(mm, vma); 1557 1558 /* cut the backing region down to size */ 1559 region = vma->vm_region; 1560 BUG_ON(region->vm_usage != 1); 1561 1562 down_write(&nommu_region_sem); 1563 delete_nommu_region(region); 1564 if (from > region->vm_start) { 1565 to = region->vm_top; 1566 region->vm_top = region->vm_end = from; 1567 } else { 1568 region->vm_start = to; 1569 } 1570 add_nommu_region(region); 1571 up_write(&nommu_region_sem); 1572 1573 free_page_series(from, to); 1574 return 0; 1575 } 1576 1577 /* 1578 * release a mapping 1579 * - under NOMMU conditions the chunk to be unmapped must be backed by a single 1580 * VMA, though it need not cover the whole VMA 1581 */ 1582 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf) 1583 { 1584 struct vm_area_struct *vma; 1585 unsigned long end; 1586 int ret; 1587 1588 len = PAGE_ALIGN(len); 1589 if (len == 0) 1590 return -EINVAL; 1591 1592 end = start + len; 1593 1594 /* find the first potentially overlapping VMA */ 1595 vma = find_vma(mm, start); 1596 if (!vma) { 1597 static int limit; 1598 if (limit < 5) { 1599 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n", 1600 current->pid, current->comm, 1601 start, start + len - 1); 1602 limit++; 1603 } 1604 return -EINVAL; 1605 } 1606 1607 /* we're allowed to split an anonymous VMA but not a file-backed one */ 1608 if (vma->vm_file) { 1609 do { 1610 if (start > vma->vm_start) 1611 return -EINVAL; 1612 if (end == vma->vm_end) 1613 goto erase_whole_vma; 1614 vma = vma->vm_next; 1615 } while (vma); 1616 return -EINVAL; 1617 } else { 1618 /* the chunk must be a subset of the VMA found */ 1619 if (start == vma->vm_start && end == vma->vm_end) 1620 goto erase_whole_vma; 1621 if (start < vma->vm_start || end > vma->vm_end) 1622 return -EINVAL; 1623 if (offset_in_page(start)) 1624 return -EINVAL; 1625 if (end != vma->vm_end && offset_in_page(end)) 1626 return -EINVAL; 1627 if (start != vma->vm_start && end != vma->vm_end) { 1628 ret = split_vma(mm, vma, start, 1); 1629 if (ret < 0) 1630 return ret; 1631 } 1632 return shrink_vma(mm, vma, start, end); 1633 } 1634 1635 erase_whole_vma: 1636 delete_vma_from_mm(vma); 1637 delete_vma(mm, vma); 1638 return 0; 1639 } 1640 EXPORT_SYMBOL(do_munmap); 1641 1642 int vm_munmap(unsigned long addr, size_t len) 1643 { 1644 struct mm_struct *mm = current->mm; 1645 int ret; 1646 1647 down_write(&mm->mmap_sem); 1648 ret = do_munmap(mm, addr, len, NULL); 1649 up_write(&mm->mmap_sem); 1650 return ret; 1651 } 1652 EXPORT_SYMBOL(vm_munmap); 1653 1654 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1655 { 1656 return vm_munmap(addr, len); 1657 } 1658 1659 /* 1660 * release all the mappings made in a process's VM space 1661 */ 1662 void exit_mmap(struct mm_struct *mm) 1663 { 1664 struct vm_area_struct *vma; 1665 1666 if (!mm) 1667 return; 1668 1669 mm->total_vm = 0; 1670 1671 while ((vma = mm->mmap)) { 1672 mm->mmap = vma->vm_next; 1673 delete_vma_from_mm(vma); 1674 delete_vma(mm, vma); 1675 cond_resched(); 1676 } 1677 } 1678 1679 int vm_brk(unsigned long addr, unsigned long len) 1680 { 1681 return -ENOMEM; 1682 } 1683 1684 /* 1685 * expand (or shrink) an existing mapping, potentially moving it at the same 1686 * time (controlled by the MREMAP_MAYMOVE flag and available VM space) 1687 * 1688 * under NOMMU conditions, we only permit changing a mapping's size, and only 1689 * as long as it stays within the region allocated by do_mmap_private() and the 1690 * block is not shareable 1691 * 1692 * MREMAP_FIXED is not supported under NOMMU conditions 1693 */ 1694 static unsigned long do_mremap(unsigned long addr, 1695 unsigned long old_len, unsigned long new_len, 1696 unsigned long flags, unsigned long new_addr) 1697 { 1698 struct vm_area_struct *vma; 1699 1700 /* insanity checks first */ 1701 old_len = PAGE_ALIGN(old_len); 1702 new_len = PAGE_ALIGN(new_len); 1703 if (old_len == 0 || new_len == 0) 1704 return (unsigned long) -EINVAL; 1705 1706 if (offset_in_page(addr)) 1707 return -EINVAL; 1708 1709 if (flags & MREMAP_FIXED && new_addr != addr) 1710 return (unsigned long) -EINVAL; 1711 1712 vma = find_vma_exact(current->mm, addr, old_len); 1713 if (!vma) 1714 return (unsigned long) -EINVAL; 1715 1716 if (vma->vm_end != vma->vm_start + old_len) 1717 return (unsigned long) -EFAULT; 1718 1719 if (vma->vm_flags & VM_MAYSHARE) 1720 return (unsigned long) -EPERM; 1721 1722 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) 1723 return (unsigned long) -ENOMEM; 1724 1725 /* all checks complete - do it */ 1726 vma->vm_end = vma->vm_start + new_len; 1727 return vma->vm_start; 1728 } 1729 1730 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, 1731 unsigned long, new_len, unsigned long, flags, 1732 unsigned long, new_addr) 1733 { 1734 unsigned long ret; 1735 1736 down_write(¤t->mm->mmap_sem); 1737 ret = do_mremap(addr, old_len, new_len, flags, new_addr); 1738 up_write(¤t->mm->mmap_sem); 1739 return ret; 1740 } 1741 1742 struct page *follow_page_mask(struct vm_area_struct *vma, 1743 unsigned long address, unsigned int flags, 1744 unsigned int *page_mask) 1745 { 1746 *page_mask = 0; 1747 return NULL; 1748 } 1749 1750 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1751 unsigned long pfn, unsigned long size, pgprot_t prot) 1752 { 1753 if (addr != (pfn << PAGE_SHIFT)) 1754 return -EINVAL; 1755 1756 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1757 return 0; 1758 } 1759 EXPORT_SYMBOL(remap_pfn_range); 1760 1761 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1762 { 1763 unsigned long pfn = start >> PAGE_SHIFT; 1764 unsigned long vm_len = vma->vm_end - vma->vm_start; 1765 1766 pfn += vma->vm_pgoff; 1767 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1768 } 1769 EXPORT_SYMBOL(vm_iomap_memory); 1770 1771 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1772 unsigned long pgoff) 1773 { 1774 unsigned int size = vma->vm_end - vma->vm_start; 1775 1776 if (!(vma->vm_flags & VM_USERMAP)) 1777 return -EINVAL; 1778 1779 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); 1780 vma->vm_end = vma->vm_start + size; 1781 1782 return 0; 1783 } 1784 EXPORT_SYMBOL(remap_vmalloc_range); 1785 1786 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, 1787 unsigned long len, unsigned long pgoff, unsigned long flags) 1788 { 1789 return -ENOMEM; 1790 } 1791 1792 void unmap_mapping_range(struct address_space *mapping, 1793 loff_t const holebegin, loff_t const holelen, 1794 int even_cows) 1795 { 1796 } 1797 EXPORT_SYMBOL(unmap_mapping_range); 1798 1799 int filemap_fault(struct vm_fault *vmf) 1800 { 1801 BUG(); 1802 return 0; 1803 } 1804 EXPORT_SYMBOL(filemap_fault); 1805 1806 void filemap_map_pages(struct vm_fault *vmf, 1807 pgoff_t start_pgoff, pgoff_t end_pgoff) 1808 { 1809 BUG(); 1810 } 1811 EXPORT_SYMBOL(filemap_map_pages); 1812 1813 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1814 unsigned long addr, void *buf, int len, unsigned int gup_flags) 1815 { 1816 struct vm_area_struct *vma; 1817 int write = gup_flags & FOLL_WRITE; 1818 1819 down_read(&mm->mmap_sem); 1820 1821 /* the access must start within one of the target process's mappings */ 1822 vma = find_vma(mm, addr); 1823 if (vma) { 1824 /* don't overrun this mapping */ 1825 if (addr + len >= vma->vm_end) 1826 len = vma->vm_end - addr; 1827 1828 /* only read or write mappings where it is permitted */ 1829 if (write && vma->vm_flags & VM_MAYWRITE) 1830 copy_to_user_page(vma, NULL, addr, 1831 (void *) addr, buf, len); 1832 else if (!write && vma->vm_flags & VM_MAYREAD) 1833 copy_from_user_page(vma, NULL, addr, 1834 buf, (void *) addr, len); 1835 else 1836 len = 0; 1837 } else { 1838 len = 0; 1839 } 1840 1841 up_read(&mm->mmap_sem); 1842 1843 return len; 1844 } 1845 1846 /** 1847 * @access_remote_vm - access another process' address space 1848 * @mm: the mm_struct of the target address space 1849 * @addr: start address to access 1850 * @buf: source or destination buffer 1851 * @len: number of bytes to transfer 1852 * @gup_flags: flags modifying lookup behaviour 1853 * 1854 * The caller must hold a reference on @mm. 1855 */ 1856 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1857 void *buf, int len, unsigned int gup_flags) 1858 { 1859 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 1860 } 1861 1862 /* 1863 * Access another process' address space. 1864 * - source/target buffer must be kernel space 1865 */ 1866 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1867 unsigned int gup_flags) 1868 { 1869 struct mm_struct *mm; 1870 1871 if (addr + len < addr) 1872 return 0; 1873 1874 mm = get_task_mm(tsk); 1875 if (!mm) 1876 return 0; 1877 1878 len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 1879 1880 mmput(mm); 1881 return len; 1882 } 1883 EXPORT_SYMBOL_GPL(access_process_vm); 1884 1885 /** 1886 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode 1887 * @inode: The inode to check 1888 * @size: The current filesize of the inode 1889 * @newsize: The proposed filesize of the inode 1890 * 1891 * Check the shared mappings on an inode on behalf of a shrinking truncate to 1892 * make sure that that any outstanding VMAs aren't broken and then shrink the 1893 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't 1894 * automatically grant mappings that are too large. 1895 */ 1896 int nommu_shrink_inode_mappings(struct inode *inode, size_t size, 1897 size_t newsize) 1898 { 1899 struct vm_area_struct *vma; 1900 struct vm_region *region; 1901 pgoff_t low, high; 1902 size_t r_size, r_top; 1903 1904 low = newsize >> PAGE_SHIFT; 1905 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1906 1907 down_write(&nommu_region_sem); 1908 i_mmap_lock_read(inode->i_mapping); 1909 1910 /* search for VMAs that fall within the dead zone */ 1911 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { 1912 /* found one - only interested if it's shared out of the page 1913 * cache */ 1914 if (vma->vm_flags & VM_SHARED) { 1915 i_mmap_unlock_read(inode->i_mapping); 1916 up_write(&nommu_region_sem); 1917 return -ETXTBSY; /* not quite true, but near enough */ 1918 } 1919 } 1920 1921 /* reduce any regions that overlap the dead zone - if in existence, 1922 * these will be pointed to by VMAs that don't overlap the dead zone 1923 * 1924 * we don't check for any regions that start beyond the EOF as there 1925 * shouldn't be any 1926 */ 1927 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) { 1928 if (!(vma->vm_flags & VM_SHARED)) 1929 continue; 1930 1931 region = vma->vm_region; 1932 r_size = region->vm_top - region->vm_start; 1933 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; 1934 1935 if (r_top > newsize) { 1936 region->vm_top -= r_top - newsize; 1937 if (region->vm_end > region->vm_top) 1938 region->vm_end = region->vm_top; 1939 } 1940 } 1941 1942 i_mmap_unlock_read(inode->i_mapping); 1943 up_write(&nommu_region_sem); 1944 return 0; 1945 } 1946 1947 /* 1948 * Initialise sysctl_user_reserve_kbytes. 1949 * 1950 * This is intended to prevent a user from starting a single memory hogging 1951 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 1952 * mode. 1953 * 1954 * The default value is min(3% of free memory, 128MB) 1955 * 128MB is enough to recover with sshd/login, bash, and top/kill. 1956 */ 1957 static int __meminit init_user_reserve(void) 1958 { 1959 unsigned long free_kbytes; 1960 1961 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1962 1963 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 1964 return 0; 1965 } 1966 subsys_initcall(init_user_reserve); 1967 1968 /* 1969 * Initialise sysctl_admin_reserve_kbytes. 1970 * 1971 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 1972 * to log in and kill a memory hogging process. 1973 * 1974 * Systems with more than 256MB will reserve 8MB, enough to recover 1975 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 1976 * only reserve 3% of free pages by default. 1977 */ 1978 static int __meminit init_admin_reserve(void) 1979 { 1980 unsigned long free_kbytes; 1981 1982 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 1983 1984 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 1985 return 0; 1986 } 1987 subsys_initcall(init_admin_reserve); 1988