xref: /openbmc/linux/mm/nommu.c (revision a09d2831)
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 
33 #include <asm/uaccess.h>
34 #include <asm/tlb.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
37 #include "internal.h"
38 
39 static inline __attribute__((format(printf, 1, 2)))
40 void no_printk(const char *fmt, ...)
41 {
42 }
43 
44 #if 0
45 #define kenter(FMT, ...) \
46 	printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
47 #define kleave(FMT, ...) \
48 	printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
49 #define kdebug(FMT, ...) \
50 	printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
51 #else
52 #define kenter(FMT, ...) \
53 	no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
54 #define kleave(FMT, ...) \
55 	no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
56 #define kdebug(FMT, ...) \
57 	no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
58 #endif
59 
60 void *high_memory;
61 struct page *mem_map;
62 unsigned long max_mapnr;
63 unsigned long num_physpages;
64 unsigned long highest_memmap_pfn;
65 struct percpu_counter vm_committed_as;
66 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
67 int sysctl_overcommit_ratio = 50; /* default is 50% */
68 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
69 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
70 int heap_stack_gap = 0;
71 
72 atomic_long_t mmap_pages_allocated;
73 
74 EXPORT_SYMBOL(mem_map);
75 EXPORT_SYMBOL(num_physpages);
76 
77 /* list of mapped, potentially shareable regions */
78 static struct kmem_cache *vm_region_jar;
79 struct rb_root nommu_region_tree = RB_ROOT;
80 DECLARE_RWSEM(nommu_region_sem);
81 
82 const struct vm_operations_struct generic_file_vm_ops = {
83 };
84 
85 /*
86  * Return the total memory allocated for this pointer, not
87  * just what the caller asked for.
88  *
89  * Doesn't have to be accurate, i.e. may have races.
90  */
91 unsigned int kobjsize(const void *objp)
92 {
93 	struct page *page;
94 
95 	/*
96 	 * If the object we have should not have ksize performed on it,
97 	 * return size of 0
98 	 */
99 	if (!objp || !virt_addr_valid(objp))
100 		return 0;
101 
102 	page = virt_to_head_page(objp);
103 
104 	/*
105 	 * If the allocator sets PageSlab, we know the pointer came from
106 	 * kmalloc().
107 	 */
108 	if (PageSlab(page))
109 		return ksize(objp);
110 
111 	/*
112 	 * If it's not a compound page, see if we have a matching VMA
113 	 * region. This test is intentionally done in reverse order,
114 	 * so if there's no VMA, we still fall through and hand back
115 	 * PAGE_SIZE for 0-order pages.
116 	 */
117 	if (!PageCompound(page)) {
118 		struct vm_area_struct *vma;
119 
120 		vma = find_vma(current->mm, (unsigned long)objp);
121 		if (vma)
122 			return vma->vm_end - vma->vm_start;
123 	}
124 
125 	/*
126 	 * The ksize() function is only guaranteed to work for pointers
127 	 * returned by kmalloc(). So handle arbitrary pointers here.
128 	 */
129 	return PAGE_SIZE << compound_order(page);
130 }
131 
132 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
133 		     unsigned long start, int nr_pages, unsigned int foll_flags,
134 		     struct page **pages, struct vm_area_struct **vmas)
135 {
136 	struct vm_area_struct *vma;
137 	unsigned long vm_flags;
138 	int i;
139 
140 	/* calculate required read or write permissions.
141 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
142 	 */
143 	vm_flags  = (foll_flags & FOLL_WRITE) ?
144 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
145 	vm_flags &= (foll_flags & FOLL_FORCE) ?
146 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
147 
148 	for (i = 0; i < nr_pages; i++) {
149 		vma = find_vma(mm, start);
150 		if (!vma)
151 			goto finish_or_fault;
152 
153 		/* protect what we can, including chardevs */
154 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
155 		    !(vm_flags & vma->vm_flags))
156 			goto finish_or_fault;
157 
158 		if (pages) {
159 			pages[i] = virt_to_page(start);
160 			if (pages[i])
161 				page_cache_get(pages[i]);
162 		}
163 		if (vmas)
164 			vmas[i] = vma;
165 		start += PAGE_SIZE;
166 	}
167 
168 	return i;
169 
170 finish_or_fault:
171 	return i ? : -EFAULT;
172 }
173 
174 /*
175  * get a list of pages in an address range belonging to the specified process
176  * and indicate the VMA that covers each page
177  * - this is potentially dodgy as we may end incrementing the page count of a
178  *   slab page or a secondary page from a compound page
179  * - don't permit access to VMAs that don't support it, such as I/O mappings
180  */
181 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
182 	unsigned long start, int nr_pages, int write, int force,
183 	struct page **pages, struct vm_area_struct **vmas)
184 {
185 	int flags = 0;
186 
187 	if (write)
188 		flags |= FOLL_WRITE;
189 	if (force)
190 		flags |= FOLL_FORCE;
191 
192 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
193 }
194 EXPORT_SYMBOL(get_user_pages);
195 
196 /**
197  * follow_pfn - look up PFN at a user virtual address
198  * @vma: memory mapping
199  * @address: user virtual address
200  * @pfn: location to store found PFN
201  *
202  * Only IO mappings and raw PFN mappings are allowed.
203  *
204  * Returns zero and the pfn at @pfn on success, -ve otherwise.
205  */
206 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
207 	unsigned long *pfn)
208 {
209 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
210 		return -EINVAL;
211 
212 	*pfn = address >> PAGE_SHIFT;
213 	return 0;
214 }
215 EXPORT_SYMBOL(follow_pfn);
216 
217 DEFINE_RWLOCK(vmlist_lock);
218 struct vm_struct *vmlist;
219 
220 void vfree(const void *addr)
221 {
222 	kfree(addr);
223 }
224 EXPORT_SYMBOL(vfree);
225 
226 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
227 {
228 	/*
229 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
230 	 * returns only a logical address.
231 	 */
232 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
233 }
234 EXPORT_SYMBOL(__vmalloc);
235 
236 void *vmalloc_user(unsigned long size)
237 {
238 	void *ret;
239 
240 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
241 			PAGE_KERNEL);
242 	if (ret) {
243 		struct vm_area_struct *vma;
244 
245 		down_write(&current->mm->mmap_sem);
246 		vma = find_vma(current->mm, (unsigned long)ret);
247 		if (vma)
248 			vma->vm_flags |= VM_USERMAP;
249 		up_write(&current->mm->mmap_sem);
250 	}
251 
252 	return ret;
253 }
254 EXPORT_SYMBOL(vmalloc_user);
255 
256 struct page *vmalloc_to_page(const void *addr)
257 {
258 	return virt_to_page(addr);
259 }
260 EXPORT_SYMBOL(vmalloc_to_page);
261 
262 unsigned long vmalloc_to_pfn(const void *addr)
263 {
264 	return page_to_pfn(virt_to_page(addr));
265 }
266 EXPORT_SYMBOL(vmalloc_to_pfn);
267 
268 long vread(char *buf, char *addr, unsigned long count)
269 {
270 	memcpy(buf, addr, count);
271 	return count;
272 }
273 
274 long vwrite(char *buf, char *addr, unsigned long count)
275 {
276 	/* Don't allow overflow */
277 	if ((unsigned long) addr + count < count)
278 		count = -(unsigned long) addr;
279 
280 	memcpy(addr, buf, count);
281 	return(count);
282 }
283 
284 /*
285  *	vmalloc  -  allocate virtually continguos memory
286  *
287  *	@size:		allocation size
288  *
289  *	Allocate enough pages to cover @size from the page level
290  *	allocator and map them into continguos kernel virtual space.
291  *
292  *	For tight control over page level allocator and protection flags
293  *	use __vmalloc() instead.
294  */
295 void *vmalloc(unsigned long size)
296 {
297        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
298 }
299 EXPORT_SYMBOL(vmalloc);
300 
301 void *vmalloc_node(unsigned long size, int node)
302 {
303 	return vmalloc(size);
304 }
305 EXPORT_SYMBOL(vmalloc_node);
306 
307 #ifndef PAGE_KERNEL_EXEC
308 # define PAGE_KERNEL_EXEC PAGE_KERNEL
309 #endif
310 
311 /**
312  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
313  *	@size:		allocation size
314  *
315  *	Kernel-internal function to allocate enough pages to cover @size
316  *	the page level allocator and map them into contiguous and
317  *	executable kernel virtual space.
318  *
319  *	For tight control over page level allocator and protection flags
320  *	use __vmalloc() instead.
321  */
322 
323 void *vmalloc_exec(unsigned long size)
324 {
325 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
326 }
327 
328 /**
329  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
330  *	@size:		allocation size
331  *
332  *	Allocate enough 32bit PA addressable pages to cover @size from the
333  *	page level allocator and map them into continguos kernel virtual space.
334  */
335 void *vmalloc_32(unsigned long size)
336 {
337 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
338 }
339 EXPORT_SYMBOL(vmalloc_32);
340 
341 /**
342  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
343  *	@size:		allocation size
344  *
345  * The resulting memory area is 32bit addressable and zeroed so it can be
346  * mapped to userspace without leaking data.
347  *
348  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
349  * remap_vmalloc_range() are permissible.
350  */
351 void *vmalloc_32_user(unsigned long size)
352 {
353 	/*
354 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
355 	 * but for now this can simply use vmalloc_user() directly.
356 	 */
357 	return vmalloc_user(size);
358 }
359 EXPORT_SYMBOL(vmalloc_32_user);
360 
361 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
362 {
363 	BUG();
364 	return NULL;
365 }
366 EXPORT_SYMBOL(vmap);
367 
368 void vunmap(const void *addr)
369 {
370 	BUG();
371 }
372 EXPORT_SYMBOL(vunmap);
373 
374 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
375 {
376 	BUG();
377 	return NULL;
378 }
379 EXPORT_SYMBOL(vm_map_ram);
380 
381 void vm_unmap_ram(const void *mem, unsigned int count)
382 {
383 	BUG();
384 }
385 EXPORT_SYMBOL(vm_unmap_ram);
386 
387 void vm_unmap_aliases(void)
388 {
389 }
390 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
391 
392 /*
393  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
394  * have one.
395  */
396 void  __attribute__((weak)) vmalloc_sync_all(void)
397 {
398 }
399 
400 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
401 		   struct page *page)
402 {
403 	return -EINVAL;
404 }
405 EXPORT_SYMBOL(vm_insert_page);
406 
407 /*
408  *  sys_brk() for the most part doesn't need the global kernel
409  *  lock, except when an application is doing something nasty
410  *  like trying to un-brk an area that has already been mapped
411  *  to a regular file.  in this case, the unmapping will need
412  *  to invoke file system routines that need the global lock.
413  */
414 SYSCALL_DEFINE1(brk, unsigned long, brk)
415 {
416 	struct mm_struct *mm = current->mm;
417 
418 	if (brk < mm->start_brk || brk > mm->context.end_brk)
419 		return mm->brk;
420 
421 	if (mm->brk == brk)
422 		return mm->brk;
423 
424 	/*
425 	 * Always allow shrinking brk
426 	 */
427 	if (brk <= mm->brk) {
428 		mm->brk = brk;
429 		return brk;
430 	}
431 
432 	/*
433 	 * Ok, looks good - let it rip.
434 	 */
435 	flush_icache_range(mm->brk, brk);
436 	return mm->brk = brk;
437 }
438 
439 /*
440  * initialise the VMA and region record slabs
441  */
442 void __init mmap_init(void)
443 {
444 	int ret;
445 
446 	ret = percpu_counter_init(&vm_committed_as, 0);
447 	VM_BUG_ON(ret);
448 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
449 }
450 
451 /*
452  * validate the region tree
453  * - the caller must hold the region lock
454  */
455 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
456 static noinline void validate_nommu_regions(void)
457 {
458 	struct vm_region *region, *last;
459 	struct rb_node *p, *lastp;
460 
461 	lastp = rb_first(&nommu_region_tree);
462 	if (!lastp)
463 		return;
464 
465 	last = rb_entry(lastp, struct vm_region, vm_rb);
466 	BUG_ON(unlikely(last->vm_end <= last->vm_start));
467 	BUG_ON(unlikely(last->vm_top < last->vm_end));
468 
469 	while ((p = rb_next(lastp))) {
470 		region = rb_entry(p, struct vm_region, vm_rb);
471 		last = rb_entry(lastp, struct vm_region, vm_rb);
472 
473 		BUG_ON(unlikely(region->vm_end <= region->vm_start));
474 		BUG_ON(unlikely(region->vm_top < region->vm_end));
475 		BUG_ON(unlikely(region->vm_start < last->vm_top));
476 
477 		lastp = p;
478 	}
479 }
480 #else
481 static void validate_nommu_regions(void)
482 {
483 }
484 #endif
485 
486 /*
487  * add a region into the global tree
488  */
489 static void add_nommu_region(struct vm_region *region)
490 {
491 	struct vm_region *pregion;
492 	struct rb_node **p, *parent;
493 
494 	validate_nommu_regions();
495 
496 	parent = NULL;
497 	p = &nommu_region_tree.rb_node;
498 	while (*p) {
499 		parent = *p;
500 		pregion = rb_entry(parent, struct vm_region, vm_rb);
501 		if (region->vm_start < pregion->vm_start)
502 			p = &(*p)->rb_left;
503 		else if (region->vm_start > pregion->vm_start)
504 			p = &(*p)->rb_right;
505 		else if (pregion == region)
506 			return;
507 		else
508 			BUG();
509 	}
510 
511 	rb_link_node(&region->vm_rb, parent, p);
512 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
513 
514 	validate_nommu_regions();
515 }
516 
517 /*
518  * delete a region from the global tree
519  */
520 static void delete_nommu_region(struct vm_region *region)
521 {
522 	BUG_ON(!nommu_region_tree.rb_node);
523 
524 	validate_nommu_regions();
525 	rb_erase(&region->vm_rb, &nommu_region_tree);
526 	validate_nommu_regions();
527 }
528 
529 /*
530  * free a contiguous series of pages
531  */
532 static void free_page_series(unsigned long from, unsigned long to)
533 {
534 	for (; from < to; from += PAGE_SIZE) {
535 		struct page *page = virt_to_page(from);
536 
537 		kdebug("- free %lx", from);
538 		atomic_long_dec(&mmap_pages_allocated);
539 		if (page_count(page) != 1)
540 			kdebug("free page %p: refcount not one: %d",
541 			       page, page_count(page));
542 		put_page(page);
543 	}
544 }
545 
546 /*
547  * release a reference to a region
548  * - the caller must hold the region semaphore for writing, which this releases
549  * - the region may not have been added to the tree yet, in which case vm_top
550  *   will equal vm_start
551  */
552 static void __put_nommu_region(struct vm_region *region)
553 	__releases(nommu_region_sem)
554 {
555 	kenter("%p{%d}", region, atomic_read(&region->vm_usage));
556 
557 	BUG_ON(!nommu_region_tree.rb_node);
558 
559 	if (atomic_dec_and_test(&region->vm_usage)) {
560 		if (region->vm_top > region->vm_start)
561 			delete_nommu_region(region);
562 		up_write(&nommu_region_sem);
563 
564 		if (region->vm_file)
565 			fput(region->vm_file);
566 
567 		/* IO memory and memory shared directly out of the pagecache
568 		 * from ramfs/tmpfs mustn't be released here */
569 		if (region->vm_flags & VM_MAPPED_COPY) {
570 			kdebug("free series");
571 			free_page_series(region->vm_start, region->vm_top);
572 		}
573 		kmem_cache_free(vm_region_jar, region);
574 	} else {
575 		up_write(&nommu_region_sem);
576 	}
577 }
578 
579 /*
580  * release a reference to a region
581  */
582 static void put_nommu_region(struct vm_region *region)
583 {
584 	down_write(&nommu_region_sem);
585 	__put_nommu_region(region);
586 }
587 
588 /*
589  * update protection on a vma
590  */
591 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
592 {
593 #ifdef CONFIG_MPU
594 	struct mm_struct *mm = vma->vm_mm;
595 	long start = vma->vm_start & PAGE_MASK;
596 	while (start < vma->vm_end) {
597 		protect_page(mm, start, flags);
598 		start += PAGE_SIZE;
599 	}
600 	update_protections(mm);
601 #endif
602 }
603 
604 /*
605  * add a VMA into a process's mm_struct in the appropriate place in the list
606  * and tree and add to the address space's page tree also if not an anonymous
607  * page
608  * - should be called with mm->mmap_sem held writelocked
609  */
610 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
611 {
612 	struct vm_area_struct *pvma, **pp;
613 	struct address_space *mapping;
614 	struct rb_node **p, *parent;
615 
616 	kenter(",%p", vma);
617 
618 	BUG_ON(!vma->vm_region);
619 
620 	mm->map_count++;
621 	vma->vm_mm = mm;
622 
623 	protect_vma(vma, vma->vm_flags);
624 
625 	/* add the VMA to the mapping */
626 	if (vma->vm_file) {
627 		mapping = vma->vm_file->f_mapping;
628 
629 		flush_dcache_mmap_lock(mapping);
630 		vma_prio_tree_insert(vma, &mapping->i_mmap);
631 		flush_dcache_mmap_unlock(mapping);
632 	}
633 
634 	/* add the VMA to the tree */
635 	parent = NULL;
636 	p = &mm->mm_rb.rb_node;
637 	while (*p) {
638 		parent = *p;
639 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
640 
641 		/* sort by: start addr, end addr, VMA struct addr in that order
642 		 * (the latter is necessary as we may get identical VMAs) */
643 		if (vma->vm_start < pvma->vm_start)
644 			p = &(*p)->rb_left;
645 		else if (vma->vm_start > pvma->vm_start)
646 			p = &(*p)->rb_right;
647 		else if (vma->vm_end < pvma->vm_end)
648 			p = &(*p)->rb_left;
649 		else if (vma->vm_end > pvma->vm_end)
650 			p = &(*p)->rb_right;
651 		else if (vma < pvma)
652 			p = &(*p)->rb_left;
653 		else if (vma > pvma)
654 			p = &(*p)->rb_right;
655 		else
656 			BUG();
657 	}
658 
659 	rb_link_node(&vma->vm_rb, parent, p);
660 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
661 
662 	/* add VMA to the VMA list also */
663 	for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) {
664 		if (pvma->vm_start > vma->vm_start)
665 			break;
666 		if (pvma->vm_start < vma->vm_start)
667 			continue;
668 		if (pvma->vm_end < vma->vm_end)
669 			break;
670 	}
671 
672 	vma->vm_next = *pp;
673 	*pp = vma;
674 }
675 
676 /*
677  * delete a VMA from its owning mm_struct and address space
678  */
679 static void delete_vma_from_mm(struct vm_area_struct *vma)
680 {
681 	struct vm_area_struct **pp;
682 	struct address_space *mapping;
683 	struct mm_struct *mm = vma->vm_mm;
684 
685 	kenter("%p", vma);
686 
687 	protect_vma(vma, 0);
688 
689 	mm->map_count--;
690 	if (mm->mmap_cache == vma)
691 		mm->mmap_cache = NULL;
692 
693 	/* remove the VMA from the mapping */
694 	if (vma->vm_file) {
695 		mapping = vma->vm_file->f_mapping;
696 
697 		flush_dcache_mmap_lock(mapping);
698 		vma_prio_tree_remove(vma, &mapping->i_mmap);
699 		flush_dcache_mmap_unlock(mapping);
700 	}
701 
702 	/* remove from the MM's tree and list */
703 	rb_erase(&vma->vm_rb, &mm->mm_rb);
704 	for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) {
705 		if (*pp == vma) {
706 			*pp = vma->vm_next;
707 			break;
708 		}
709 	}
710 
711 	vma->vm_mm = NULL;
712 }
713 
714 /*
715  * destroy a VMA record
716  */
717 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
718 {
719 	kenter("%p", vma);
720 	if (vma->vm_ops && vma->vm_ops->close)
721 		vma->vm_ops->close(vma);
722 	if (vma->vm_file) {
723 		fput(vma->vm_file);
724 		if (vma->vm_flags & VM_EXECUTABLE)
725 			removed_exe_file_vma(mm);
726 	}
727 	put_nommu_region(vma->vm_region);
728 	kmem_cache_free(vm_area_cachep, vma);
729 }
730 
731 /*
732  * look up the first VMA in which addr resides, NULL if none
733  * - should be called with mm->mmap_sem at least held readlocked
734  */
735 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
736 {
737 	struct vm_area_struct *vma;
738 	struct rb_node *n = mm->mm_rb.rb_node;
739 
740 	/* check the cache first */
741 	vma = mm->mmap_cache;
742 	if (vma && vma->vm_start <= addr && vma->vm_end > addr)
743 		return vma;
744 
745 	/* trawl the tree (there may be multiple mappings in which addr
746 	 * resides) */
747 	for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
748 		vma = rb_entry(n, struct vm_area_struct, vm_rb);
749 		if (vma->vm_start > addr)
750 			return NULL;
751 		if (vma->vm_end > addr) {
752 			mm->mmap_cache = vma;
753 			return vma;
754 		}
755 	}
756 
757 	return NULL;
758 }
759 EXPORT_SYMBOL(find_vma);
760 
761 /*
762  * find a VMA
763  * - we don't extend stack VMAs under NOMMU conditions
764  */
765 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
766 {
767 	return find_vma(mm, addr);
768 }
769 
770 /*
771  * expand a stack to a given address
772  * - not supported under NOMMU conditions
773  */
774 int expand_stack(struct vm_area_struct *vma, unsigned long address)
775 {
776 	return -ENOMEM;
777 }
778 
779 /*
780  * look up the first VMA exactly that exactly matches addr
781  * - should be called with mm->mmap_sem at least held readlocked
782  */
783 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
784 					     unsigned long addr,
785 					     unsigned long len)
786 {
787 	struct vm_area_struct *vma;
788 	struct rb_node *n = mm->mm_rb.rb_node;
789 	unsigned long end = addr + len;
790 
791 	/* check the cache first */
792 	vma = mm->mmap_cache;
793 	if (vma && vma->vm_start == addr && vma->vm_end == end)
794 		return vma;
795 
796 	/* trawl the tree (there may be multiple mappings in which addr
797 	 * resides) */
798 	for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
799 		vma = rb_entry(n, struct vm_area_struct, vm_rb);
800 		if (vma->vm_start < addr)
801 			continue;
802 		if (vma->vm_start > addr)
803 			return NULL;
804 		if (vma->vm_end == end) {
805 			mm->mmap_cache = vma;
806 			return vma;
807 		}
808 	}
809 
810 	return NULL;
811 }
812 
813 /*
814  * determine whether a mapping should be permitted and, if so, what sort of
815  * mapping we're capable of supporting
816  */
817 static int validate_mmap_request(struct file *file,
818 				 unsigned long addr,
819 				 unsigned long len,
820 				 unsigned long prot,
821 				 unsigned long flags,
822 				 unsigned long pgoff,
823 				 unsigned long *_capabilities)
824 {
825 	unsigned long capabilities, rlen;
826 	unsigned long reqprot = prot;
827 	int ret;
828 
829 	/* do the simple checks first */
830 	if (flags & MAP_FIXED) {
831 		printk(KERN_DEBUG
832 		       "%d: Can't do fixed-address/overlay mmap of RAM\n",
833 		       current->pid);
834 		return -EINVAL;
835 	}
836 
837 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
838 	    (flags & MAP_TYPE) != MAP_SHARED)
839 		return -EINVAL;
840 
841 	if (!len)
842 		return -EINVAL;
843 
844 	/* Careful about overflows.. */
845 	rlen = PAGE_ALIGN(len);
846 	if (!rlen || rlen > TASK_SIZE)
847 		return -ENOMEM;
848 
849 	/* offset overflow? */
850 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
851 		return -EOVERFLOW;
852 
853 	if (file) {
854 		/* validate file mapping requests */
855 		struct address_space *mapping;
856 
857 		/* files must support mmap */
858 		if (!file->f_op || !file->f_op->mmap)
859 			return -ENODEV;
860 
861 		/* work out if what we've got could possibly be shared
862 		 * - we support chardevs that provide their own "memory"
863 		 * - we support files/blockdevs that are memory backed
864 		 */
865 		mapping = file->f_mapping;
866 		if (!mapping)
867 			mapping = file->f_path.dentry->d_inode->i_mapping;
868 
869 		capabilities = 0;
870 		if (mapping && mapping->backing_dev_info)
871 			capabilities = mapping->backing_dev_info->capabilities;
872 
873 		if (!capabilities) {
874 			/* no explicit capabilities set, so assume some
875 			 * defaults */
876 			switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
877 			case S_IFREG:
878 			case S_IFBLK:
879 				capabilities = BDI_CAP_MAP_COPY;
880 				break;
881 
882 			case S_IFCHR:
883 				capabilities =
884 					BDI_CAP_MAP_DIRECT |
885 					BDI_CAP_READ_MAP |
886 					BDI_CAP_WRITE_MAP;
887 				break;
888 
889 			default:
890 				return -EINVAL;
891 			}
892 		}
893 
894 		/* eliminate any capabilities that we can't support on this
895 		 * device */
896 		if (!file->f_op->get_unmapped_area)
897 			capabilities &= ~BDI_CAP_MAP_DIRECT;
898 		if (!file->f_op->read)
899 			capabilities &= ~BDI_CAP_MAP_COPY;
900 
901 		/* The file shall have been opened with read permission. */
902 		if (!(file->f_mode & FMODE_READ))
903 			return -EACCES;
904 
905 		if (flags & MAP_SHARED) {
906 			/* do checks for writing, appending and locking */
907 			if ((prot & PROT_WRITE) &&
908 			    !(file->f_mode & FMODE_WRITE))
909 				return -EACCES;
910 
911 			if (IS_APPEND(file->f_path.dentry->d_inode) &&
912 			    (file->f_mode & FMODE_WRITE))
913 				return -EACCES;
914 
915 			if (locks_verify_locked(file->f_path.dentry->d_inode))
916 				return -EAGAIN;
917 
918 			if (!(capabilities & BDI_CAP_MAP_DIRECT))
919 				return -ENODEV;
920 
921 			if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
922 			    ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
923 			    ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
924 			    ) {
925 				printk("MAP_SHARED not completely supported on !MMU\n");
926 				return -EINVAL;
927 			}
928 
929 			/* we mustn't privatise shared mappings */
930 			capabilities &= ~BDI_CAP_MAP_COPY;
931 		}
932 		else {
933 			/* we're going to read the file into private memory we
934 			 * allocate */
935 			if (!(capabilities & BDI_CAP_MAP_COPY))
936 				return -ENODEV;
937 
938 			/* we don't permit a private writable mapping to be
939 			 * shared with the backing device */
940 			if (prot & PROT_WRITE)
941 				capabilities &= ~BDI_CAP_MAP_DIRECT;
942 		}
943 
944 		/* handle executable mappings and implied executable
945 		 * mappings */
946 		if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
947 			if (prot & PROT_EXEC)
948 				return -EPERM;
949 		}
950 		else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
951 			/* handle implication of PROT_EXEC by PROT_READ */
952 			if (current->personality & READ_IMPLIES_EXEC) {
953 				if (capabilities & BDI_CAP_EXEC_MAP)
954 					prot |= PROT_EXEC;
955 			}
956 		}
957 		else if ((prot & PROT_READ) &&
958 			 (prot & PROT_EXEC) &&
959 			 !(capabilities & BDI_CAP_EXEC_MAP)
960 			 ) {
961 			/* backing file is not executable, try to copy */
962 			capabilities &= ~BDI_CAP_MAP_DIRECT;
963 		}
964 	}
965 	else {
966 		/* anonymous mappings are always memory backed and can be
967 		 * privately mapped
968 		 */
969 		capabilities = BDI_CAP_MAP_COPY;
970 
971 		/* handle PROT_EXEC implication by PROT_READ */
972 		if ((prot & PROT_READ) &&
973 		    (current->personality & READ_IMPLIES_EXEC))
974 			prot |= PROT_EXEC;
975 	}
976 
977 	/* allow the security API to have its say */
978 	ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
979 	if (ret < 0)
980 		return ret;
981 
982 	/* looks okay */
983 	*_capabilities = capabilities;
984 	return 0;
985 }
986 
987 /*
988  * we've determined that we can make the mapping, now translate what we
989  * now know into VMA flags
990  */
991 static unsigned long determine_vm_flags(struct file *file,
992 					unsigned long prot,
993 					unsigned long flags,
994 					unsigned long capabilities)
995 {
996 	unsigned long vm_flags;
997 
998 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
999 	vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1000 	/* vm_flags |= mm->def_flags; */
1001 
1002 	if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1003 		/* attempt to share read-only copies of mapped file chunks */
1004 		if (file && !(prot & PROT_WRITE))
1005 			vm_flags |= VM_MAYSHARE;
1006 	}
1007 	else {
1008 		/* overlay a shareable mapping on the backing device or inode
1009 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1010 		 * romfs/cramfs */
1011 		if (flags & MAP_SHARED)
1012 			vm_flags |= VM_MAYSHARE | VM_SHARED;
1013 		else if ((((vm_flags & capabilities) ^ vm_flags) & BDI_CAP_VMFLAGS) == 0)
1014 			vm_flags |= VM_MAYSHARE;
1015 	}
1016 
1017 	/* refuse to let anyone share private mappings with this process if
1018 	 * it's being traced - otherwise breakpoints set in it may interfere
1019 	 * with another untraced process
1020 	 */
1021 	if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1022 		vm_flags &= ~VM_MAYSHARE;
1023 
1024 	return vm_flags;
1025 }
1026 
1027 /*
1028  * set up a shared mapping on a file (the driver or filesystem provides and
1029  * pins the storage)
1030  */
1031 static int do_mmap_shared_file(struct vm_area_struct *vma)
1032 {
1033 	int ret;
1034 
1035 	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1036 	if (ret == 0) {
1037 		vma->vm_region->vm_top = vma->vm_region->vm_end;
1038 		return 0;
1039 	}
1040 	if (ret != -ENOSYS)
1041 		return ret;
1042 
1043 	/* getting an ENOSYS error indicates that direct mmap isn't
1044 	 * possible (as opposed to tried but failed) so we'll fall
1045 	 * through to making a private copy of the data and mapping
1046 	 * that if we can */
1047 	return -ENODEV;
1048 }
1049 
1050 /*
1051  * set up a private mapping or an anonymous shared mapping
1052  */
1053 static int do_mmap_private(struct vm_area_struct *vma,
1054 			   struct vm_region *region,
1055 			   unsigned long len,
1056 			   unsigned long capabilities)
1057 {
1058 	struct page *pages;
1059 	unsigned long total, point, n, rlen;
1060 	void *base;
1061 	int ret, order;
1062 
1063 	/* invoke the file's mapping function so that it can keep track of
1064 	 * shared mappings on devices or memory
1065 	 * - VM_MAYSHARE will be set if it may attempt to share
1066 	 */
1067 	if (capabilities & BDI_CAP_MAP_DIRECT) {
1068 		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1069 		if (ret == 0) {
1070 			/* shouldn't return success if we're not sharing */
1071 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1072 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1073 			return 0;
1074 		}
1075 		if (ret != -ENOSYS)
1076 			return ret;
1077 
1078 		/* getting an ENOSYS error indicates that direct mmap isn't
1079 		 * possible (as opposed to tried but failed) so we'll try to
1080 		 * make a private copy of the data and map that instead */
1081 	}
1082 
1083 	rlen = PAGE_ALIGN(len);
1084 
1085 	/* allocate some memory to hold the mapping
1086 	 * - note that this may not return a page-aligned address if the object
1087 	 *   we're allocating is smaller than a page
1088 	 */
1089 	order = get_order(rlen);
1090 	kdebug("alloc order %d for %lx", order, len);
1091 
1092 	pages = alloc_pages(GFP_KERNEL, order);
1093 	if (!pages)
1094 		goto enomem;
1095 
1096 	total = 1 << order;
1097 	atomic_long_add(total, &mmap_pages_allocated);
1098 
1099 	point = rlen >> PAGE_SHIFT;
1100 
1101 	/* we allocated a power-of-2 sized page set, so we may want to trim off
1102 	 * the excess */
1103 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1104 		while (total > point) {
1105 			order = ilog2(total - point);
1106 			n = 1 << order;
1107 			kdebug("shave %lu/%lu @%lu", n, total - point, total);
1108 			atomic_long_sub(n, &mmap_pages_allocated);
1109 			total -= n;
1110 			set_page_refcounted(pages + total);
1111 			__free_pages(pages + total, order);
1112 		}
1113 	}
1114 
1115 	for (point = 1; point < total; point++)
1116 		set_page_refcounted(&pages[point]);
1117 
1118 	base = page_address(pages);
1119 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1120 	region->vm_start = (unsigned long) base;
1121 	region->vm_end   = region->vm_start + rlen;
1122 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1123 
1124 	vma->vm_start = region->vm_start;
1125 	vma->vm_end   = region->vm_start + len;
1126 
1127 	if (vma->vm_file) {
1128 		/* read the contents of a file into the copy */
1129 		mm_segment_t old_fs;
1130 		loff_t fpos;
1131 
1132 		fpos = vma->vm_pgoff;
1133 		fpos <<= PAGE_SHIFT;
1134 
1135 		old_fs = get_fs();
1136 		set_fs(KERNEL_DS);
1137 		ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1138 		set_fs(old_fs);
1139 
1140 		if (ret < 0)
1141 			goto error_free;
1142 
1143 		/* clear the last little bit */
1144 		if (ret < rlen)
1145 			memset(base + ret, 0, rlen - ret);
1146 
1147 	}
1148 
1149 	return 0;
1150 
1151 error_free:
1152 	free_page_series(region->vm_start, region->vm_end);
1153 	region->vm_start = vma->vm_start = 0;
1154 	region->vm_end   = vma->vm_end = 0;
1155 	region->vm_top   = 0;
1156 	return ret;
1157 
1158 enomem:
1159 	printk("Allocation of length %lu from process %d (%s) failed\n",
1160 	       len, current->pid, current->comm);
1161 	show_free_areas();
1162 	return -ENOMEM;
1163 }
1164 
1165 /*
1166  * handle mapping creation for uClinux
1167  */
1168 unsigned long do_mmap_pgoff(struct file *file,
1169 			    unsigned long addr,
1170 			    unsigned long len,
1171 			    unsigned long prot,
1172 			    unsigned long flags,
1173 			    unsigned long pgoff)
1174 {
1175 	struct vm_area_struct *vma;
1176 	struct vm_region *region;
1177 	struct rb_node *rb;
1178 	unsigned long capabilities, vm_flags, result;
1179 	int ret;
1180 
1181 	kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1182 
1183 	/* decide whether we should attempt the mapping, and if so what sort of
1184 	 * mapping */
1185 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1186 				    &capabilities);
1187 	if (ret < 0) {
1188 		kleave(" = %d [val]", ret);
1189 		return ret;
1190 	}
1191 
1192 	/* we ignore the address hint */
1193 	addr = 0;
1194 
1195 	/* we've determined that we can make the mapping, now translate what we
1196 	 * now know into VMA flags */
1197 	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1198 
1199 	/* we're going to need to record the mapping */
1200 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1201 	if (!region)
1202 		goto error_getting_region;
1203 
1204 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1205 	if (!vma)
1206 		goto error_getting_vma;
1207 
1208 	atomic_set(&region->vm_usage, 1);
1209 	region->vm_flags = vm_flags;
1210 	region->vm_pgoff = pgoff;
1211 
1212 	INIT_LIST_HEAD(&vma->anon_vma_node);
1213 	vma->vm_flags = vm_flags;
1214 	vma->vm_pgoff = pgoff;
1215 
1216 	if (file) {
1217 		region->vm_file = file;
1218 		get_file(file);
1219 		vma->vm_file = file;
1220 		get_file(file);
1221 		if (vm_flags & VM_EXECUTABLE) {
1222 			added_exe_file_vma(current->mm);
1223 			vma->vm_mm = current->mm;
1224 		}
1225 	}
1226 
1227 	down_write(&nommu_region_sem);
1228 
1229 	/* if we want to share, we need to check for regions created by other
1230 	 * mmap() calls that overlap with our proposed mapping
1231 	 * - we can only share with a superset match on most regular files
1232 	 * - shared mappings on character devices and memory backed files are
1233 	 *   permitted to overlap inexactly as far as we are concerned for in
1234 	 *   these cases, sharing is handled in the driver or filesystem rather
1235 	 *   than here
1236 	 */
1237 	if (vm_flags & VM_MAYSHARE) {
1238 		struct vm_region *pregion;
1239 		unsigned long pglen, rpglen, pgend, rpgend, start;
1240 
1241 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1242 		pgend = pgoff + pglen;
1243 
1244 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1245 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1246 
1247 			if (!(pregion->vm_flags & VM_MAYSHARE))
1248 				continue;
1249 
1250 			/* search for overlapping mappings on the same file */
1251 			if (pregion->vm_file->f_path.dentry->d_inode !=
1252 			    file->f_path.dentry->d_inode)
1253 				continue;
1254 
1255 			if (pregion->vm_pgoff >= pgend)
1256 				continue;
1257 
1258 			rpglen = pregion->vm_end - pregion->vm_start;
1259 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1260 			rpgend = pregion->vm_pgoff + rpglen;
1261 			if (pgoff >= rpgend)
1262 				continue;
1263 
1264 			/* handle inexactly overlapping matches between
1265 			 * mappings */
1266 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1267 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1268 				/* new mapping is not a subset of the region */
1269 				if (!(capabilities & BDI_CAP_MAP_DIRECT))
1270 					goto sharing_violation;
1271 				continue;
1272 			}
1273 
1274 			/* we've found a region we can share */
1275 			atomic_inc(&pregion->vm_usage);
1276 			vma->vm_region = pregion;
1277 			start = pregion->vm_start;
1278 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1279 			vma->vm_start = start;
1280 			vma->vm_end = start + len;
1281 
1282 			if (pregion->vm_flags & VM_MAPPED_COPY) {
1283 				kdebug("share copy");
1284 				vma->vm_flags |= VM_MAPPED_COPY;
1285 			} else {
1286 				kdebug("share mmap");
1287 				ret = do_mmap_shared_file(vma);
1288 				if (ret < 0) {
1289 					vma->vm_region = NULL;
1290 					vma->vm_start = 0;
1291 					vma->vm_end = 0;
1292 					atomic_dec(&pregion->vm_usage);
1293 					pregion = NULL;
1294 					goto error_just_free;
1295 				}
1296 			}
1297 			fput(region->vm_file);
1298 			kmem_cache_free(vm_region_jar, region);
1299 			region = pregion;
1300 			result = start;
1301 			goto share;
1302 		}
1303 
1304 		/* obtain the address at which to make a shared mapping
1305 		 * - this is the hook for quasi-memory character devices to
1306 		 *   tell us the location of a shared mapping
1307 		 */
1308 		if (capabilities & BDI_CAP_MAP_DIRECT) {
1309 			addr = file->f_op->get_unmapped_area(file, addr, len,
1310 							     pgoff, flags);
1311 			if (IS_ERR((void *) addr)) {
1312 				ret = addr;
1313 				if (ret != (unsigned long) -ENOSYS)
1314 					goto error_just_free;
1315 
1316 				/* the driver refused to tell us where to site
1317 				 * the mapping so we'll have to attempt to copy
1318 				 * it */
1319 				ret = (unsigned long) -ENODEV;
1320 				if (!(capabilities & BDI_CAP_MAP_COPY))
1321 					goto error_just_free;
1322 
1323 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1324 			} else {
1325 				vma->vm_start = region->vm_start = addr;
1326 				vma->vm_end = region->vm_end = addr + len;
1327 			}
1328 		}
1329 	}
1330 
1331 	vma->vm_region = region;
1332 
1333 	/* set up the mapping
1334 	 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1335 	 */
1336 	if (file && vma->vm_flags & VM_SHARED)
1337 		ret = do_mmap_shared_file(vma);
1338 	else
1339 		ret = do_mmap_private(vma, region, len, capabilities);
1340 	if (ret < 0)
1341 		goto error_just_free;
1342 	add_nommu_region(region);
1343 
1344 	/* clear anonymous mappings that don't ask for uninitialized data */
1345 	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1346 		memset((void *)region->vm_start, 0,
1347 		       region->vm_end - region->vm_start);
1348 
1349 	/* okay... we have a mapping; now we have to register it */
1350 	result = vma->vm_start;
1351 
1352 	current->mm->total_vm += len >> PAGE_SHIFT;
1353 
1354 share:
1355 	add_vma_to_mm(current->mm, vma);
1356 
1357 	/* we flush the region from the icache only when the first executable
1358 	 * mapping of it is made  */
1359 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1360 		flush_icache_range(region->vm_start, region->vm_end);
1361 		region->vm_icache_flushed = true;
1362 	}
1363 
1364 	up_write(&nommu_region_sem);
1365 
1366 	kleave(" = %lx", result);
1367 	return result;
1368 
1369 error_just_free:
1370 	up_write(&nommu_region_sem);
1371 error:
1372 	if (region->vm_file)
1373 		fput(region->vm_file);
1374 	kmem_cache_free(vm_region_jar, region);
1375 	if (vma->vm_file)
1376 		fput(vma->vm_file);
1377 	if (vma->vm_flags & VM_EXECUTABLE)
1378 		removed_exe_file_vma(vma->vm_mm);
1379 	kmem_cache_free(vm_area_cachep, vma);
1380 	kleave(" = %d", ret);
1381 	return ret;
1382 
1383 sharing_violation:
1384 	up_write(&nommu_region_sem);
1385 	printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1386 	ret = -EINVAL;
1387 	goto error;
1388 
1389 error_getting_vma:
1390 	kmem_cache_free(vm_region_jar, region);
1391 	printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1392 	       " from process %d failed\n",
1393 	       len, current->pid);
1394 	show_free_areas();
1395 	return -ENOMEM;
1396 
1397 error_getting_region:
1398 	printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1399 	       " from process %d failed\n",
1400 	       len, current->pid);
1401 	show_free_areas();
1402 	return -ENOMEM;
1403 }
1404 EXPORT_SYMBOL(do_mmap_pgoff);
1405 
1406 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1407 		unsigned long, prot, unsigned long, flags,
1408 		unsigned long, fd, unsigned long, pgoff)
1409 {
1410 	struct file *file = NULL;
1411 	unsigned long retval = -EBADF;
1412 
1413 	if (!(flags & MAP_ANONYMOUS)) {
1414 		file = fget(fd);
1415 		if (!file)
1416 			goto out;
1417 	}
1418 
1419 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1420 
1421 	down_write(&current->mm->mmap_sem);
1422 	retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1423 	up_write(&current->mm->mmap_sem);
1424 
1425 	if (file)
1426 		fput(file);
1427 out:
1428 	return retval;
1429 }
1430 
1431 /*
1432  * split a vma into two pieces at address 'addr', a new vma is allocated either
1433  * for the first part or the tail.
1434  */
1435 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1436 	      unsigned long addr, int new_below)
1437 {
1438 	struct vm_area_struct *new;
1439 	struct vm_region *region;
1440 	unsigned long npages;
1441 
1442 	kenter("");
1443 
1444 	/* we're only permitted to split anonymous regions that have a single
1445 	 * owner */
1446 	if (vma->vm_file ||
1447 	    atomic_read(&vma->vm_region->vm_usage) != 1)
1448 		return -ENOMEM;
1449 
1450 	if (mm->map_count >= sysctl_max_map_count)
1451 		return -ENOMEM;
1452 
1453 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1454 	if (!region)
1455 		return -ENOMEM;
1456 
1457 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1458 	if (!new) {
1459 		kmem_cache_free(vm_region_jar, region);
1460 		return -ENOMEM;
1461 	}
1462 
1463 	/* most fields are the same, copy all, and then fixup */
1464 	*new = *vma;
1465 	*region = *vma->vm_region;
1466 	new->vm_region = region;
1467 
1468 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1469 
1470 	if (new_below) {
1471 		region->vm_top = region->vm_end = new->vm_end = addr;
1472 	} else {
1473 		region->vm_start = new->vm_start = addr;
1474 		region->vm_pgoff = new->vm_pgoff += npages;
1475 	}
1476 
1477 	if (new->vm_ops && new->vm_ops->open)
1478 		new->vm_ops->open(new);
1479 
1480 	delete_vma_from_mm(vma);
1481 	down_write(&nommu_region_sem);
1482 	delete_nommu_region(vma->vm_region);
1483 	if (new_below) {
1484 		vma->vm_region->vm_start = vma->vm_start = addr;
1485 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1486 	} else {
1487 		vma->vm_region->vm_end = vma->vm_end = addr;
1488 		vma->vm_region->vm_top = addr;
1489 	}
1490 	add_nommu_region(vma->vm_region);
1491 	add_nommu_region(new->vm_region);
1492 	up_write(&nommu_region_sem);
1493 	add_vma_to_mm(mm, vma);
1494 	add_vma_to_mm(mm, new);
1495 	return 0;
1496 }
1497 
1498 /*
1499  * shrink a VMA by removing the specified chunk from either the beginning or
1500  * the end
1501  */
1502 static int shrink_vma(struct mm_struct *mm,
1503 		      struct vm_area_struct *vma,
1504 		      unsigned long from, unsigned long to)
1505 {
1506 	struct vm_region *region;
1507 
1508 	kenter("");
1509 
1510 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1511 	 * and list */
1512 	delete_vma_from_mm(vma);
1513 	if (from > vma->vm_start)
1514 		vma->vm_end = from;
1515 	else
1516 		vma->vm_start = to;
1517 	add_vma_to_mm(mm, vma);
1518 
1519 	/* cut the backing region down to size */
1520 	region = vma->vm_region;
1521 	BUG_ON(atomic_read(&region->vm_usage) != 1);
1522 
1523 	down_write(&nommu_region_sem);
1524 	delete_nommu_region(region);
1525 	if (from > region->vm_start) {
1526 		to = region->vm_top;
1527 		region->vm_top = region->vm_end = from;
1528 	} else {
1529 		region->vm_start = to;
1530 	}
1531 	add_nommu_region(region);
1532 	up_write(&nommu_region_sem);
1533 
1534 	free_page_series(from, to);
1535 	return 0;
1536 }
1537 
1538 /*
1539  * release a mapping
1540  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1541  *   VMA, though it need not cover the whole VMA
1542  */
1543 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1544 {
1545 	struct vm_area_struct *vma;
1546 	struct rb_node *rb;
1547 	unsigned long end = start + len;
1548 	int ret;
1549 
1550 	kenter(",%lx,%zx", start, len);
1551 
1552 	if (len == 0)
1553 		return -EINVAL;
1554 
1555 	/* find the first potentially overlapping VMA */
1556 	vma = find_vma(mm, start);
1557 	if (!vma) {
1558 		static int limit = 0;
1559 		if (limit < 5) {
1560 			printk(KERN_WARNING
1561 			       "munmap of memory not mmapped by process %d"
1562 			       " (%s): 0x%lx-0x%lx\n",
1563 			       current->pid, current->comm,
1564 			       start, start + len - 1);
1565 			limit++;
1566 		}
1567 		return -EINVAL;
1568 	}
1569 
1570 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1571 	if (vma->vm_file) {
1572 		do {
1573 			if (start > vma->vm_start) {
1574 				kleave(" = -EINVAL [miss]");
1575 				return -EINVAL;
1576 			}
1577 			if (end == vma->vm_end)
1578 				goto erase_whole_vma;
1579 			rb = rb_next(&vma->vm_rb);
1580 			vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1581 		} while (rb);
1582 		kleave(" = -EINVAL [split file]");
1583 		return -EINVAL;
1584 	} else {
1585 		/* the chunk must be a subset of the VMA found */
1586 		if (start == vma->vm_start && end == vma->vm_end)
1587 			goto erase_whole_vma;
1588 		if (start < vma->vm_start || end > vma->vm_end) {
1589 			kleave(" = -EINVAL [superset]");
1590 			return -EINVAL;
1591 		}
1592 		if (start & ~PAGE_MASK) {
1593 			kleave(" = -EINVAL [unaligned start]");
1594 			return -EINVAL;
1595 		}
1596 		if (end != vma->vm_end && end & ~PAGE_MASK) {
1597 			kleave(" = -EINVAL [unaligned split]");
1598 			return -EINVAL;
1599 		}
1600 		if (start != vma->vm_start && end != vma->vm_end) {
1601 			ret = split_vma(mm, vma, start, 1);
1602 			if (ret < 0) {
1603 				kleave(" = %d [split]", ret);
1604 				return ret;
1605 			}
1606 		}
1607 		return shrink_vma(mm, vma, start, end);
1608 	}
1609 
1610 erase_whole_vma:
1611 	delete_vma_from_mm(vma);
1612 	delete_vma(mm, vma);
1613 	kleave(" = 0");
1614 	return 0;
1615 }
1616 EXPORT_SYMBOL(do_munmap);
1617 
1618 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1619 {
1620 	int ret;
1621 	struct mm_struct *mm = current->mm;
1622 
1623 	down_write(&mm->mmap_sem);
1624 	ret = do_munmap(mm, addr, len);
1625 	up_write(&mm->mmap_sem);
1626 	return ret;
1627 }
1628 
1629 /*
1630  * release all the mappings made in a process's VM space
1631  */
1632 void exit_mmap(struct mm_struct *mm)
1633 {
1634 	struct vm_area_struct *vma;
1635 
1636 	if (!mm)
1637 		return;
1638 
1639 	kenter("");
1640 
1641 	mm->total_vm = 0;
1642 
1643 	while ((vma = mm->mmap)) {
1644 		mm->mmap = vma->vm_next;
1645 		delete_vma_from_mm(vma);
1646 		delete_vma(mm, vma);
1647 	}
1648 
1649 	kleave("");
1650 }
1651 
1652 unsigned long do_brk(unsigned long addr, unsigned long len)
1653 {
1654 	return -ENOMEM;
1655 }
1656 
1657 /*
1658  * expand (or shrink) an existing mapping, potentially moving it at the same
1659  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1660  *
1661  * under NOMMU conditions, we only permit changing a mapping's size, and only
1662  * as long as it stays within the region allocated by do_mmap_private() and the
1663  * block is not shareable
1664  *
1665  * MREMAP_FIXED is not supported under NOMMU conditions
1666  */
1667 unsigned long do_mremap(unsigned long addr,
1668 			unsigned long old_len, unsigned long new_len,
1669 			unsigned long flags, unsigned long new_addr)
1670 {
1671 	struct vm_area_struct *vma;
1672 
1673 	/* insanity checks first */
1674 	if (old_len == 0 || new_len == 0)
1675 		return (unsigned long) -EINVAL;
1676 
1677 	if (addr & ~PAGE_MASK)
1678 		return -EINVAL;
1679 
1680 	if (flags & MREMAP_FIXED && new_addr != addr)
1681 		return (unsigned long) -EINVAL;
1682 
1683 	vma = find_vma_exact(current->mm, addr, old_len);
1684 	if (!vma)
1685 		return (unsigned long) -EINVAL;
1686 
1687 	if (vma->vm_end != vma->vm_start + old_len)
1688 		return (unsigned long) -EFAULT;
1689 
1690 	if (vma->vm_flags & VM_MAYSHARE)
1691 		return (unsigned long) -EPERM;
1692 
1693 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1694 		return (unsigned long) -ENOMEM;
1695 
1696 	/* all checks complete - do it */
1697 	vma->vm_end = vma->vm_start + new_len;
1698 	return vma->vm_start;
1699 }
1700 EXPORT_SYMBOL(do_mremap);
1701 
1702 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1703 		unsigned long, new_len, unsigned long, flags,
1704 		unsigned long, new_addr)
1705 {
1706 	unsigned long ret;
1707 
1708 	down_write(&current->mm->mmap_sem);
1709 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1710 	up_write(&current->mm->mmap_sem);
1711 	return ret;
1712 }
1713 
1714 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1715 			unsigned int foll_flags)
1716 {
1717 	return NULL;
1718 }
1719 
1720 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1721 		unsigned long to, unsigned long size, pgprot_t prot)
1722 {
1723 	vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1724 	return 0;
1725 }
1726 EXPORT_SYMBOL(remap_pfn_range);
1727 
1728 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1729 			unsigned long pgoff)
1730 {
1731 	unsigned int size = vma->vm_end - vma->vm_start;
1732 
1733 	if (!(vma->vm_flags & VM_USERMAP))
1734 		return -EINVAL;
1735 
1736 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1737 	vma->vm_end = vma->vm_start + size;
1738 
1739 	return 0;
1740 }
1741 EXPORT_SYMBOL(remap_vmalloc_range);
1742 
1743 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1744 {
1745 }
1746 
1747 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1748 	unsigned long len, unsigned long pgoff, unsigned long flags)
1749 {
1750 	return -ENOMEM;
1751 }
1752 
1753 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1754 {
1755 }
1756 
1757 void unmap_mapping_range(struct address_space *mapping,
1758 			 loff_t const holebegin, loff_t const holelen,
1759 			 int even_cows)
1760 {
1761 }
1762 EXPORT_SYMBOL(unmap_mapping_range);
1763 
1764 /*
1765  * ask for an unmapped area at which to create a mapping on a file
1766  */
1767 unsigned long get_unmapped_area(struct file *file, unsigned long addr,
1768 				unsigned long len, unsigned long pgoff,
1769 				unsigned long flags)
1770 {
1771 	unsigned long (*get_area)(struct file *, unsigned long, unsigned long,
1772 				  unsigned long, unsigned long);
1773 
1774 	get_area = current->mm->get_unmapped_area;
1775 	if (file && file->f_op && file->f_op->get_unmapped_area)
1776 		get_area = file->f_op->get_unmapped_area;
1777 
1778 	if (!get_area)
1779 		return -ENOSYS;
1780 
1781 	return get_area(file, addr, len, pgoff, flags);
1782 }
1783 EXPORT_SYMBOL(get_unmapped_area);
1784 
1785 /*
1786  * Check that a process has enough memory to allocate a new virtual
1787  * mapping. 0 means there is enough memory for the allocation to
1788  * succeed and -ENOMEM implies there is not.
1789  *
1790  * We currently support three overcommit policies, which are set via the
1791  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1792  *
1793  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1794  * Additional code 2002 Jul 20 by Robert Love.
1795  *
1796  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1797  *
1798  * Note this is a helper function intended to be used by LSMs which
1799  * wish to use this logic.
1800  */
1801 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1802 {
1803 	unsigned long free, allowed;
1804 
1805 	vm_acct_memory(pages);
1806 
1807 	/*
1808 	 * Sometimes we want to use more memory than we have
1809 	 */
1810 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1811 		return 0;
1812 
1813 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1814 		unsigned long n;
1815 
1816 		free = global_page_state(NR_FILE_PAGES);
1817 		free += nr_swap_pages;
1818 
1819 		/*
1820 		 * Any slabs which are created with the
1821 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1822 		 * which are reclaimable, under pressure.  The dentry
1823 		 * cache and most inode caches should fall into this
1824 		 */
1825 		free += global_page_state(NR_SLAB_RECLAIMABLE);
1826 
1827 		/*
1828 		 * Leave the last 3% for root
1829 		 */
1830 		if (!cap_sys_admin)
1831 			free -= free / 32;
1832 
1833 		if (free > pages)
1834 			return 0;
1835 
1836 		/*
1837 		 * nr_free_pages() is very expensive on large systems,
1838 		 * only call if we're about to fail.
1839 		 */
1840 		n = nr_free_pages();
1841 
1842 		/*
1843 		 * Leave reserved pages. The pages are not for anonymous pages.
1844 		 */
1845 		if (n <= totalreserve_pages)
1846 			goto error;
1847 		else
1848 			n -= totalreserve_pages;
1849 
1850 		/*
1851 		 * Leave the last 3% for root
1852 		 */
1853 		if (!cap_sys_admin)
1854 			n -= n / 32;
1855 		free += n;
1856 
1857 		if (free > pages)
1858 			return 0;
1859 
1860 		goto error;
1861 	}
1862 
1863 	allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1864 	/*
1865 	 * Leave the last 3% for root
1866 	 */
1867 	if (!cap_sys_admin)
1868 		allowed -= allowed / 32;
1869 	allowed += total_swap_pages;
1870 
1871 	/* Don't let a single process grow too big:
1872 	   leave 3% of the size of this process for other processes */
1873 	if (mm)
1874 		allowed -= mm->total_vm / 32;
1875 
1876 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1877 		return 0;
1878 
1879 error:
1880 	vm_unacct_memory(pages);
1881 
1882 	return -ENOMEM;
1883 }
1884 
1885 int in_gate_area_no_task(unsigned long addr)
1886 {
1887 	return 0;
1888 }
1889 
1890 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1891 {
1892 	BUG();
1893 	return 0;
1894 }
1895 EXPORT_SYMBOL(filemap_fault);
1896 
1897 /*
1898  * Access another process' address space.
1899  * - source/target buffer must be kernel space
1900  */
1901 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1902 {
1903 	struct vm_area_struct *vma;
1904 	struct mm_struct *mm;
1905 
1906 	if (addr + len < addr)
1907 		return 0;
1908 
1909 	mm = get_task_mm(tsk);
1910 	if (!mm)
1911 		return 0;
1912 
1913 	down_read(&mm->mmap_sem);
1914 
1915 	/* the access must start within one of the target process's mappings */
1916 	vma = find_vma(mm, addr);
1917 	if (vma) {
1918 		/* don't overrun this mapping */
1919 		if (addr + len >= vma->vm_end)
1920 			len = vma->vm_end - addr;
1921 
1922 		/* only read or write mappings where it is permitted */
1923 		if (write && vma->vm_flags & VM_MAYWRITE)
1924 			copy_to_user_page(vma, NULL, addr,
1925 					 (void *) addr, buf, len);
1926 		else if (!write && vma->vm_flags & VM_MAYREAD)
1927 			copy_from_user_page(vma, NULL, addr,
1928 					    buf, (void *) addr, len);
1929 		else
1930 			len = 0;
1931 	} else {
1932 		len = 0;
1933 	}
1934 
1935 	up_read(&mm->mmap_sem);
1936 	mmput(mm);
1937 	return len;
1938 }
1939