xref: /openbmc/linux/mm/nommu.c (revision 9b358af7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/nommu.c
4  *
5  *  Replacement code for mm functions to support CPU's that don't
6  *  have any form of memory management unit (thus no virtual memory).
7  *
8  *  See Documentation/admin-guide/mm/nommu-mmap.rst
9  *
10  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
39 
40 #include <linux/uaccess.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
45 
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
54 
55 atomic_long_t mmap_pages_allocated;
56 
57 EXPORT_SYMBOL(mem_map);
58 
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
63 
64 const struct vm_operations_struct generic_file_vm_ops = {
65 };
66 
67 /*
68  * Return the total memory allocated for this pointer, not
69  * just what the caller asked for.
70  *
71  * Doesn't have to be accurate, i.e. may have races.
72  */
73 unsigned int kobjsize(const void *objp)
74 {
75 	struct page *page;
76 
77 	/*
78 	 * If the object we have should not have ksize performed on it,
79 	 * return size of 0
80 	 */
81 	if (!objp || !virt_addr_valid(objp))
82 		return 0;
83 
84 	page = virt_to_head_page(objp);
85 
86 	/*
87 	 * If the allocator sets PageSlab, we know the pointer came from
88 	 * kmalloc().
89 	 */
90 	if (PageSlab(page))
91 		return ksize(objp);
92 
93 	/*
94 	 * If it's not a compound page, see if we have a matching VMA
95 	 * region. This test is intentionally done in reverse order,
96 	 * so if there's no VMA, we still fall through and hand back
97 	 * PAGE_SIZE for 0-order pages.
98 	 */
99 	if (!PageCompound(page)) {
100 		struct vm_area_struct *vma;
101 
102 		vma = find_vma(current->mm, (unsigned long)objp);
103 		if (vma)
104 			return vma->vm_end - vma->vm_start;
105 	}
106 
107 	/*
108 	 * The ksize() function is only guaranteed to work for pointers
109 	 * returned by kmalloc(). So handle arbitrary pointers here.
110 	 */
111 	return page_size(page);
112 }
113 
114 /**
115  * follow_pfn - look up PFN at a user virtual address
116  * @vma: memory mapping
117  * @address: user virtual address
118  * @pfn: location to store found PFN
119  *
120  * Only IO mappings and raw PFN mappings are allowed.
121  *
122  * Returns zero and the pfn at @pfn on success, -ve otherwise.
123  */
124 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
125 	unsigned long *pfn)
126 {
127 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
128 		return -EINVAL;
129 
130 	*pfn = address >> PAGE_SHIFT;
131 	return 0;
132 }
133 EXPORT_SYMBOL(follow_pfn);
134 
135 LIST_HEAD(vmap_area_list);
136 
137 void vfree(const void *addr)
138 {
139 	kfree(addr);
140 }
141 EXPORT_SYMBOL(vfree);
142 
143 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
144 {
145 	/*
146 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
147 	 * returns only a logical address.
148 	 */
149 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
150 }
151 EXPORT_SYMBOL(__vmalloc);
152 
153 void *__vmalloc_node_range(unsigned long size, unsigned long align,
154 		unsigned long start, unsigned long end, gfp_t gfp_mask,
155 		pgprot_t prot, unsigned long vm_flags, int node,
156 		const void *caller)
157 {
158 	return __vmalloc(size, gfp_mask);
159 }
160 
161 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
162 		int node, const void *caller)
163 {
164 	return __vmalloc(size, gfp_mask);
165 }
166 
167 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
168 {
169 	void *ret;
170 
171 	ret = __vmalloc(size, flags);
172 	if (ret) {
173 		struct vm_area_struct *vma;
174 
175 		mmap_write_lock(current->mm);
176 		vma = find_vma(current->mm, (unsigned long)ret);
177 		if (vma)
178 			vma->vm_flags |= VM_USERMAP;
179 		mmap_write_unlock(current->mm);
180 	}
181 
182 	return ret;
183 }
184 
185 void *vmalloc_user(unsigned long size)
186 {
187 	return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
188 }
189 EXPORT_SYMBOL(vmalloc_user);
190 
191 struct page *vmalloc_to_page(const void *addr)
192 {
193 	return virt_to_page(addr);
194 }
195 EXPORT_SYMBOL(vmalloc_to_page);
196 
197 unsigned long vmalloc_to_pfn(const void *addr)
198 {
199 	return page_to_pfn(virt_to_page(addr));
200 }
201 EXPORT_SYMBOL(vmalloc_to_pfn);
202 
203 long vread(char *buf, char *addr, unsigned long count)
204 {
205 	/* Don't allow overflow */
206 	if ((unsigned long) buf + count < count)
207 		count = -(unsigned long) buf;
208 
209 	memcpy(buf, addr, count);
210 	return count;
211 }
212 
213 /*
214  *	vmalloc  -  allocate virtually contiguous memory
215  *
216  *	@size:		allocation size
217  *
218  *	Allocate enough pages to cover @size from the page level
219  *	allocator and map them into contiguous kernel virtual space.
220  *
221  *	For tight control over page level allocator and protection flags
222  *	use __vmalloc() instead.
223  */
224 void *vmalloc(unsigned long size)
225 {
226        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM);
227 }
228 EXPORT_SYMBOL(vmalloc);
229 
230 /*
231  *	vzalloc - allocate virtually contiguous memory with zero fill
232  *
233  *	@size:		allocation size
234  *
235  *	Allocate enough pages to cover @size from the page level
236  *	allocator and map them into contiguous kernel virtual space.
237  *	The memory allocated is set to zero.
238  *
239  *	For tight control over page level allocator and protection flags
240  *	use __vmalloc() instead.
241  */
242 void *vzalloc(unsigned long size)
243 {
244 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
245 }
246 EXPORT_SYMBOL(vzalloc);
247 
248 /**
249  * vmalloc_node - allocate memory on a specific node
250  * @size:	allocation size
251  * @node:	numa node
252  *
253  * Allocate enough pages to cover @size from the page level
254  * allocator and map them into contiguous kernel virtual space.
255  *
256  * For tight control over page level allocator and protection flags
257  * use __vmalloc() instead.
258  */
259 void *vmalloc_node(unsigned long size, int node)
260 {
261 	return vmalloc(size);
262 }
263 EXPORT_SYMBOL(vmalloc_node);
264 
265 /**
266  * vzalloc_node - allocate memory on a specific node with zero fill
267  * @size:	allocation size
268  * @node:	numa node
269  *
270  * Allocate enough pages to cover @size from the page level
271  * allocator and map them into contiguous kernel virtual space.
272  * The memory allocated is set to zero.
273  *
274  * For tight control over page level allocator and protection flags
275  * use __vmalloc() instead.
276  */
277 void *vzalloc_node(unsigned long size, int node)
278 {
279 	return vzalloc(size);
280 }
281 EXPORT_SYMBOL(vzalloc_node);
282 
283 /**
284  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
285  *	@size:		allocation size
286  *
287  *	Allocate enough 32bit PA addressable pages to cover @size from the
288  *	page level allocator and map them into contiguous kernel virtual space.
289  */
290 void *vmalloc_32(unsigned long size)
291 {
292 	return __vmalloc(size, GFP_KERNEL);
293 }
294 EXPORT_SYMBOL(vmalloc_32);
295 
296 /**
297  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
298  *	@size:		allocation size
299  *
300  * The resulting memory area is 32bit addressable and zeroed so it can be
301  * mapped to userspace without leaking data.
302  *
303  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
304  * remap_vmalloc_range() are permissible.
305  */
306 void *vmalloc_32_user(unsigned long size)
307 {
308 	/*
309 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
310 	 * but for now this can simply use vmalloc_user() directly.
311 	 */
312 	return vmalloc_user(size);
313 }
314 EXPORT_SYMBOL(vmalloc_32_user);
315 
316 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
317 {
318 	BUG();
319 	return NULL;
320 }
321 EXPORT_SYMBOL(vmap);
322 
323 void vunmap(const void *addr)
324 {
325 	BUG();
326 }
327 EXPORT_SYMBOL(vunmap);
328 
329 void *vm_map_ram(struct page **pages, unsigned int count, int node)
330 {
331 	BUG();
332 	return NULL;
333 }
334 EXPORT_SYMBOL(vm_map_ram);
335 
336 void vm_unmap_ram(const void *mem, unsigned int count)
337 {
338 	BUG();
339 }
340 EXPORT_SYMBOL(vm_unmap_ram);
341 
342 void vm_unmap_aliases(void)
343 {
344 }
345 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
346 
347 void free_vm_area(struct vm_struct *area)
348 {
349 	BUG();
350 }
351 EXPORT_SYMBOL_GPL(free_vm_area);
352 
353 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
354 		   struct page *page)
355 {
356 	return -EINVAL;
357 }
358 EXPORT_SYMBOL(vm_insert_page);
359 
360 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
361 			unsigned long num)
362 {
363 	return -EINVAL;
364 }
365 EXPORT_SYMBOL(vm_map_pages);
366 
367 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
368 				unsigned long num)
369 {
370 	return -EINVAL;
371 }
372 EXPORT_SYMBOL(vm_map_pages_zero);
373 
374 /*
375  *  sys_brk() for the most part doesn't need the global kernel
376  *  lock, except when an application is doing something nasty
377  *  like trying to un-brk an area that has already been mapped
378  *  to a regular file.  in this case, the unmapping will need
379  *  to invoke file system routines that need the global lock.
380  */
381 SYSCALL_DEFINE1(brk, unsigned long, brk)
382 {
383 	struct mm_struct *mm = current->mm;
384 
385 	if (brk < mm->start_brk || brk > mm->context.end_brk)
386 		return mm->brk;
387 
388 	if (mm->brk == brk)
389 		return mm->brk;
390 
391 	/*
392 	 * Always allow shrinking brk
393 	 */
394 	if (brk <= mm->brk) {
395 		mm->brk = brk;
396 		return brk;
397 	}
398 
399 	/*
400 	 * Ok, looks good - let it rip.
401 	 */
402 	flush_icache_user_range(mm->brk, brk);
403 	return mm->brk = brk;
404 }
405 
406 /*
407  * initialise the percpu counter for VM and region record slabs
408  */
409 void __init mmap_init(void)
410 {
411 	int ret;
412 
413 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
414 	VM_BUG_ON(ret);
415 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
416 }
417 
418 /*
419  * validate the region tree
420  * - the caller must hold the region lock
421  */
422 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
423 static noinline void validate_nommu_regions(void)
424 {
425 	struct vm_region *region, *last;
426 	struct rb_node *p, *lastp;
427 
428 	lastp = rb_first(&nommu_region_tree);
429 	if (!lastp)
430 		return;
431 
432 	last = rb_entry(lastp, struct vm_region, vm_rb);
433 	BUG_ON(last->vm_end <= last->vm_start);
434 	BUG_ON(last->vm_top < last->vm_end);
435 
436 	while ((p = rb_next(lastp))) {
437 		region = rb_entry(p, struct vm_region, vm_rb);
438 		last = rb_entry(lastp, struct vm_region, vm_rb);
439 
440 		BUG_ON(region->vm_end <= region->vm_start);
441 		BUG_ON(region->vm_top < region->vm_end);
442 		BUG_ON(region->vm_start < last->vm_top);
443 
444 		lastp = p;
445 	}
446 }
447 #else
448 static void validate_nommu_regions(void)
449 {
450 }
451 #endif
452 
453 /*
454  * add a region into the global tree
455  */
456 static void add_nommu_region(struct vm_region *region)
457 {
458 	struct vm_region *pregion;
459 	struct rb_node **p, *parent;
460 
461 	validate_nommu_regions();
462 
463 	parent = NULL;
464 	p = &nommu_region_tree.rb_node;
465 	while (*p) {
466 		parent = *p;
467 		pregion = rb_entry(parent, struct vm_region, vm_rb);
468 		if (region->vm_start < pregion->vm_start)
469 			p = &(*p)->rb_left;
470 		else if (region->vm_start > pregion->vm_start)
471 			p = &(*p)->rb_right;
472 		else if (pregion == region)
473 			return;
474 		else
475 			BUG();
476 	}
477 
478 	rb_link_node(&region->vm_rb, parent, p);
479 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
480 
481 	validate_nommu_regions();
482 }
483 
484 /*
485  * delete a region from the global tree
486  */
487 static void delete_nommu_region(struct vm_region *region)
488 {
489 	BUG_ON(!nommu_region_tree.rb_node);
490 
491 	validate_nommu_regions();
492 	rb_erase(&region->vm_rb, &nommu_region_tree);
493 	validate_nommu_regions();
494 }
495 
496 /*
497  * free a contiguous series of pages
498  */
499 static void free_page_series(unsigned long from, unsigned long to)
500 {
501 	for (; from < to; from += PAGE_SIZE) {
502 		struct page *page = virt_to_page(from);
503 
504 		atomic_long_dec(&mmap_pages_allocated);
505 		put_page(page);
506 	}
507 }
508 
509 /*
510  * release a reference to a region
511  * - the caller must hold the region semaphore for writing, which this releases
512  * - the region may not have been added to the tree yet, in which case vm_top
513  *   will equal vm_start
514  */
515 static void __put_nommu_region(struct vm_region *region)
516 	__releases(nommu_region_sem)
517 {
518 	BUG_ON(!nommu_region_tree.rb_node);
519 
520 	if (--region->vm_usage == 0) {
521 		if (region->vm_top > region->vm_start)
522 			delete_nommu_region(region);
523 		up_write(&nommu_region_sem);
524 
525 		if (region->vm_file)
526 			fput(region->vm_file);
527 
528 		/* IO memory and memory shared directly out of the pagecache
529 		 * from ramfs/tmpfs mustn't be released here */
530 		if (region->vm_flags & VM_MAPPED_COPY)
531 			free_page_series(region->vm_start, region->vm_top);
532 		kmem_cache_free(vm_region_jar, region);
533 	} else {
534 		up_write(&nommu_region_sem);
535 	}
536 }
537 
538 /*
539  * release a reference to a region
540  */
541 static void put_nommu_region(struct vm_region *region)
542 {
543 	down_write(&nommu_region_sem);
544 	__put_nommu_region(region);
545 }
546 
547 /*
548  * add a VMA into a process's mm_struct in the appropriate place in the list
549  * and tree and add to the address space's page tree also if not an anonymous
550  * page
551  * - should be called with mm->mmap_lock held writelocked
552  */
553 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
554 {
555 	struct vm_area_struct *pvma, *prev;
556 	struct address_space *mapping;
557 	struct rb_node **p, *parent, *rb_prev;
558 
559 	BUG_ON(!vma->vm_region);
560 
561 	mm->map_count++;
562 	vma->vm_mm = mm;
563 
564 	/* add the VMA to the mapping */
565 	if (vma->vm_file) {
566 		mapping = vma->vm_file->f_mapping;
567 
568 		i_mmap_lock_write(mapping);
569 		flush_dcache_mmap_lock(mapping);
570 		vma_interval_tree_insert(vma, &mapping->i_mmap);
571 		flush_dcache_mmap_unlock(mapping);
572 		i_mmap_unlock_write(mapping);
573 	}
574 
575 	/* add the VMA to the tree */
576 	parent = rb_prev = NULL;
577 	p = &mm->mm_rb.rb_node;
578 	while (*p) {
579 		parent = *p;
580 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
581 
582 		/* sort by: start addr, end addr, VMA struct addr in that order
583 		 * (the latter is necessary as we may get identical VMAs) */
584 		if (vma->vm_start < pvma->vm_start)
585 			p = &(*p)->rb_left;
586 		else if (vma->vm_start > pvma->vm_start) {
587 			rb_prev = parent;
588 			p = &(*p)->rb_right;
589 		} else if (vma->vm_end < pvma->vm_end)
590 			p = &(*p)->rb_left;
591 		else if (vma->vm_end > pvma->vm_end) {
592 			rb_prev = parent;
593 			p = &(*p)->rb_right;
594 		} else if (vma < pvma)
595 			p = &(*p)->rb_left;
596 		else if (vma > pvma) {
597 			rb_prev = parent;
598 			p = &(*p)->rb_right;
599 		} else
600 			BUG();
601 	}
602 
603 	rb_link_node(&vma->vm_rb, parent, p);
604 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
605 
606 	/* add VMA to the VMA list also */
607 	prev = NULL;
608 	if (rb_prev)
609 		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
610 
611 	__vma_link_list(mm, vma, prev);
612 }
613 
614 /*
615  * delete a VMA from its owning mm_struct and address space
616  */
617 static void delete_vma_from_mm(struct vm_area_struct *vma)
618 {
619 	int i;
620 	struct address_space *mapping;
621 	struct mm_struct *mm = vma->vm_mm;
622 	struct task_struct *curr = current;
623 
624 	mm->map_count--;
625 	for (i = 0; i < VMACACHE_SIZE; i++) {
626 		/* if the vma is cached, invalidate the entire cache */
627 		if (curr->vmacache.vmas[i] == vma) {
628 			vmacache_invalidate(mm);
629 			break;
630 		}
631 	}
632 
633 	/* remove the VMA from the mapping */
634 	if (vma->vm_file) {
635 		mapping = vma->vm_file->f_mapping;
636 
637 		i_mmap_lock_write(mapping);
638 		flush_dcache_mmap_lock(mapping);
639 		vma_interval_tree_remove(vma, &mapping->i_mmap);
640 		flush_dcache_mmap_unlock(mapping);
641 		i_mmap_unlock_write(mapping);
642 	}
643 
644 	/* remove from the MM's tree and list */
645 	rb_erase(&vma->vm_rb, &mm->mm_rb);
646 
647 	__vma_unlink_list(mm, vma);
648 }
649 
650 /*
651  * destroy a VMA record
652  */
653 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
654 {
655 	if (vma->vm_ops && vma->vm_ops->close)
656 		vma->vm_ops->close(vma);
657 	if (vma->vm_file)
658 		fput(vma->vm_file);
659 	put_nommu_region(vma->vm_region);
660 	vm_area_free(vma);
661 }
662 
663 /*
664  * look up the first VMA in which addr resides, NULL if none
665  * - should be called with mm->mmap_lock at least held readlocked
666  */
667 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
668 {
669 	struct vm_area_struct *vma;
670 
671 	/* check the cache first */
672 	vma = vmacache_find(mm, addr);
673 	if (likely(vma))
674 		return vma;
675 
676 	/* trawl the list (there may be multiple mappings in which addr
677 	 * resides) */
678 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
679 		if (vma->vm_start > addr)
680 			return NULL;
681 		if (vma->vm_end > addr) {
682 			vmacache_update(addr, vma);
683 			return vma;
684 		}
685 	}
686 
687 	return NULL;
688 }
689 EXPORT_SYMBOL(find_vma);
690 
691 /*
692  * find a VMA
693  * - we don't extend stack VMAs under NOMMU conditions
694  */
695 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
696 {
697 	return find_vma(mm, addr);
698 }
699 
700 /*
701  * expand a stack to a given address
702  * - not supported under NOMMU conditions
703  */
704 int expand_stack(struct vm_area_struct *vma, unsigned long address)
705 {
706 	return -ENOMEM;
707 }
708 
709 /*
710  * look up the first VMA exactly that exactly matches addr
711  * - should be called with mm->mmap_lock at least held readlocked
712  */
713 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
714 					     unsigned long addr,
715 					     unsigned long len)
716 {
717 	struct vm_area_struct *vma;
718 	unsigned long end = addr + len;
719 
720 	/* check the cache first */
721 	vma = vmacache_find_exact(mm, addr, end);
722 	if (vma)
723 		return vma;
724 
725 	/* trawl the list (there may be multiple mappings in which addr
726 	 * resides) */
727 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
728 		if (vma->vm_start < addr)
729 			continue;
730 		if (vma->vm_start > addr)
731 			return NULL;
732 		if (vma->vm_end == end) {
733 			vmacache_update(addr, vma);
734 			return vma;
735 		}
736 	}
737 
738 	return NULL;
739 }
740 
741 /*
742  * determine whether a mapping should be permitted and, if so, what sort of
743  * mapping we're capable of supporting
744  */
745 static int validate_mmap_request(struct file *file,
746 				 unsigned long addr,
747 				 unsigned long len,
748 				 unsigned long prot,
749 				 unsigned long flags,
750 				 unsigned long pgoff,
751 				 unsigned long *_capabilities)
752 {
753 	unsigned long capabilities, rlen;
754 	int ret;
755 
756 	/* do the simple checks first */
757 	if (flags & MAP_FIXED)
758 		return -EINVAL;
759 
760 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
761 	    (flags & MAP_TYPE) != MAP_SHARED)
762 		return -EINVAL;
763 
764 	if (!len)
765 		return -EINVAL;
766 
767 	/* Careful about overflows.. */
768 	rlen = PAGE_ALIGN(len);
769 	if (!rlen || rlen > TASK_SIZE)
770 		return -ENOMEM;
771 
772 	/* offset overflow? */
773 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
774 		return -EOVERFLOW;
775 
776 	if (file) {
777 		/* files must support mmap */
778 		if (!file->f_op->mmap)
779 			return -ENODEV;
780 
781 		/* work out if what we've got could possibly be shared
782 		 * - we support chardevs that provide their own "memory"
783 		 * - we support files/blockdevs that are memory backed
784 		 */
785 		if (file->f_op->mmap_capabilities) {
786 			capabilities = file->f_op->mmap_capabilities(file);
787 		} else {
788 			/* no explicit capabilities set, so assume some
789 			 * defaults */
790 			switch (file_inode(file)->i_mode & S_IFMT) {
791 			case S_IFREG:
792 			case S_IFBLK:
793 				capabilities = NOMMU_MAP_COPY;
794 				break;
795 
796 			case S_IFCHR:
797 				capabilities =
798 					NOMMU_MAP_DIRECT |
799 					NOMMU_MAP_READ |
800 					NOMMU_MAP_WRITE;
801 				break;
802 
803 			default:
804 				return -EINVAL;
805 			}
806 		}
807 
808 		/* eliminate any capabilities that we can't support on this
809 		 * device */
810 		if (!file->f_op->get_unmapped_area)
811 			capabilities &= ~NOMMU_MAP_DIRECT;
812 		if (!(file->f_mode & FMODE_CAN_READ))
813 			capabilities &= ~NOMMU_MAP_COPY;
814 
815 		/* The file shall have been opened with read permission. */
816 		if (!(file->f_mode & FMODE_READ))
817 			return -EACCES;
818 
819 		if (flags & MAP_SHARED) {
820 			/* do checks for writing, appending and locking */
821 			if ((prot & PROT_WRITE) &&
822 			    !(file->f_mode & FMODE_WRITE))
823 				return -EACCES;
824 
825 			if (IS_APPEND(file_inode(file)) &&
826 			    (file->f_mode & FMODE_WRITE))
827 				return -EACCES;
828 
829 			if (locks_verify_locked(file))
830 				return -EAGAIN;
831 
832 			if (!(capabilities & NOMMU_MAP_DIRECT))
833 				return -ENODEV;
834 
835 			/* we mustn't privatise shared mappings */
836 			capabilities &= ~NOMMU_MAP_COPY;
837 		} else {
838 			/* we're going to read the file into private memory we
839 			 * allocate */
840 			if (!(capabilities & NOMMU_MAP_COPY))
841 				return -ENODEV;
842 
843 			/* we don't permit a private writable mapping to be
844 			 * shared with the backing device */
845 			if (prot & PROT_WRITE)
846 				capabilities &= ~NOMMU_MAP_DIRECT;
847 		}
848 
849 		if (capabilities & NOMMU_MAP_DIRECT) {
850 			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
851 			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
852 			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
853 			    ) {
854 				capabilities &= ~NOMMU_MAP_DIRECT;
855 				if (flags & MAP_SHARED) {
856 					pr_warn("MAP_SHARED not completely supported on !MMU\n");
857 					return -EINVAL;
858 				}
859 			}
860 		}
861 
862 		/* handle executable mappings and implied executable
863 		 * mappings */
864 		if (path_noexec(&file->f_path)) {
865 			if (prot & PROT_EXEC)
866 				return -EPERM;
867 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
868 			/* handle implication of PROT_EXEC by PROT_READ */
869 			if (current->personality & READ_IMPLIES_EXEC) {
870 				if (capabilities & NOMMU_MAP_EXEC)
871 					prot |= PROT_EXEC;
872 			}
873 		} else if ((prot & PROT_READ) &&
874 			 (prot & PROT_EXEC) &&
875 			 !(capabilities & NOMMU_MAP_EXEC)
876 			 ) {
877 			/* backing file is not executable, try to copy */
878 			capabilities &= ~NOMMU_MAP_DIRECT;
879 		}
880 	} else {
881 		/* anonymous mappings are always memory backed and can be
882 		 * privately mapped
883 		 */
884 		capabilities = NOMMU_MAP_COPY;
885 
886 		/* handle PROT_EXEC implication by PROT_READ */
887 		if ((prot & PROT_READ) &&
888 		    (current->personality & READ_IMPLIES_EXEC))
889 			prot |= PROT_EXEC;
890 	}
891 
892 	/* allow the security API to have its say */
893 	ret = security_mmap_addr(addr);
894 	if (ret < 0)
895 		return ret;
896 
897 	/* looks okay */
898 	*_capabilities = capabilities;
899 	return 0;
900 }
901 
902 /*
903  * we've determined that we can make the mapping, now translate what we
904  * now know into VMA flags
905  */
906 static unsigned long determine_vm_flags(struct file *file,
907 					unsigned long prot,
908 					unsigned long flags,
909 					unsigned long capabilities)
910 {
911 	unsigned long vm_flags;
912 
913 	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
914 	/* vm_flags |= mm->def_flags; */
915 
916 	if (!(capabilities & NOMMU_MAP_DIRECT)) {
917 		/* attempt to share read-only copies of mapped file chunks */
918 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
919 		if (file && !(prot & PROT_WRITE))
920 			vm_flags |= VM_MAYSHARE;
921 	} else {
922 		/* overlay a shareable mapping on the backing device or inode
923 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
924 		 * romfs/cramfs */
925 		vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
926 		if (flags & MAP_SHARED)
927 			vm_flags |= VM_SHARED;
928 	}
929 
930 	/* refuse to let anyone share private mappings with this process if
931 	 * it's being traced - otherwise breakpoints set in it may interfere
932 	 * with another untraced process
933 	 */
934 	if ((flags & MAP_PRIVATE) && current->ptrace)
935 		vm_flags &= ~VM_MAYSHARE;
936 
937 	return vm_flags;
938 }
939 
940 /*
941  * set up a shared mapping on a file (the driver or filesystem provides and
942  * pins the storage)
943  */
944 static int do_mmap_shared_file(struct vm_area_struct *vma)
945 {
946 	int ret;
947 
948 	ret = call_mmap(vma->vm_file, vma);
949 	if (ret == 0) {
950 		vma->vm_region->vm_top = vma->vm_region->vm_end;
951 		return 0;
952 	}
953 	if (ret != -ENOSYS)
954 		return ret;
955 
956 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
957 	 * opposed to tried but failed) so we can only give a suitable error as
958 	 * it's not possible to make a private copy if MAP_SHARED was given */
959 	return -ENODEV;
960 }
961 
962 /*
963  * set up a private mapping or an anonymous shared mapping
964  */
965 static int do_mmap_private(struct vm_area_struct *vma,
966 			   struct vm_region *region,
967 			   unsigned long len,
968 			   unsigned long capabilities)
969 {
970 	unsigned long total, point;
971 	void *base;
972 	int ret, order;
973 
974 	/* invoke the file's mapping function so that it can keep track of
975 	 * shared mappings on devices or memory
976 	 * - VM_MAYSHARE will be set if it may attempt to share
977 	 */
978 	if (capabilities & NOMMU_MAP_DIRECT) {
979 		ret = call_mmap(vma->vm_file, vma);
980 		if (ret == 0) {
981 			/* shouldn't return success if we're not sharing */
982 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
983 			vma->vm_region->vm_top = vma->vm_region->vm_end;
984 			return 0;
985 		}
986 		if (ret != -ENOSYS)
987 			return ret;
988 
989 		/* getting an ENOSYS error indicates that direct mmap isn't
990 		 * possible (as opposed to tried but failed) so we'll try to
991 		 * make a private copy of the data and map that instead */
992 	}
993 
994 
995 	/* allocate some memory to hold the mapping
996 	 * - note that this may not return a page-aligned address if the object
997 	 *   we're allocating is smaller than a page
998 	 */
999 	order = get_order(len);
1000 	total = 1 << order;
1001 	point = len >> PAGE_SHIFT;
1002 
1003 	/* we don't want to allocate a power-of-2 sized page set */
1004 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1005 		total = point;
1006 
1007 	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1008 	if (!base)
1009 		goto enomem;
1010 
1011 	atomic_long_add(total, &mmap_pages_allocated);
1012 
1013 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1014 	region->vm_start = (unsigned long) base;
1015 	region->vm_end   = region->vm_start + len;
1016 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1017 
1018 	vma->vm_start = region->vm_start;
1019 	vma->vm_end   = region->vm_start + len;
1020 
1021 	if (vma->vm_file) {
1022 		/* read the contents of a file into the copy */
1023 		loff_t fpos;
1024 
1025 		fpos = vma->vm_pgoff;
1026 		fpos <<= PAGE_SHIFT;
1027 
1028 		ret = kernel_read(vma->vm_file, base, len, &fpos);
1029 		if (ret < 0)
1030 			goto error_free;
1031 
1032 		/* clear the last little bit */
1033 		if (ret < len)
1034 			memset(base + ret, 0, len - ret);
1035 
1036 	} else {
1037 		vma_set_anonymous(vma);
1038 	}
1039 
1040 	return 0;
1041 
1042 error_free:
1043 	free_page_series(region->vm_start, region->vm_top);
1044 	region->vm_start = vma->vm_start = 0;
1045 	region->vm_end   = vma->vm_end = 0;
1046 	region->vm_top   = 0;
1047 	return ret;
1048 
1049 enomem:
1050 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1051 	       len, current->pid, current->comm);
1052 	show_free_areas(0, NULL);
1053 	return -ENOMEM;
1054 }
1055 
1056 /*
1057  * handle mapping creation for uClinux
1058  */
1059 unsigned long do_mmap(struct file *file,
1060 			unsigned long addr,
1061 			unsigned long len,
1062 			unsigned long prot,
1063 			unsigned long flags,
1064 			unsigned long pgoff,
1065 			unsigned long *populate,
1066 			struct list_head *uf)
1067 {
1068 	struct vm_area_struct *vma;
1069 	struct vm_region *region;
1070 	struct rb_node *rb;
1071 	vm_flags_t vm_flags;
1072 	unsigned long capabilities, result;
1073 	int ret;
1074 
1075 	*populate = 0;
1076 
1077 	/* decide whether we should attempt the mapping, and if so what sort of
1078 	 * mapping */
1079 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1080 				    &capabilities);
1081 	if (ret < 0)
1082 		return ret;
1083 
1084 	/* we ignore the address hint */
1085 	addr = 0;
1086 	len = PAGE_ALIGN(len);
1087 
1088 	/* we've determined that we can make the mapping, now translate what we
1089 	 * now know into VMA flags */
1090 	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1091 
1092 	/* we're going to need to record the mapping */
1093 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1094 	if (!region)
1095 		goto error_getting_region;
1096 
1097 	vma = vm_area_alloc(current->mm);
1098 	if (!vma)
1099 		goto error_getting_vma;
1100 
1101 	region->vm_usage = 1;
1102 	region->vm_flags = vm_flags;
1103 	region->vm_pgoff = pgoff;
1104 
1105 	vma->vm_flags = vm_flags;
1106 	vma->vm_pgoff = pgoff;
1107 
1108 	if (file) {
1109 		region->vm_file = get_file(file);
1110 		vma->vm_file = get_file(file);
1111 	}
1112 
1113 	down_write(&nommu_region_sem);
1114 
1115 	/* if we want to share, we need to check for regions created by other
1116 	 * mmap() calls that overlap with our proposed mapping
1117 	 * - we can only share with a superset match on most regular files
1118 	 * - shared mappings on character devices and memory backed files are
1119 	 *   permitted to overlap inexactly as far as we are concerned for in
1120 	 *   these cases, sharing is handled in the driver or filesystem rather
1121 	 *   than here
1122 	 */
1123 	if (vm_flags & VM_MAYSHARE) {
1124 		struct vm_region *pregion;
1125 		unsigned long pglen, rpglen, pgend, rpgend, start;
1126 
1127 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1128 		pgend = pgoff + pglen;
1129 
1130 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1131 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1132 
1133 			if (!(pregion->vm_flags & VM_MAYSHARE))
1134 				continue;
1135 
1136 			/* search for overlapping mappings on the same file */
1137 			if (file_inode(pregion->vm_file) !=
1138 			    file_inode(file))
1139 				continue;
1140 
1141 			if (pregion->vm_pgoff >= pgend)
1142 				continue;
1143 
1144 			rpglen = pregion->vm_end - pregion->vm_start;
1145 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1146 			rpgend = pregion->vm_pgoff + rpglen;
1147 			if (pgoff >= rpgend)
1148 				continue;
1149 
1150 			/* handle inexactly overlapping matches between
1151 			 * mappings */
1152 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1153 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1154 				/* new mapping is not a subset of the region */
1155 				if (!(capabilities & NOMMU_MAP_DIRECT))
1156 					goto sharing_violation;
1157 				continue;
1158 			}
1159 
1160 			/* we've found a region we can share */
1161 			pregion->vm_usage++;
1162 			vma->vm_region = pregion;
1163 			start = pregion->vm_start;
1164 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1165 			vma->vm_start = start;
1166 			vma->vm_end = start + len;
1167 
1168 			if (pregion->vm_flags & VM_MAPPED_COPY)
1169 				vma->vm_flags |= VM_MAPPED_COPY;
1170 			else {
1171 				ret = do_mmap_shared_file(vma);
1172 				if (ret < 0) {
1173 					vma->vm_region = NULL;
1174 					vma->vm_start = 0;
1175 					vma->vm_end = 0;
1176 					pregion->vm_usage--;
1177 					pregion = NULL;
1178 					goto error_just_free;
1179 				}
1180 			}
1181 			fput(region->vm_file);
1182 			kmem_cache_free(vm_region_jar, region);
1183 			region = pregion;
1184 			result = start;
1185 			goto share;
1186 		}
1187 
1188 		/* obtain the address at which to make a shared mapping
1189 		 * - this is the hook for quasi-memory character devices to
1190 		 *   tell us the location of a shared mapping
1191 		 */
1192 		if (capabilities & NOMMU_MAP_DIRECT) {
1193 			addr = file->f_op->get_unmapped_area(file, addr, len,
1194 							     pgoff, flags);
1195 			if (IS_ERR_VALUE(addr)) {
1196 				ret = addr;
1197 				if (ret != -ENOSYS)
1198 					goto error_just_free;
1199 
1200 				/* the driver refused to tell us where to site
1201 				 * the mapping so we'll have to attempt to copy
1202 				 * it */
1203 				ret = -ENODEV;
1204 				if (!(capabilities & NOMMU_MAP_COPY))
1205 					goto error_just_free;
1206 
1207 				capabilities &= ~NOMMU_MAP_DIRECT;
1208 			} else {
1209 				vma->vm_start = region->vm_start = addr;
1210 				vma->vm_end = region->vm_end = addr + len;
1211 			}
1212 		}
1213 	}
1214 
1215 	vma->vm_region = region;
1216 
1217 	/* set up the mapping
1218 	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1219 	 */
1220 	if (file && vma->vm_flags & VM_SHARED)
1221 		ret = do_mmap_shared_file(vma);
1222 	else
1223 		ret = do_mmap_private(vma, region, len, capabilities);
1224 	if (ret < 0)
1225 		goto error_just_free;
1226 	add_nommu_region(region);
1227 
1228 	/* clear anonymous mappings that don't ask for uninitialized data */
1229 	if (!vma->vm_file &&
1230 	    (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1231 	     !(flags & MAP_UNINITIALIZED)))
1232 		memset((void *)region->vm_start, 0,
1233 		       region->vm_end - region->vm_start);
1234 
1235 	/* okay... we have a mapping; now we have to register it */
1236 	result = vma->vm_start;
1237 
1238 	current->mm->total_vm += len >> PAGE_SHIFT;
1239 
1240 share:
1241 	add_vma_to_mm(current->mm, vma);
1242 
1243 	/* we flush the region from the icache only when the first executable
1244 	 * mapping of it is made  */
1245 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1246 		flush_icache_user_range(region->vm_start, region->vm_end);
1247 		region->vm_icache_flushed = true;
1248 	}
1249 
1250 	up_write(&nommu_region_sem);
1251 
1252 	return result;
1253 
1254 error_just_free:
1255 	up_write(&nommu_region_sem);
1256 error:
1257 	if (region->vm_file)
1258 		fput(region->vm_file);
1259 	kmem_cache_free(vm_region_jar, region);
1260 	if (vma->vm_file)
1261 		fput(vma->vm_file);
1262 	vm_area_free(vma);
1263 	return ret;
1264 
1265 sharing_violation:
1266 	up_write(&nommu_region_sem);
1267 	pr_warn("Attempt to share mismatched mappings\n");
1268 	ret = -EINVAL;
1269 	goto error;
1270 
1271 error_getting_vma:
1272 	kmem_cache_free(vm_region_jar, region);
1273 	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1274 			len, current->pid);
1275 	show_free_areas(0, NULL);
1276 	return -ENOMEM;
1277 
1278 error_getting_region:
1279 	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1280 			len, current->pid);
1281 	show_free_areas(0, NULL);
1282 	return -ENOMEM;
1283 }
1284 
1285 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1286 			      unsigned long prot, unsigned long flags,
1287 			      unsigned long fd, unsigned long pgoff)
1288 {
1289 	struct file *file = NULL;
1290 	unsigned long retval = -EBADF;
1291 
1292 	audit_mmap_fd(fd, flags);
1293 	if (!(flags & MAP_ANONYMOUS)) {
1294 		file = fget(fd);
1295 		if (!file)
1296 			goto out;
1297 	}
1298 
1299 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1300 
1301 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1302 
1303 	if (file)
1304 		fput(file);
1305 out:
1306 	return retval;
1307 }
1308 
1309 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1310 		unsigned long, prot, unsigned long, flags,
1311 		unsigned long, fd, unsigned long, pgoff)
1312 {
1313 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1314 }
1315 
1316 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1317 struct mmap_arg_struct {
1318 	unsigned long addr;
1319 	unsigned long len;
1320 	unsigned long prot;
1321 	unsigned long flags;
1322 	unsigned long fd;
1323 	unsigned long offset;
1324 };
1325 
1326 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1327 {
1328 	struct mmap_arg_struct a;
1329 
1330 	if (copy_from_user(&a, arg, sizeof(a)))
1331 		return -EFAULT;
1332 	if (offset_in_page(a.offset))
1333 		return -EINVAL;
1334 
1335 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1336 			       a.offset >> PAGE_SHIFT);
1337 }
1338 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1339 
1340 /*
1341  * split a vma into two pieces at address 'addr', a new vma is allocated either
1342  * for the first part or the tail.
1343  */
1344 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1345 	      unsigned long addr, int new_below)
1346 {
1347 	struct vm_area_struct *new;
1348 	struct vm_region *region;
1349 	unsigned long npages;
1350 
1351 	/* we're only permitted to split anonymous regions (these should have
1352 	 * only a single usage on the region) */
1353 	if (vma->vm_file)
1354 		return -ENOMEM;
1355 
1356 	if (mm->map_count >= sysctl_max_map_count)
1357 		return -ENOMEM;
1358 
1359 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1360 	if (!region)
1361 		return -ENOMEM;
1362 
1363 	new = vm_area_dup(vma);
1364 	if (!new) {
1365 		kmem_cache_free(vm_region_jar, region);
1366 		return -ENOMEM;
1367 	}
1368 
1369 	/* most fields are the same, copy all, and then fixup */
1370 	*region = *vma->vm_region;
1371 	new->vm_region = region;
1372 
1373 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1374 
1375 	if (new_below) {
1376 		region->vm_top = region->vm_end = new->vm_end = addr;
1377 	} else {
1378 		region->vm_start = new->vm_start = addr;
1379 		region->vm_pgoff = new->vm_pgoff += npages;
1380 	}
1381 
1382 	if (new->vm_ops && new->vm_ops->open)
1383 		new->vm_ops->open(new);
1384 
1385 	delete_vma_from_mm(vma);
1386 	down_write(&nommu_region_sem);
1387 	delete_nommu_region(vma->vm_region);
1388 	if (new_below) {
1389 		vma->vm_region->vm_start = vma->vm_start = addr;
1390 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1391 	} else {
1392 		vma->vm_region->vm_end = vma->vm_end = addr;
1393 		vma->vm_region->vm_top = addr;
1394 	}
1395 	add_nommu_region(vma->vm_region);
1396 	add_nommu_region(new->vm_region);
1397 	up_write(&nommu_region_sem);
1398 	add_vma_to_mm(mm, vma);
1399 	add_vma_to_mm(mm, new);
1400 	return 0;
1401 }
1402 
1403 /*
1404  * shrink a VMA by removing the specified chunk from either the beginning or
1405  * the end
1406  */
1407 static int shrink_vma(struct mm_struct *mm,
1408 		      struct vm_area_struct *vma,
1409 		      unsigned long from, unsigned long to)
1410 {
1411 	struct vm_region *region;
1412 
1413 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1414 	 * and list */
1415 	delete_vma_from_mm(vma);
1416 	if (from > vma->vm_start)
1417 		vma->vm_end = from;
1418 	else
1419 		vma->vm_start = to;
1420 	add_vma_to_mm(mm, vma);
1421 
1422 	/* cut the backing region down to size */
1423 	region = vma->vm_region;
1424 	BUG_ON(region->vm_usage != 1);
1425 
1426 	down_write(&nommu_region_sem);
1427 	delete_nommu_region(region);
1428 	if (from > region->vm_start) {
1429 		to = region->vm_top;
1430 		region->vm_top = region->vm_end = from;
1431 	} else {
1432 		region->vm_start = to;
1433 	}
1434 	add_nommu_region(region);
1435 	up_write(&nommu_region_sem);
1436 
1437 	free_page_series(from, to);
1438 	return 0;
1439 }
1440 
1441 /*
1442  * release a mapping
1443  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1444  *   VMA, though it need not cover the whole VMA
1445  */
1446 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1447 {
1448 	struct vm_area_struct *vma;
1449 	unsigned long end;
1450 	int ret;
1451 
1452 	len = PAGE_ALIGN(len);
1453 	if (len == 0)
1454 		return -EINVAL;
1455 
1456 	end = start + len;
1457 
1458 	/* find the first potentially overlapping VMA */
1459 	vma = find_vma(mm, start);
1460 	if (!vma) {
1461 		static int limit;
1462 		if (limit < 5) {
1463 			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1464 					current->pid, current->comm,
1465 					start, start + len - 1);
1466 			limit++;
1467 		}
1468 		return -EINVAL;
1469 	}
1470 
1471 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1472 	if (vma->vm_file) {
1473 		do {
1474 			if (start > vma->vm_start)
1475 				return -EINVAL;
1476 			if (end == vma->vm_end)
1477 				goto erase_whole_vma;
1478 			vma = vma->vm_next;
1479 		} while (vma);
1480 		return -EINVAL;
1481 	} else {
1482 		/* the chunk must be a subset of the VMA found */
1483 		if (start == vma->vm_start && end == vma->vm_end)
1484 			goto erase_whole_vma;
1485 		if (start < vma->vm_start || end > vma->vm_end)
1486 			return -EINVAL;
1487 		if (offset_in_page(start))
1488 			return -EINVAL;
1489 		if (end != vma->vm_end && offset_in_page(end))
1490 			return -EINVAL;
1491 		if (start != vma->vm_start && end != vma->vm_end) {
1492 			ret = split_vma(mm, vma, start, 1);
1493 			if (ret < 0)
1494 				return ret;
1495 		}
1496 		return shrink_vma(mm, vma, start, end);
1497 	}
1498 
1499 erase_whole_vma:
1500 	delete_vma_from_mm(vma);
1501 	delete_vma(mm, vma);
1502 	return 0;
1503 }
1504 EXPORT_SYMBOL(do_munmap);
1505 
1506 int vm_munmap(unsigned long addr, size_t len)
1507 {
1508 	struct mm_struct *mm = current->mm;
1509 	int ret;
1510 
1511 	mmap_write_lock(mm);
1512 	ret = do_munmap(mm, addr, len, NULL);
1513 	mmap_write_unlock(mm);
1514 	return ret;
1515 }
1516 EXPORT_SYMBOL(vm_munmap);
1517 
1518 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1519 {
1520 	return vm_munmap(addr, len);
1521 }
1522 
1523 /*
1524  * release all the mappings made in a process's VM space
1525  */
1526 void exit_mmap(struct mm_struct *mm)
1527 {
1528 	struct vm_area_struct *vma;
1529 
1530 	if (!mm)
1531 		return;
1532 
1533 	mm->total_vm = 0;
1534 
1535 	while ((vma = mm->mmap)) {
1536 		mm->mmap = vma->vm_next;
1537 		delete_vma_from_mm(vma);
1538 		delete_vma(mm, vma);
1539 		cond_resched();
1540 	}
1541 }
1542 
1543 int vm_brk(unsigned long addr, unsigned long len)
1544 {
1545 	return -ENOMEM;
1546 }
1547 
1548 /*
1549  * expand (or shrink) an existing mapping, potentially moving it at the same
1550  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1551  *
1552  * under NOMMU conditions, we only permit changing a mapping's size, and only
1553  * as long as it stays within the region allocated by do_mmap_private() and the
1554  * block is not shareable
1555  *
1556  * MREMAP_FIXED is not supported under NOMMU conditions
1557  */
1558 static unsigned long do_mremap(unsigned long addr,
1559 			unsigned long old_len, unsigned long new_len,
1560 			unsigned long flags, unsigned long new_addr)
1561 {
1562 	struct vm_area_struct *vma;
1563 
1564 	/* insanity checks first */
1565 	old_len = PAGE_ALIGN(old_len);
1566 	new_len = PAGE_ALIGN(new_len);
1567 	if (old_len == 0 || new_len == 0)
1568 		return (unsigned long) -EINVAL;
1569 
1570 	if (offset_in_page(addr))
1571 		return -EINVAL;
1572 
1573 	if (flags & MREMAP_FIXED && new_addr != addr)
1574 		return (unsigned long) -EINVAL;
1575 
1576 	vma = find_vma_exact(current->mm, addr, old_len);
1577 	if (!vma)
1578 		return (unsigned long) -EINVAL;
1579 
1580 	if (vma->vm_end != vma->vm_start + old_len)
1581 		return (unsigned long) -EFAULT;
1582 
1583 	if (vma->vm_flags & VM_MAYSHARE)
1584 		return (unsigned long) -EPERM;
1585 
1586 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1587 		return (unsigned long) -ENOMEM;
1588 
1589 	/* all checks complete - do it */
1590 	vma->vm_end = vma->vm_start + new_len;
1591 	return vma->vm_start;
1592 }
1593 
1594 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1595 		unsigned long, new_len, unsigned long, flags,
1596 		unsigned long, new_addr)
1597 {
1598 	unsigned long ret;
1599 
1600 	mmap_write_lock(current->mm);
1601 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1602 	mmap_write_unlock(current->mm);
1603 	return ret;
1604 }
1605 
1606 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1607 			 unsigned int foll_flags)
1608 {
1609 	return NULL;
1610 }
1611 
1612 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1613 		unsigned long pfn, unsigned long size, pgprot_t prot)
1614 {
1615 	if (addr != (pfn << PAGE_SHIFT))
1616 		return -EINVAL;
1617 
1618 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1619 	return 0;
1620 }
1621 EXPORT_SYMBOL(remap_pfn_range);
1622 
1623 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1624 {
1625 	unsigned long pfn = start >> PAGE_SHIFT;
1626 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1627 
1628 	pfn += vma->vm_pgoff;
1629 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1630 }
1631 EXPORT_SYMBOL(vm_iomap_memory);
1632 
1633 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1634 			unsigned long pgoff)
1635 {
1636 	unsigned int size = vma->vm_end - vma->vm_start;
1637 
1638 	if (!(vma->vm_flags & VM_USERMAP))
1639 		return -EINVAL;
1640 
1641 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1642 	vma->vm_end = vma->vm_start + size;
1643 
1644 	return 0;
1645 }
1646 EXPORT_SYMBOL(remap_vmalloc_range);
1647 
1648 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1649 	unsigned long len, unsigned long pgoff, unsigned long flags)
1650 {
1651 	return -ENOMEM;
1652 }
1653 
1654 vm_fault_t filemap_fault(struct vm_fault *vmf)
1655 {
1656 	BUG();
1657 	return 0;
1658 }
1659 EXPORT_SYMBOL(filemap_fault);
1660 
1661 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1662 		pgoff_t start_pgoff, pgoff_t end_pgoff)
1663 {
1664 	BUG();
1665 	return 0;
1666 }
1667 EXPORT_SYMBOL(filemap_map_pages);
1668 
1669 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
1670 		       int len, unsigned int gup_flags)
1671 {
1672 	struct vm_area_struct *vma;
1673 	int write = gup_flags & FOLL_WRITE;
1674 
1675 	if (mmap_read_lock_killable(mm))
1676 		return 0;
1677 
1678 	/* the access must start within one of the target process's mappings */
1679 	vma = find_vma(mm, addr);
1680 	if (vma) {
1681 		/* don't overrun this mapping */
1682 		if (addr + len >= vma->vm_end)
1683 			len = vma->vm_end - addr;
1684 
1685 		/* only read or write mappings where it is permitted */
1686 		if (write && vma->vm_flags & VM_MAYWRITE)
1687 			copy_to_user_page(vma, NULL, addr,
1688 					 (void *) addr, buf, len);
1689 		else if (!write && vma->vm_flags & VM_MAYREAD)
1690 			copy_from_user_page(vma, NULL, addr,
1691 					    buf, (void *) addr, len);
1692 		else
1693 			len = 0;
1694 	} else {
1695 		len = 0;
1696 	}
1697 
1698 	mmap_read_unlock(mm);
1699 
1700 	return len;
1701 }
1702 
1703 /**
1704  * access_remote_vm - access another process' address space
1705  * @mm:		the mm_struct of the target address space
1706  * @addr:	start address to access
1707  * @buf:	source or destination buffer
1708  * @len:	number of bytes to transfer
1709  * @gup_flags:	flags modifying lookup behaviour
1710  *
1711  * The caller must hold a reference on @mm.
1712  */
1713 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1714 		void *buf, int len, unsigned int gup_flags)
1715 {
1716 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
1717 }
1718 
1719 /*
1720  * Access another process' address space.
1721  * - source/target buffer must be kernel space
1722  */
1723 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1724 		unsigned int gup_flags)
1725 {
1726 	struct mm_struct *mm;
1727 
1728 	if (addr + len < addr)
1729 		return 0;
1730 
1731 	mm = get_task_mm(tsk);
1732 	if (!mm)
1733 		return 0;
1734 
1735 	len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1736 
1737 	mmput(mm);
1738 	return len;
1739 }
1740 EXPORT_SYMBOL_GPL(access_process_vm);
1741 
1742 /**
1743  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1744  * @inode: The inode to check
1745  * @size: The current filesize of the inode
1746  * @newsize: The proposed filesize of the inode
1747  *
1748  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1749  * make sure that any outstanding VMAs aren't broken and then shrink the
1750  * vm_regions that extend beyond so that do_mmap() doesn't
1751  * automatically grant mappings that are too large.
1752  */
1753 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1754 				size_t newsize)
1755 {
1756 	struct vm_area_struct *vma;
1757 	struct vm_region *region;
1758 	pgoff_t low, high;
1759 	size_t r_size, r_top;
1760 
1761 	low = newsize >> PAGE_SHIFT;
1762 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1763 
1764 	down_write(&nommu_region_sem);
1765 	i_mmap_lock_read(inode->i_mapping);
1766 
1767 	/* search for VMAs that fall within the dead zone */
1768 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1769 		/* found one - only interested if it's shared out of the page
1770 		 * cache */
1771 		if (vma->vm_flags & VM_SHARED) {
1772 			i_mmap_unlock_read(inode->i_mapping);
1773 			up_write(&nommu_region_sem);
1774 			return -ETXTBSY; /* not quite true, but near enough */
1775 		}
1776 	}
1777 
1778 	/* reduce any regions that overlap the dead zone - if in existence,
1779 	 * these will be pointed to by VMAs that don't overlap the dead zone
1780 	 *
1781 	 * we don't check for any regions that start beyond the EOF as there
1782 	 * shouldn't be any
1783 	 */
1784 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1785 		if (!(vma->vm_flags & VM_SHARED))
1786 			continue;
1787 
1788 		region = vma->vm_region;
1789 		r_size = region->vm_top - region->vm_start;
1790 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1791 
1792 		if (r_top > newsize) {
1793 			region->vm_top -= r_top - newsize;
1794 			if (region->vm_end > region->vm_top)
1795 				region->vm_end = region->vm_top;
1796 		}
1797 	}
1798 
1799 	i_mmap_unlock_read(inode->i_mapping);
1800 	up_write(&nommu_region_sem);
1801 	return 0;
1802 }
1803 
1804 /*
1805  * Initialise sysctl_user_reserve_kbytes.
1806  *
1807  * This is intended to prevent a user from starting a single memory hogging
1808  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1809  * mode.
1810  *
1811  * The default value is min(3% of free memory, 128MB)
1812  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1813  */
1814 static int __meminit init_user_reserve(void)
1815 {
1816 	unsigned long free_kbytes;
1817 
1818 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1819 
1820 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1821 	return 0;
1822 }
1823 subsys_initcall(init_user_reserve);
1824 
1825 /*
1826  * Initialise sysctl_admin_reserve_kbytes.
1827  *
1828  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1829  * to log in and kill a memory hogging process.
1830  *
1831  * Systems with more than 256MB will reserve 8MB, enough to recover
1832  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1833  * only reserve 3% of free pages by default.
1834  */
1835 static int __meminit init_admin_reserve(void)
1836 {
1837 	unsigned long free_kbytes;
1838 
1839 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1840 
1841 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1842 	return 0;
1843 }
1844 subsys_initcall(init_admin_reserve);
1845